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E-04120 Almeŕıa (Spain)
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1 Introduction

The Brauer group of a cocommutative coalgebra C, denoted by Br(C), was constructed in
[15] by taking the Morita-Takeuchi equivalence relation on the set of Azumaya C-coalgebras.
This theory presents some differences with respect to the Brauer group theory of commutative
algebras, e.g. it is not a torsion group. There is not in general a good relation between Br(C)
and the Brauer group of the dual algebra Br(C∗). This is due to the fact that the dual
algebra of an Azumaya C-coalgebra is usually not an Azumaya algebra over C∗. However, it
has been shown in [2] that when C is irreducible a complete duality does follow and Br(C)
is a subgroup of Br(C∗).

The aim of this paper is to extend this result by finding a subgroup of Br(C) which is
a subgroup of Br(C∗) for an arbitrary C. The key is to use strong equivalences, studied by
Lin in [7], instead of Morita-Takeuchi equivalences. In this theory the finitely cogenerated
comodules replace the quasi-finite ones. We define strong Azumaya C-coalgebras as those
Azumaya C-coalgebras which are finitely cogenerated as C-comodules. By considering the
strongly similar equivalence relation on the set of such coalgebras, we obtain a new group
Brs(C), called the strong Brauer group of C, Theorem 4.3. It is proved that the dual of
a strong Azumaya C-coalgebra is an Azumaya algebra over C∗, Theorem 4.6. This is done
by showing that the dual of the Morita-Takeuchi context associated to a finitely cogenerated
injective comodule PC is exactly the derived Morita context of P ∗

C∗ , Proposition 3.6. Thus
we have a group morphism (−)∗ : Brs(C) → Br(C∗), [D] 7→ [D∗]. Using the linear topology
of all closed and cofinite left ideals and arguments from localization theory we may prove that
(−)∗ is injective, Theorem 4.8. Hence Brs(C) is in particular a torsion group. This allows
one to obtain several interesting generalizations of earlier results, Remark 4.13. Some cases
where (−)∗ : Br(C) → Br(C∗) is an isomorphism are studied (Theorems 4.12, 4.14) e.g. C
being coreflexive.

∗Corresponding author
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2 Notation and preliminaries

Throughout k is a fixed field. Unless otherwise stated, all vector spaces, algebras, coalgebras,
unadorned ⊗,Hom, etc ... are over k.

Coalgebras and comodules (see [13], [1]): For a coalgebra C, we let ∆C , εC denote the
comultiplication and counit respectively, and C∗ its dual algebra. The category of right
comodules is denoted by MC . For X, Y ∈ MC , Com−C(X, Y ) denote the space of all C-
comodule maps from X to Y . By ρX we denote the C-comodule structure map of X. We
use the usual sigma notation for coalgebras and comodules. We will also use the fact that
right comodules are left rational C∗-modules. An X ∈ MC is said to be finitely cogenerated
if there is an injective C-comodule map f : X → W ⊗ C for some finite dimensional space
W . The C-comodule W ⊗ C is nothing but the direct sum C(n) where n = dim(W ).

Morita-Takeuchi theory (see [14]): X ∈MC is called quasi-finite if Com−C(Y, X) is finite
dimensional for all finite dimensional Y ∈ MC . We recall from [14] the definition of the
co-hom functor, co-endomorphism coalgebra and some of its properties.

Lemma 2.1 Let DXC be a bicomodule. XC is quasi-finite if and only if the cotensor product
functor −2DX : MD →MC has a left adjoint functor, denoted by h−C(X,−). For Y ∈MC ,

h−C(X, Y ) = lim
−→
λ∈Λ

Com−C(Yλ, X)∗,

where {Yλ}λ∈Λ is a directed family of finite dimensional subcomodules of Y such that Y =
lim −→

λ∈Λ
Yλ.

The functor h−C(X,−) is called the co-hom functor. Let θX,Y : Y → h−C(X, Y )2DX
denote the unit of the adjunction. Assuming that D = k and XC quasi-finite, e−C(X) =
h−C(X, X) is a coalgebra, called the co-endomorphism coalgebra of X, and X is a (e−C(X), C)-
bicomodule via θX,X : X → e−C(X)⊗X. From the adjoint situation we get an isomorphism

ζX : e−C(X)∗ ∼= Hom(h−C(X, X), k) ∼= Com−C(X, k ⊗X) ∼= Com−C(X, X).

It is defined as ζX(u) = (u⊗ 1)θX,X for all u ∈ e−C(X)∗. Taking the opposite multiplication
in Com−C(X, X), ζX becomes an algebra isomorphism, see [4, Lemma 1.11].

A Morita-Takeuchi context (C,D,P,Q, f, g) consists of coalgebras C,D, bicomodules CPD,

DQC , and bicolinear maps f : C → P2DQ, and g : D → Q2CP such that∑
(p)

p(0) ⊗ g(p(1)) =
∑
(p)

f(p(−1))⊗ p(0),
∑
(q)

q(0) ⊗ f(q(1)) =
∑
(q)

g(q(−1))⊗ q(0),

for all p ∈ P, q ∈ Q. The context is said to be strict if f and g are injective (equiv. isomor-
phisms). In this case, the functors −2CP and −2DQ establish an equivalence between MC

and MD. C and D are called Morita-Takeuchi equivalent coalgebras.
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Hereditary pretorsion classes and equivalences (see [2]): The category of comodules MC

may be considered as the hereditary pretorsion class associated to the linear topology FC of
all closed cofinite left ideals of C∗, see [11]. This will be a key fact throughout this paper.
For detail on torsion theory cf. [12]. Let R be an algebra, and RM the category of left
R-modules. A left linear topology T on R is said to be symmetric if for every I ∈ T there is
a two-sided ideal J of R such that J ⊆ I and J ∈ T .

Suppose that R is a commutative algebra and A an R-algebra. If T is a linear topology
on R, the family T A = {J ≤ AA : IA ⊆ J for some I ∈ T } is a symmetric linear topology on
A. If F is a symmetric left linear topology on A, the family F ∩R = {J ≤ R : I ∩R ⊆ J for
some two-sided ideal I ∈ F}, is a linear topology on R. When A is R-Azumaya, T = T A∩R
and F = (F ∩R)A. This is due to the bijective correspondence between the lattice of ideals
of R and the lattice of two-sided ideals of A, see [9, Corollary 2.11]. For the definition of
Azumaya algebra, the Brauer group of a commutative ring and its more important properties
we refer to [8], [9]. Finally we recall from [2, Theorem 3.3] the following result which will be
very useful in the sequel.

Theorem 2.2 Let R be a commutative algebra, T a linear topology on R and A,B two
R-algebras. Let CA and CB be the hereditary pretorsion classes associated to the induced
topologies T A, T B on A and B respectively. If A and B are Morita equivalent over R, then
the restriction is an equivalence between CA and CB.

3 Strong equivalences revisited

The strong equivalences, studied by Lin in [7], are a particular case of equivalences between
categories of comodules. Given two coalgebras C and D, the categories of right C-comodules
MC , MD may be embedded, via rational modules, in C∗M, D∗M respectively. A strong
equivalence between MC and MD is an equivalence which is induced by an equivalence
between C∗M and D∗M. In this case, C and D are called strongly equivalent. These equiva-
lences were characterized in [7] in terms of ingenerators. We recall that a right C-comodule
P is an ingenerator if it is a finitely cogenerated injective cogenerator. An equivalence

MC
F

�

G

- MD

is strong if and only if F (C), G(D) are ingenerators in MC and MD respectively. The main
difference of this theory with respect to Takeuchi’s theory is the use of finitely cogenerated
comodules instead of quasi-finite ones.

The aim of this section is to study the relation between the Morita-Takeuchi context
associated to an equivalence and the Morita context obtained by the dualization procedure.
When the equivalence is strong, one is strict if and only if the other one is.

If M is a (D,C)-bicomodule, then the dual space M∗ is a (D∗, C∗)-bimodule via the
actions:

〈d∗ ·m∗,m〉 =
∑
(m)

〈d∗,m(−1)〉〈m∗,m(0)〉, 〈m∗ · c∗,m〉 =
∑
(m)

〈m∗,m(0)〉〈c∗,m(1)〉,
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for all c∗ ∈ C∗, d∗ ∈ D∗,m∗ ∈ M∗ and m ∈ M . We recall from [3, Lemma 4.3 i)] that
M ∈MC is finitely cogenerated if and only if M∗ is finitely generated as C∗-module.

Lemma 3.1 Let M be a finitely cogenerated right C-comodule. MC is injective if and only
if M∗

C∗ is projective.

Proof: Note that M is finitely cogenerated injective if and only if it is a direct summand
of C(n) for some n ∈ IN . Hence M∗ is a direct summand of C∗(n), and thus it is projective.

Conversely, let f : M → C(n) be the injective C-comodule map given by hypothesis. The
dual map f∗ : M∗ → C∗(n) is a surjective C∗-module map. Since M∗ is projective, there is a
C∗-module map g : C∗(n) → M∗ such that f∗g = 1M∗ . Then C∗(n) = g(M∗)⊕ker(f∗). From
this, C∗∗(n) = g(M∗)⊥⊕(ker(f∗))⊥, and hence Rat(C∗∗(n)) = Rat(g(M∗)⊥)⊕Rat(ker(f∗)⊥).
Denote by λC : C → C∗∗ the canonical embedding. By [7, Lemma 1], Rat(C∗∗) = λC(C).
Then Rat(C∗∗(n)) = λ

(n)
C (C(n)), where λ

(n)
C : C(n) → C∗∗(n) is the canonical injection. On the

other hand, ker(f∗)⊥ = Im(f)⊥⊥ ⊂ C∗∗(n). We claim that Rat(Im(f)⊥⊥) = λ
(n)
C (Im(f)).

If x ∈ Rat(Im(f)⊥⊥), then x ∈ Rat(C∗∗(n)). There is d ∈ C(n) such that x = λ
(n)
C (d). For

any y ∈ Im(f)⊥, 〈y, d〉 = 〈λ(n)
C (d), y〉 = 〈x, y〉 = 0. Taking now ⊥ in C(n), d ∈ Im(f)⊥⊥ =

Im(f) ⊂ C(n). The other inclusion is clear.

Lemma 3.2 Let C,D be coalgebras and CPD, CQD bicomodules. If PD (resp. CP ) is finitely
cogenerated and injective and CQ (resp. QD) is finitely cogenerated, then Ch−D(P,Q) (resp.
hC−(P,Q)D) is finitely cogenerated.

Proof: By the hypothesis, P is a direct summand of D(n). Let i : P → D(n), π :
D(n) → P be respectively the inclusion and projection maps. These induce C-colinear
maps u : h−D(P,Q) → h−D(D(n), Q), v : h−D(D(n), Q) → h−D(P,Q) such that vu = 1.
Now h−D(D(n), Q) ∼= Q(n) as C-comodules. Since Q is a finitely cogenerated C-comodule,
h−D(P,Q) is too.

Lemma 3.3 Let DMC and CNE be bicomodules. The map

ηM,N : M∗ ⊗C∗ N∗ → (M2CN)∗, 〈
∑

i

m∗
i ⊗ n∗i ,

∑
j

mj ⊗ nj〉 =
∑
i,j

〈m∗
i ,mj〉〈n∗i , nj〉

is a (D∗, E∗)-bimodule map. If, in addition, MC , CN are finitely cogenerated and injective,
then it is an isomorphism.

Proof: An easy computation shows that ηM,N is a bimodule map. We check the second
claim. Let n, m ∈ IN, if γ : C∗(n) ⊗C∗ C∗(m) → C∗(nm) and ξ : C(n)2CC(m) → C(nm) are the
canonical isomorphisms, then it may be easily checked that ξ∗ηC(n),C(m) = γ. It is not hard
to extend the result for direct summands of C(n), C(m).

Definition 3.4 A Morita-Takeuchi context (C,D,P,Q, f, g) is said to be strong if PD, QC

are finitely cogenerated and injective.
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Proposition 3.5 Let (C,D,P,Q, f, g) be a Morita-Takeuchi context. It is strong and strict
if and only if (C∗, D∗, P ∗, Q∗, f∗ηP,Q, g∗ηQ,P ) is a strict Morita context. As a consequence,
if C and D are strongly equivalent, then C∗ and D∗ are Morita equivalent.

Proof: ⇒) Given p ∈ P , we may write f(p(−1)) =
∑

i mi ⊗ ni ∈ P2DQ and g(p(1)) =∑
j m′

j ⊗ n′j ∈ Q2CP . The condition of being a Morita-Takeuchi context transforms to:∑
(p)

∑
i

mi ⊗ ni ⊗ p(0) =
∑
(p)

∑
j

p(0) ⊗m′
j ⊗ n′j .

Write φ∗C : C∗ ⊗C∗ P ∗ → P ∗ and φ∗D : P ∗ ⊗D∗ D∗ → P ∗ for the canonical isomorphisms. Let
p∗, r∗ ∈ P ∗ and q∗ ∈ Q∗,

〈[φC∗((f∗ηP,Q)⊗ 1)](p∗ ⊗ q∗ ⊗ r∗), p〉 =
∑

(p)〈ηP,Q(p∗ ⊗ q∗), f(p(−1))〉〈r∗, p(0)〉
=

∑
(p)

∑
i〈p∗,mi〉〈q∗, ni〉〈r∗, p(0)〉

=
∑

(p)

∑
j〈p∗, p(0)〉〈q∗,m′

j〉〈r∗, n′j〉
=

∑
(p)〈p∗, p(0)〉〈ηQ,P (q∗ ⊗ r∗), g(p(1))〉

= 〈[φD∗(1⊗ (g∗ηQ,P ))](p∗ ⊗ q∗ ⊗ r∗), p〉.

Hence φC∗((f∗ηP,Q) ⊗ 1) = φD∗(1 ⊗ (g∗ηQ,P )). Similarly φD∗((g∗ηQ,P ) ⊗ 1) = φC∗(1 ⊗
(f∗ηQ,P )) where now φC∗ and φD∗ denote the canonical isomorphisms for Q∗. Note that we
does not need for this the context to be strict.

As the context is strict, [14, Theorem 2.5] implies that P,Q are left and right injective,
P ∼= h−D(Q,D) and Q ∼= hC−(P,C). Lemma 3.2 yields that CP, DQ are finitely cogenerated,
and by Lemma 3.3, ηP,Q, ηQ,P are isomorphisms. From this, it follows that f∗ηP,Q, g∗ηQ,P

are isomorphisms.

⇐) The Morita theorem implies that P ∗
D∗ , Q

∗
C∗ are finitely generated. Then PD, QC are

finitely cogenerated, see [3, Lemma 4.3]. Since the maps f∗ηP,Q, g∗ηQ,P are isomorphisms,
f, g are injective.

Assume that C and D are strongly equivalent. By [14, Proposition 2.1, Theorem 3.5],
there is a Morita-Takeuchi context (C,D,P,Q, f, g) where PD, QC are finitely cogenerated.
Now it suffices to apply the foregoing result and the classical Morita theorem.

The Morita context (C∗, D∗, P ∗, Q∗, f∗ηP,Q, g∗ηQ,P ) will be called the dual context of
(C,D,P,Q, f, g). According to [14, Theorem 3.5], strong equivalences are given by an strong
and strict Morita-Takeuchi context. The preceding proposition provides a different proof of
[7, Theorem 5] from Takeuchi’s results.

Let P be a quasi-finite right C-comodule and D = e−C(P ). Consider the Morita-Takeuchi
context associated to it ([14, page 639]), D = e−C(P ), Q = h−C(P,C) and the bicolinear maps
θP,C : C → h−C(P,C)2DP and δ : D → P2CQ. Recall that δ is the unique bicolinear map
verifying (12θP,C)ρP = (δ21)θP,P .

Proposition 3.6 If PC is finitely cogenerated and injective, then the dual Morita context of
(C,D,P,Q, θP,C , δ) may be identified with the Morita context associated to P ∗

C∗ .
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Proof: We recall that the Morita context associated to P ∗ is given by the following data:
R = End−C∗(P ∗), C∗, P ∗, Q̄ = Hom−C∗(P ∗, C∗), g : Q̄ ⊗R P ∗ → C∗, q̄ ⊗ p∗ 7→ q̄(p∗) and
f : P ∗ ⊗C∗ Q̄ → R defined as f(p∗ ⊗ q̄)(m∗) = m∗q̄(p∗) for all p∗,m∗ ∈ P ∗ and q̄ ∈ Q̄.

We prove that, under the suitable identifications, this Morita context is the dual of the
Morita-Takeuchi context associated to P . We first establish these identifications. Recall from
[7, Lemma 4] that there is a natural transformation

ad : HomC∗−(−, P ) → Hom−C∗(P ∗, (−)∗).

Given Q ∈MC , it is defined as 〈ad(ϕ)(p∗), q〉 = 〈p∗, ϕ(q)〉 for any q ∈ Q,ϕ ∈ Com−C(Q,P ).
In case P,Q are bicomodules, ad is a bimodule map. For Q = P , ad is an algebra isomorphism
when taking the opposite multiplication in Com−C(P, P ).

Let ζC : h−C(P,C)∗ → Com−C(C,P ) be the isomorphism from the adjoint situation in
Lemma 2.1. Recall that it is defined as ζ(u) = (u ⊗ 1)θP,C for all u ∈ h−C(P,C)∗. Let
Φ : h−C(P,C)∗ → Hom−C∗(P ∗, C∗) be the composition adζC . Explicitly, 〈Φ(u)(p∗), c〉 =
〈p∗, (u⊗1)θP,C(c)〉. Replacing C by P , we get an algebra isomorphism Ψ : D∗ → End−C∗(P ∗)
given by 〈Ψ(d∗)(p∗), p〉 = 〈d∗ · p∗, p〉 for all d∗ ∈ D∗, p∗ ∈ P ∗ and p ∈ P .

We check that θ∗P,CηQ,P (Φ−1⊗1) = g and Ψδ∗ηP,Q(1⊗Φ−1) = f . Let p∗, p∗1, p
∗
2 ∈ P ∗, p ∈

P and ϕ ∈ Hom−C∗(P ∗, C∗). Assume that Φ(q∗) = ϕ for some q∗ ∈ h−C(P,C)∗.

〈[θ∗P,CηQ,P (Φ−1 ⊗ 1)](ϕ⊗ p∗), c〉 = 〈ηQ,P (q∗ ⊗ p∗), θP,C(c)〉
= 〈p∗, (q∗ ⊗ 1)θP,C(c)〉
= 〈Φ(q∗)(p∗), c〉
= 〈ϕ(p∗), c〉
= 〈g(ϕ⊗ p∗), c〉.

〈[Ψδ∗ηP,Q(1⊗ Φ−1)](p∗1 ⊗ ϕ)(p∗2), p〉 = 〈((δ∗ηP,Q)(p∗1 ⊗ q∗)) · p∗2, p〉
=

∑
(p)〈ηP,Q(p∗1 ⊗ q∗), δ(p(−1))〉〈p∗2, p(0)〉

=
∑

(p)〈p∗1, p(0)〉〈ηQ,P (q∗ ⊗ p∗2), θP,C(p(1))〉
=

∑
(p)〈p∗1, p(0)〉〈p∗2, (q∗ ⊗ 1)θP,C(p(1))〉

=
∑

(p)〈p∗1, p(0)〉〈Φ(q∗)(p∗2), p(1)〉
= 〈p∗1 · [ϕ(p∗2)], p〉
= 〈f(p∗1 ⊗ ϕ)(p∗2), p〉.

Corollary 3.7 If PC is an ingenerator, then C and e−C(P ) are strongly equivalent.

Proof: In view of [14, Theorem 3.5] the problem is reduced to proving that Q =
hD−(P,D) is finitely cogenerated as a right C-comodule. As PC is an ingenerator, P ∗

C∗

is a progenerator, [7, page 319]. Thus P ∗ is finitely generated as left End−C∗(P ∗)-module.
Identifying D∗ with End−C∗(P ∗) via Ψ, one sees that the End−C∗(P ∗)-module structure
of P ∗ is induced by the D-comodule structure of P . Hence P is finitely cogenerated as
D-comodule. Lemma 3.2 gives that QC is finitely cogenerated.

In the rest of the paper C will be a cocommutative coalgebra. We recall that a coalgebra
D is said to be a coalgebra over C or a C-coalgebra if there is a coalgebra map ε : D → C
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(called the C-counit) such that∑
(d)

ε(d(1))⊗ d(2) =
∑
(d)

ε(d(2))⊗ d(1) ∀d ∈ D.

The coalgebra D becomes a C-comodule via ε and the dual algebra D∗ is an algebra over C∗

via ε∗ : C∗ → D∗. Let D,E be two C-coalgebras with C-counits εD and εE respectively. A
(D,E)-bicomodule M is called a bicomodule over C if the following diagram is commutative,

M
ρE - M ⊗ E

1⊗ εE- M ⊗ C
‖
‖
‖ρD

?
‖
‖

D ⊗M
εD ⊗ 1

- C ⊗M
τ - M ⊗ C

where τ is the twist map. We know from [14, Proposition 2.1] that any (resp. strong)
equivalence F : MD → ME is of the form −2DP for a suitable (D,E)-bicomodule P . We
will say that F is an equivalence over C if P is a bicomodule over C. In this case D,E will
be called Morita-Takeuchi (or strongly) equivalent over C.

Proposition 3.8 Let D,E be C-coalgebras. Suppose that

D∗M
F

�

G

-
E∗M

is an equivalence over C∗ verifying that F (MD) ⊆ME and G(ME) ⊆MD. Then D and E
are strongly equivalent over C.

Proof: By the Morita theorem, F (−) ∼= − ⊗D∗ P where P is a (D∗, E∗)-bimodule
centralized by C∗, that is, ε∗D(c∗)p = pε∗E(c∗) for all p ∈ P, c∗ ∈ C∗. The restriction of F,G to
MD,ME , denoted by F̄ , Ḡ respectively, establishes an equivalence between MC and MD.
In view of [14, Proposition 2.1], F̄ ∼= −2DM, Ḡ ∼= −2EN where M = F̄ (D), N = Ḡ(E) are
(D,E) and (E,D)-bicomodules respectively. From [7, Proposition 2], it follows that ME and
ND are finitely cogenerated, and thus C and D are strongly equivalent. We have to check
that the equivalence is over C, that is, M is a bicomodule over C.

By definition, M = D ⊗D∗ P and its D-comodule structure map ρD is F (∆D), see [14,
Proposition 2.1]. For m =

∑
i di ⊗ pi ∈ M , ρD(m) =

∑
i di(1) ⊗ di(2) ⊗ pi. Let

a = τ(εD ⊗ 1)ρD(m) =
∑

(d) di(2) ⊗ pi ⊗ εD(di(1)),
b = (1⊗ εE)ρE(m) =

∑
(m) m(0) ⊗ εE(m(1)).

Taking c∗ ∈ C∗ arbitrary, we have:

7



(1⊗ c∗)(b) =
∑

(m)〈c∗, εE(m(1))〉m(0)

= (
∑

i di ⊗ pi)ε∗E(c∗)
=

∑
i di ⊗ (piε

∗
E(c∗))

=
∑

i di ⊗ (ε∗D(c∗)pi)
=

∑
i(diε

∗
D(c∗))⊗ pi

=
∑

i

∑
(di)
〈c∗, εD(di(1))〉di(2) ⊗ pi

= (1⊗ c∗)(a).

Consider λC : C → C∗0 the canonical injection defined by 〈λC(c), c∗〉 = 〈c∗, c〉 for all c ∈
C, c∗ ∈ C∗. Then the map 1⊗ λC : M ⊗ C → M ⊗ C∗0 is injective. With this notation, the
foregoing equality yields that (1 ⊗ λC)(a) = (1 ⊗ λC)(b). Therefore a = b and thus M is a
bicomodule over C.

4 The strong Brauer group

The Brauer group of a cocommutative coalgebra C, denoted by Br(C), was introduced in [15]
by considering the Morita-Takeuchi equivalence relation on the set of Azumaya C-coalgebras
(see loc. cit. for further details). If we deal with strong equivalences instead of Morita-
Takeuchi equivalences, a new subgroup of Br(C) appears, the strong Brauer group. In this
section, we introduce this subgroup and study some of its properties.

Definition 4.1 A coalgebra D is said to be a strong Azumaya C-coalgebra if D is an Azumaya
C-coalgebra and D is finitely cogenerated as C-comodule.

Lemma 4.2 Let Bs(C) denote the set of isomorphism classes of strong Azumaya C-coalgebras.
i) If P ∈MC is an ingenerator, then e−C(P ) ∈ Bs(C).
ii) If D,E ∈ Bs(C), then Dcop, D2CE ∈ Bs(C).
iii) If C ′ is a cocommutative coalgebra and f : C ′ → C a coalgebra map, then D2CC ′ ∈

Bs(C ′).

Proof: From [15, Example 2.8, Corollary 3.1], it follows that e−C(P ), Dcop, D2CE,D2CC ′

are Azumaya coalgebras. We have only to prove that they are strong.
i) e−C(P ) is a C-coalgebra via the map ε : e−C(P ) → C defined as the unique coalgebra

map ε making the following diagram commutative:

P
ρ

- P ⊗ C
τ - C ⊗ P

@
@
@

θP,P @
@
@R �

�
� ε⊗ 1

�
�
��

e−C(P )⊗ P

The C-comodule structure of e−C(P ) via ε coincides with the C-comodule structure induced
by P . The claim now follows from Lemma 3.2.
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ii), iii) Dcop is finitely cogenerated since D = Dcop as a C-comodule. Assume that D,E
embed in C(n), C(m) respectively. The left exactness of the cotensor product implies that
D2CE,D2CC ′ embed in C(nm), C

′(n) respectively.

We say that D,E ∈ Bs(C) are strongly similar, denoted by ∼s, if there are ingenerators
P,Q ∈ MC such that D2Ce−C(P ) ∼= E2Ce−C(Q) as C-coalgebras. It is not hard to check
that ∼s is an equivalence relation.

Theorem 4.3 The quotient set Brs(C) = Bs(C)/ ∼s is a subgroup of Br(C). Moreover,
a map of cocommutative coalgebras f : C → C ′ induces an homomorphism f∗ : Brs(C ′) →
Brs(C), [D] 7→ [D2CC ′].

Proof: Follows from Lemma 4.2.

Proposition 4.4 D,E ∈ Bs(C) are strongly similar if and only if D and E are strongly
equivalent coalgebras over C. [D] = [C] ∈ Brs(C) if and only if there is a ingenerator
P ∈MC such that D ∼= e−C(P ).

Proof: Analogous to [15, Proposition 4.4, Corollary 4.5] taking into account that we are
dealing with strong equivalences.

The group Brs(C) is called the strong Brauer group of C. The quotient group Br(C)/Brs(C)
represents the influence of the difference between strong equivalences and the usual ones.

Proposition 4.5 If C has finite dimensional coradical, then Brs(C) = Br(C).

Proof: In this case every quasi-finite comodule is finitely cogenerated. Hence every
equivalence is an strong equivalence. See [7, page 322]

A coalgebra D may be viewed as a right De-comodule where De is the enveloping C-
coalgebra De = D2CDcop. The co-endomorphism coalgebra C = e−De(D) is the cocenter of
D, see [15, Theorem 3.14]. Consider the Morita-Takeuchi context

(C,De, D, h−De(D,De), f, g), (2)

associated to DDe .

Theorem 4.6 Let D be a coalgebra. The following assertions are equivalent:
i) D is a strong Azumaya coalgebra.
ii) The Morita-Takeuchi context (2) is strong and strict.
iii) CD is a ingenerator and eC−(D) ∼= De.
iv) D∗ is an Azumaya algebra over C∗.

9



Proof: i) ⇒ ii) (2) is strict by [15, Theorem 3.14]. Since De is a C-coalgebra and D is
finitely cogenerated as a C-comodule, D is finitely cogenerated as a De-comodule. Lemma
3.2 now applies.

ii) ⇒ iii) Follows from [14, Theorem 2.5].
iii) ⇒ i) This is [15, Theorem 3.14] combined with the fact that D is finitely cogenerated

as a C-comodule.
In order to prove ii) ⇔ iv), we first recall from [3, Corollary 2.4] that C∗ is canonically

isomorphic to the center of D∗. On the other hand, it is well-known that D∗ is an Azumaya
algebra over C∗ if and only if the associated context

(EndD∗e(D∗), D∗e, D∗,HomD∗e(D∗, D∗e), f̄ , ḡ)

is strict. Here D∗e denotes the C∗-enveloping algebra of D∗, D∗ ⊗C∗ D∗op.
ii) ⇒ iv) By Proposition 3.5, the dual context of (2) is strict. But, from Proposition 3.6,

it is the Morita context associated to D∗. Hence D∗ is an Azumaya algebra over C∗.

iv) ⇒ ii) The hypothesis entails that D∗ is finitely cogenerated and projective as a C∗-
module. Combining [3, Lemma 4.3 i)] and Lemma 3.1, D is finitely cogenerated and injective
as a C-comodule. Thus (2) is strong. By Proposition 3.6, the dual context of (2) is identified
with the Morita context associated to D∗. From Proposition 3.5, (2) is strict.

Our next goal is to prove that the strong Brauer group embeds in the Brauer group of the
dual algebra. The method used in [2] may be adapted for our purpose.

For a coalgebra D, FD denotes the symmetric linear topology consisting of all left ideals
in D∗ which are closed and cofinite, see [2]. The hereditary pretorsion class associated to it
is the category of right comodules over D. If D is a C-coalgebra with C-counit εD : D → C,
then D∗ is an algebra over C∗ via ε∗ : C∗ → D∗. We may consider the linear topologies
FCD∗ and FD ∩ C∗.

Lemma 4.7 Let D be a strong Azumaya C-coalgebra. Then FC = FD∩C∗ and FCD∗ = FD.

Proof: The proof follows the lines of [2, Lemma 3.5]. We include it here for completeness
and to emphasize the importance of D to be finitely cogenerated. Since the inclusion FC ⊇
FD ∩ C∗ always holds, we have to prove that FC ⊆ FD ∩ C∗. There is an injective C-
comodule map h : D → W ⊗ C for some finite dimensional space W . Let J ∈ FC , and
V a finite dimensional subcoalgebra of C with J = V ⊥(C∗). For d ∈ D we may set h(d) =∑r

j=1 wj ⊗ cj for some wj ∈ W, cj ∈ C. Any d∗ ∈ h∗(W ∗ ⊗ V ⊥(C∗)) may be expressed as
d∗ = h∗(

∑n
i=1 w∗

i ⊗ c∗i ) for w∗
i ∈ W ∗ and c∗i ∈ V ⊥(C∗). Let d∗i = h∗(w∗

i ⊗ εC). Then,

〈
∑n

i=1 d∗i ε
∗(c∗i ), d〉 =

∑n
i=1

∑
(d)〈h∗(w∗

i ⊗ εC), d(1)〉〈ε∗(c∗i ), d(2)〉
=

∑n
i=1

∑
(d)〈w∗

i ⊗ εC , h(d(1))〉〈c∗i , ε(d(2))〉
=

∑n
i=1

∑r
j=1

∑
(cj)
〈w∗

i ⊗ εC , wj ⊗ cj(1)〉〈c∗i , cj(2))〉
=

∑n
i=1

∑r
j=1

∑
(cj)
〈w∗

i , wj〉〈εC , cj(1)〉〈c∗i , cj(2))〉
=

∑n
i=1

∑r
j=1〈w∗

i , wj〉〈c∗i , cj〉
= 〈d∗, d〉,
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where in the third equality we have used the C-colinearity of h. We have that d∗ =∑n
i=1 d∗i ε

∗(c∗i ) ∈ D∗ε∗(V ⊥(C∗)). Hence h∗(W ∗⊗V ⊥(C∗)) ⊆ D∗ε∗(V ⊥). But h∗(W ∗⊗V ⊥(C∗)) =
h∗((W ⊗V )⊥) = h−1(W ⊗V )⊥(D∗) and h−1(W ⊗V ) is a finite dimensional right coideal in D.
This yields that D∗ε∗(J) is a closed cofinite two-sided ideal in D∗. Since D∗ is an Azumaya
C∗-algebra, J = (ε∗(J)D∗) ∩ C∗, and consequently J ∈ FD ∩ C∗. This proves the first part.

As FD is a symmetric linear topology on D∗ and D∗ is an Azumaya algebra over C∗, there
is a linear topology T on C∗ such that T D∗ = FD. Now T = (T D∗)∩C∗ = FD ∩C∗ = FC .

The following theorem generalizes [2, Corollary 4.1, 4.2] where the coalgebra C was assu-
med to be irreducible. Under this hypothesis, Brs(C) = Br(C).

Theorem 4.8 The map (−)∗ : Brs(C) → Br(C∗), [D] 7→ [D∗] is a group monomorphism.
Hence Brs(C) is a torsion group.

Proof: We know from Theorem 4.6 that if D is an Azumaya C-coalgebra, then D∗ is an
Azumaya algebra over C∗. Let D,E ∈ Bs(C) with [D] = [E] in Brs(C). By Proposition
4.4, D and E are strong equivalent over C. Then D∗ and E∗ are Morita equivalent over C∗.
Thus [D∗] = [E∗] in Br(C∗) and so the map (−)∗ : Brs(C) → Br(C∗) is well-defined. One
may check that the isomorphism ηD,E : (D2CE)∗ → D∗⊗C∗ E∗ is a C∗-algebra map. Hence,
(−)∗ is a group homomorphism.

From Lemma 4.7, FCD∗ = FD and FCE∗ = FE . Suppose now that [D∗] = [E∗] in
Br(C∗). Then D∗ and E∗ are Morita equivalent over C∗. If

D∗M
F

�

G

-
E∗M

are the inverse equivalences, then Theorem 2.2 establishes that F (MD) ⊆ME and G(ME) ⊆
MD. In view of Proposition 3.8, D and E are strongly equivalent over C. Hence [D] = [E]
in Brs(C).

Since the Brauer group of any commutative ring is a torsion group, Brs(C) is a torsion
group.

Example 4.9 Let C be the group-like coalgebra indexed by the natural numbers over the
rational number field. It was proved in [15, page 564] that Br(C) is not a torsion group. By
the above theorem Brs(C) is a torsion group. Hence Brs(C) 6= Br(C).

The sequel of the paper is devoted to studying some conditions under which the map
(−)∗ : Brs(C) → Br(C∗) is surjective. We first need some results about completions with
respect the cofinite topology.

For an algebra A, the cofinite topology TA is a directed system. Since it is symmetric,
we may take a basis B of two-sided ideals. Given I, J ∈ B with I ⊆ J , there is a surjective
algebra map fI,J : A/I → A/J such that fI,JpI(a) = pJ(a) ∀a ∈ A, where pI , pJ denote
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the canonical projections. It makes sense to consider the completion Â of A with respect to
TA,

Â = lim
←−

I∈TA

A/I = {(aI + I) ∈
∏

I∈TA

A/I : fI,JpI(aI) = pJ(aJ)}.

We say that A is complete with respect to TA if the natural map νA : A → Â, a 7→ (a+ I)I∈TA

is an isomorphism.

Lemma 4.10 Let R be a commutative algebra, and A an Azumaya R-algebra. If R is com-
plete with respect to TR, then A is complete with respect to TA.

Proof: The basis of TA is given by B = {IA}I∈TR
. Since A is Azumaya, we may find an

ideal J of R such that ∩I∈TR
IA = JA and J ⊆ ∩I∈TR

I. The completeness of R implies that
J = {0}, and thus ∩I∈TR

IA = {0}. This proves the injectivity of νA.

In order to prove the surjectivity, take (aIA+IA)I∈TR
∈ Â. Because A is finitely generated

as an R-module put A = Ra1+...+Ran for some al ∈ A. For any I ∈ TR, IA = Ia1+...+Ian.
Then aIA =

∑n
l=1 rI,lal, where rI,l ∈ I. Fixed l, the family (rI,l + I)I∈TR

∈ R̂. As R is
complete, there is rl ∈ R such that rl + I = rI,l + I for all I ∈ TR. Let a =

∑n
l=1 rlal. Then

a− aIA =
∑n

l=1(rl − rI,l)al ∈ IA for all I ∈ TR.

Lemma 4.11 Let C be a coalgebra and A an algebra.
i) A0∗ is the completion of A with respect to TA.
ii) If C is coreflexive, then C∗ is complete with respect to TC∗ .

Proof: i) The finite dual of A,

A0 = lim
−→

I∈TA

(A/I)∗. Now, A0∗ = Hom( lim
−→

I∈TA

(A/I)∗, k) ∼= lim
←−

I∈TA

(A/I)∗∗ ∼= lim
←−

I∈TA

A/I = Â.

ii) If C is coreflexive, then the canonical embedding λC : C → C∗0 is an isomorphism.
Hence C∗ ∼= C∗0∗ ∼= Ĉ∗.

Theorem 4.12 Let C be a cocommutative coreflexive coalgebra. The duality map (−)∗ :
Brs(C) → Br(C∗) is an isomorphism.

Proof: In view of Theorem 4.8, it suffices to prove the surjectivity. Let A be an Azumaya
algebra over C∗. By Lemma 4.10, A is complete with respect to the cofinite topology. From
Lemma 4.11, it follows that A0∗ ∼= A. The coalgebra A0 is a C-coalgebra, and it is a strong
Azumaya because of Theorem 4.6.

Remark 4.13 Theorem 4.12 may be viewed as a generalization of the finite dimensional case,
[15, Proposition 4.6]. It is also a generalization of [16, Theorem 3.10] where the coalgebras were
assumed irreducible. In that case, a dual version of the crossed product theorem was needed
to prove the surjectivity of (−)∗. The general proof presented here is more straightforward.
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Theorem 4.14 Let C be a cocommutative coalgebra with separable and coreflexive coradical.
If J = Rad(C∗) is a nil-ideal, in particular nilpotent, then the duality map (−)∗ : Brs(C) →
Br(C∗) is an isomorphism.

Proof: Let i : C0 → C be the inclusion map and i∗ : Brs(C) → Brs(C0) the induced
homomorphism. By [2, Theorem 4.5], i∗ is injective. On the other hand, since C0 is separable,
the Malcev-Wedderburn decomposition ([1, Theorem 2.3.11]) gives the existence of a coalgebra
map π : C → C0 such that πi = 1C0 . The functorial behaviour of Brs(−) establishes that i∗
is surjective.

The dual map p = i∗ : C∗ → C∗
0
∼= C∗/J turns out to be exactly the canonical projection.

Let p∗ : Br(C∗) → Br(C∗/J) be the induced homomorphism. We have a commutative
diagram

Brs(C)
i∗ - Br(C0)

(−)∗C

? ?

(−)∗C0

Br(C∗)
p∗- Br(C∗/J)

where i∗ and (−)∗C0
are isomorphisms. Since J is nilpotent, [5, Corollary 3] yields that p∗ is

an isomorphism. We conclude that (−)∗C is an isomorphism.

Remark 4.15 1.- Some conditions for a coalgebra to be coreflexive are studied in [6], [10].
Assuming that the ground field is perfect, the separability condition of the coradical always
holds.

2.- Rad(C∗) is nilpotent if and only if the coradical filtration of C is finite, [2, Lemma
4.12]. If the ground field is of characteristic zero, Rad(C∗) is nilpotent if and only if it is a
nil-ideal, [11, Proposition 3.4].
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