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Abstract

A coalgebra C is said to have the splitting property if the maximal
rational submodule Rat(M) of any left C∗-module M is a direct sum-
mand of it. In this paper we prove that a coalgebra C satisfying this
property is finite dimensional. Cocommutative coalgebras such that
Rat(M) is a direct summand for any finitely generated left C∗-module
M are explicitly described.

Introduction

One of the most interesting problems in Torsion Theory is the sppliting
problem, that may be formulated as follows: given a torsion theory (T ,F)
in R−Mod and a certain class C ⊆ R−Mod, when is the torsion submodule
τ(M) a direct summand of M for all M ∈ C? This problem has its roots in
the splitting of the torsion submodule of any finitely generated module over
a Dedekind domain, see [10], [11], [13]. For general rings and torsion theories
the splitting problem has captivated the attention of many mathematicians
and an extensive literature on it exists. An intense effort was dedicated to
the splitting problem for the Goldie torsion theory (see [5] and [21]) and the
simple torsion theory (see [17], [18], [19] and [20]).

In Coalgebra and Comodule Theory an important example of torsion
theory appears when considering the notion of rational module. Given a
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coalgebra C it has been well-known through the years that the subcategory
Rat(C∗−Mod) of C∗−Mod consisting of rational left modules over the dual
algebra C∗ is closed under subobjects, quotients, and direct sums. In terms
of Torsion Theory ([15]), Rat(C∗−Mod) is an hereditary pretorsion class in
C∗−Mod. The first references where Rat(C∗−Mod) is treated from a torsion
theoretic point of view are [9], [14], [8] and [23]. In these works the problem
of when Rat(C∗−Mod) is closed under extensions (i.e. Rat(C∗−Mod) is
an hereditary torsion class) is discussed. In [2] we studied when the linear
topology on C∗ associated to Rat(C∗−Mod) is of finite type, i.e., contains a
basis of finitely generated ideals, and related this property to some finiteness
conditions on C. This study was continued in [4] where new examples of
coalgebras enjoying this property were constructed. Some partial results
about the stability of Rat(C∗−Mod) were given in [2].

Recently, Năstăsescu and Torrecillas studied in [12] for which coalgebras
C the maximal rational submodule Rat(M) is a direct summand of every
left C∗-module M . These coalgebras are said to have the splitting property.
They proved that if C has the splitting property, then C is necessarily finite
dimensional. In proving this result they use numerous results of different
nature. In a first step, using a result of Sandomierski on the endomorphism
ring of an injective module, C∗ is shown to be left noetherian. In a second
step, invoking a theorem of Teply on the splitting of the simple torsion theory,
the result is proved for colocal coalgebras. In particular, it holds for the
localization of a coalgebra in a primitive idempotent, see [22] and [6]. Finally,
the general case is proved using the previous steps and the localization theory
of coalgebras.

The goal of this short paper is to give a direct proof of the above result
and to describe cocommutative coalgebras C such that Rat(M) is a direct
summand for any finitely generated left C∗-module M . If a coalgebra C has
the splitting property, then Rat(C∗−Mod) coincides with the simple torsion
theory in C∗−Mod. In his series of beautiful papers, Teply deeply investigated
the splitting property for the simple torsion theory. We derive, as a conse-
quence of one of his results, that C is finite dimensional. The main result
of this paper states that for a cocommutative coalgebra C the maximal ra-
tional submodule Rat(M) is a direct summand of any finitely generated left
C∗-module M if and only if C is a finite direct sum of finite dimensional coal-
gebras and infinite dimensional serial coalgebras. When C is either pointed
or the ground field is algebraically closed, the infinite dimensional serial coal-
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gebras occurring in this decomposition are isomorphic to the divided power
coalgebra. This result is proved using another result of Teply on the splitting
of the simple torsion theory and the structure theorems of serial coalgebras
obtained in [3].

1 Preliminaries

For the reader’s convenience and trying to make our exposition self-contained,
we include some general facts about Torsion Theory and Coalgebra Theory.
The concepts and results on Torsion Theory presented here may be consulted
in [15, Chapter VI]. Our main references for Coalgebra and Comodule Theory
are texts [1] and [16].

Torsion Theory: Let R be a ring (associative and unital) and let R−Mod
denote its category of left R-modules. A functor τ : R−Mod → R−Mod is
a left exact preradical if it is a subfunctor of the identity functor, it is left
exact, and τ ◦ τ = τ . Such a functor determines two classes of modules:

Tτ = {M ∈ R−Mod : τ(M) = M}, Fτ = {M ∈ R−Mod : τ(M) = {0}}.

The class Tτ is closed under subobjects, quotients, and direct sums. A class of
left R-modules enjoying these properties is said to be an hereditary pretorsion
class. The class Tτ is closed under extensions if and only if τ(M/τ(M)) = {0}
for all M ∈ R−Mod. In this case, τ is called a radical and Tτ is called an
hereditary torsion class. An relevant example of torsion class is the simple
torsion class S which is defined by S = {M ∈ R−Mod : every non-zero
homomorphic image of M has non-zero socle}. A pair of classes of R-modules
(T ,F) is an hereditary torsion theory in R−Mod if there is a radical τ :
R−Mod → R−Mod such that T = Tτ and F = Fτ . When (T ,F) satisfies
that τ(M) is a direct summand of M for all M ∈ R−Mod, it is said that (T ,F)
has the splitting property (SP property for short). If the above condition is
only satisfied for finitely generated R-modules, then (T ,F) is said to have
the finitely generated splitting property (FGSP property).

Associated to a left exact preradical τ : R−Mod → R−Mod there is a
family G of left ideals of R defined by G = {I ≤ RR : R/I ∈ Tτ}. This
family is called the linear topology associated to τ . The pretorsion class Tτ

may be recovered from G as Tτ = {M ∈ R−Mod : AnnR(m) ∈ G ∀m ∈ M}.
The reader is referred to [15, Theorem 5.1] for more details on the bijective

3



correspondence between hereditary pretorsion classes (resp. torsion classes),
linear topologies (resp. Gabriel topologies), and left exact preradicals (resp.
radicals).

Coalgebras and comodules: Throughout all vector spaces, algebras, coal-
gebras, tensor products, etc are considered over a fixed ground field k. Given
a coalgebra C, we regard the weak-* topology on the dual algebra C∗. The
closed (resp. open) subspaces of C∗ are the annihilators W⊥(C∗) of arbitrary
(resp. finite dimensional) subspaces W of C. A subspace U of C∗ is called
cofinite if C∗/U is of finite dimension. For additional details on this topology
and some of its main properties, [7, Section 1.2] is recommended. A left ideal
J of C∗ is closed and cofinite if and only if there is a finite dimensional left
coideal W of C such that J = W⊥(C∗). Finitely generated left (right) ideals
are always closed.

The category CM of left C-comodules is isomorphic to Rat(C∗−Mod)
the full subcategory of C∗−Mod consisting of all rational left C∗-modules.
For M ∈ C∗−Mod, an element m ∈ M is called rational if there is ρm =∑n

i=1 mi ⊗ ci ∈ M ⊗ C such that c∗ · m =
∑n

i=1〈c∗, ci〉mi for all c∗ ∈ C∗.
The set Rat(M) of rational elements of M is a C∗-submodule of M . When
M = Rat(M), M is called a rational module. The assignment RatC(−) :
C∗−Mod → C∗−Mod, M 7→ Rat(M), called the rational functor, is a left exact
preradical. The associated hereditary pretorsion class is Rat(C∗−Mod). The
corresponding linear topology is the family of all closed and cofinite left ideals
of C∗.

Considering C∗ as a left C∗-module, Rat(C∗) is a two-sided ideal and it
is the sum of all finite dimensional left ideals of C∗. The equality Rat(C∗) =
C∗ holds if and only if C is of finite dimension. To prove that C is finite
dimensional, the latter equality will often be used. If D is a subcoalgebra of
C, then D∗ is a quotient algebra of C∗ and any left D∗-module M is a left
C∗-module by restriction of scalars. Then RatC(M) = RatD(M).

2 The full splitting property

Definition 2.1 A coalgebra C is said to have the splitting property (SP prop-
erty) if Rat(M) is a direct summand of M for any left C∗-module M .

Any finite dimensional coalgebra C has the SP property since every left
C∗-module is rational. The purpose of this section is to prove that:
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Theorem 2.2 Any coalgebra C having the SP property is finite dimensional.

Our proof is based on the fact that the coradical of a coalgebra with the
SP property is finite dimensional and on a theorem of Teply quoted below.

Lemma 2.3 If C has the SP property, then C0 is finite dimensional.

Proof: We first show that the SP property is inherited to subcoalgebras. For a
subcoalgebra D of C, the torsion theory induced on D∗−Mod by Rat(C∗−Mod)
coincides with Rat(D∗−Mod). Apply now [17, Lemma 0.2 (1)] stating that
the SP property passes to the induced torsion theory on quotient algebras.

By the above it suffices to show that any cosemisimple coalgebra D hav-
ing the SP property is finite dimensional. Note that Rat(D∗) 6= {0}. By
hypothesis, D∗D∗ = Rat(D∗) ⊕ X with Rat(X) = {0}. Thus Rat(D∗) is
closed. Let E be a subcoalgebra of D such that Rat(D∗) = E⊥(D∗). From
E∗ ∼= D∗/E⊥(D∗) ∼= X we get that Rat(E∗) = {0}. Since E is a cosemisimple
coalgebra, E∗ = {0} which implies D∗ = Rat(D∗).

For a simple right R-module S let SS denote the torsion class consisting
of those M ∈ R−Mod such that every non-zero homomorphic image of M
contains an isomorphic copy of S. Let F (SS) denote the associated Gabriel
topology. Teply proved in [20] the following result:

Theorem 2.4 Suppose that for each simple left R-module S, F (SS) contains
two-sided ideals LS, KS satisfying that KS ⊆ LS 6= R, LS is finitely generated
as a left ideal and KS is finitely generated as a right ideal. Then, the simple
torsion class S has the splitting property if and only if R ∈ S.

Proof of Theorem 2.2: By Lemma 2.3, C0 is finite dimensional. If C
has the SP property, then Rat(C∗−Mod) is a torsion class. Applying [14,
Theorem 4.6], we get that every closed and cofinite left (resp. right) ideal

of C∗ is finitely generated. Since the Jacobson radical J = C
⊥(C∗)
0 is closed

and cofinite, every simple right C∗-module is rational (consequently finite
dimensional). Hence Rat(C∗−Mod) coincides with the simple torsion class
in C∗−Mod. If S is a simple left C∗-module, then Ann(S) ∈ F (SS). Now,
Ann(S) is a closed and cofinite two-sided ideal. Then it is finitely generated
as a right and left ideal. From Theorem 2.4, C∗ = Rat(C∗).

If the class of modules for which its rational submodule splits off is a
proper class of C∗−Mod, then C is not necessarily of finite dimension as the
following example shows:
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Example 2.5 Let C(∞) = k{cn : n ∈ N} be the divided power coalgebra
whose comultiplication and counit is given by

∆(cn) =
n∑

i=0

ci ⊗ cn−i, ε(cn) = δn,0,

where δn,0 denotes the Kronecker symbol. The dual algebra C(∞)∗ is isomor-
phic to the power series ring k[[x]] and the subcategory of rational modules
coincides with the class of torsion modules in the classical sense. Since k[[x]]
is a Dedekind domain, the torsion submodule splits off for any finitely gen-
erated left k[[x]]-module.

In the next section we describe cocommutative coalgebras satisfying that
the rational submodule splits off for any finitely generated left module over
the dual algebra. The preceding example provides a clue of how these coal-
gebras could look like. Our description is based on the theory of serial coal-
gebras developed in [3] and on another theorem of Teply.

3 The splitting property for finitely gener-

ated modules

Definition 3.1 A coalgebra C is said to have the finitely generated splitting
property (FGSP property) if Rat(M) is a direct summand of M for any
finitely generated left C∗-module M .

Lemma 3.2 The FGSP property is stable under subcoalgebras.

Proof: In [17, Lemma 0.2 (1)] it is shown that the FGSP property passes to
the induced torsion theory on quotient algebras. Using this, the statement
is proved in a similar way to Lemma 2.3.

Lemma 3.3 If C has the FGSP property, then C0 is finite dimensional.

Proof: Notice that Lemma 2.3 remains valid replacing the SP property by
the FGSP property since the C∗-module C∗C∗ is finitely generated.

In order to describe cocommutative coalgebras having the FGSP property
we need the notion of serial coalgebra and the following deep result due to
Teply, see [18, Theorem 4.7].
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Theorem 3.4 Let R be a commutative ring and consider (S,F) the simple
torsion theory in R−Mod. Assume that R ∈ F and each maximal ideal of
R is finitely generated. Then (S,F) has the FGSP property if and only if
R = ⊕n

i=1Ri where Ri is a Dedekind domain for every i = 1, 2, .., n.

We recall from [3] that a coalgebra is called right serial if the injective hull
of each simple right comodule is uniserial, i.e., its lattice of subcomodules is
a chain. A serial coalgebra is a coalgebra which is right and left serial. With
this notion available we may formulate the main result of this paper.

Theorem 3.5 Let C be a cocommutative coalgebra and let C = ⊕i∈ICi be a
decomposition into irreducible components. Then C has the FGSP property
if and only if I is finite and either Ci is finite dimensional or Ci is an infinite
dimensional serial coalgebra.

Proof: If C has the FGSP property, then C0 is finite dimensional by Lemma
3.3, and hence I must be a finite set. On the other hand, each Ci has the
FGSP property by Lemma 3.2. As C∗

i is a local algebra, either C∗
i = Rat(C∗

i )
or Rat(C∗

i ) = {0}. In the first case, Ci is finite dimensional. Assume that

Rat(C∗
i ) = {0}. Since Ci is irreducible, the Jacobson radical Ji = (Ci)

⊥(C∗
i )

0

is closed and cofinite and so Rat(C∗
i−Mod) coincides with the simple torsion

theory in C∗
i−Mod. Moreover, from [14, Theorem 4.6], Ji is finitely generated.

Applying Theorem 3.4, C∗
i is a Dedekind domain. In [3, Corollary 1.11]

we proved that the finite dual coalgebra of a Dedekind domain is a serial
coalgebra. Hence C∗0

i is a serial coalgebra. Since C∗
i is noetherian, Ci is

coreflexive and then Ci
∼= C∗0

i . Therefore Ci is serial.

To prove the converse, first notice that a finite direct sum of coalgebras
has the FGSP property if and only if each summand has it. Then we are
reduce to proving that an infinite dimensional cocommutative irreducible
serial coalgebra D has the FGSP property. In [3, Theorem 3.2] it was shown
that the only ideals of D∗ are the powers of the Jacobson radical J , which is
principal. Since J is finitely generated and cofinite, Jn is closed and cofinite
for all n ∈ N. Applying [14, Theorem 4.6], Rat(D∗−Mod) is a torsion class
in D∗−Mod. Then Rat(D∗−Mod) coincides with the simple torsion class.
On the other hand, since D is infinite dimensional and Jn is cofinite for all
n ∈ N, it follows that Rat(D∗) = {0} and that Jn 6= {0} for all n ∈ N. From
the latter, D∗ is a domain and consequently a Dedekind domain. Applying
Theorem 3.4, we get the statement.
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Notice that from the arguments used in the proof it follows that an infinite
dimensional cocommutative irreducible coalgebra C is serial if and only if
C∗ is a Dedekind domain. It was proved in [3, Theorem 3.2] that if C is
pointed irreducible and serial, then C is isomorphic to a subcoalgebra of
the divided power coalgebra C(∞) = k{c0, c1, c2, ...}. Since the only proper
subcoalgebras of C(∞) are of the form C(n) = k{c0, c1, ..., cn} for n ∈ N, if C
is infinite dimensional, then C is isomorphic to C(∞). Over an algebraically
closed field any cocommutative coalgebra is pointed. In this case we have an
explicit description of cocommutative coalgebras having the FGSP property.

Corollary 3.6 A pointed cocommutative coalgebra has the FGSP property
if and only if it is a finite direct sum of finite dimensional coalgebras and
divided power coalgebras.
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