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Abstract

In this paper we extend the theory of serial and uniserial finite dimensional algebras
to coalgebras of arbitrary dimension. Nakayama-Skorniakov Theorems are proved in this
new setting and the structure of such coalgebras is determined up to Morita-Takeuchi
equivalences. Our main structure theorem asserts that over an algebraically closed field
k the basic coalgebra of a serial indecomposable coalgebra is a subcoalgebra of a path
coalgebra kΓ where the quiver Γ is either a cycle or a chain (finite or infinite). In the
uniserial case, Γ is either a single point or a loop. For cocommutative coalgebras, an
explicit description is given, serial coalgebras are uniserial and these are isomorphic to
a direct sum of subcoalgebras of the divided power coalgebra.

MSC 2000: 16W30, 16G20.

Introduction

In the last years different types of coalgebras have been investigated in connection with
some properties of their categories of comodules. For example, semiperfect coalgebras, quasi-
coFrobenius coalgebras, hereditary coalgebras, or pure-semisimple coalgebras; see [16], [12],
[19], and [21] respectively. This line of research is continued in a very natural way with the
study of serial coalgebras, which is done in this paper.

A coalgebra C is said to be right serial if every indecomposable injective right C-comodule
has a unique composition series (finite or infinite). We prove that Nakayama-Skorniakov The-
orem holds in this setting, that is, C is serial (left and right serial) if and only if the category
MC of all right C-comodules is a uniserial category in the sense of [2] (i.e., every indecompos-
able object of finite length has a unique composition series); see Theorem 1.8. Consequently,
every finite-dimensional comodule is a direct sum of uniserial comodules. It is shown in
Proposition 1.13 that such a decomposition holds for any comodule over a serial coalgebra
with finite coradical filtration. Examples of serial coalgebras are provided in Corollary 1.11 as
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finite dual coalgebras of either serial or hereditary prime noetherian algebras. In particular,
A0 is serial for every Dedekind domain A.

In Proposition 2.3 we prove that every right serial coalgebra with coseparable coradical
is isomorphic to a subcoalgebra of a cotensor coalgebra over a right serial bicomodule. In
the right semiperfect case, the coalgebra may be represented in the cotensor coalgebra by an
admissible sequence associated to its diagram; see Theorem 2.5. Therefore, the corresponding
theory for finite dimensional right serial algebras (see, e.g., [9]) is extended.

Indecomposable serial coalgebras C are then characterized in terms of its diagram D(C),
which, a fortiori, turns out to be its Ext-quiver. Concretely, we prove in Theorem 2.9 that
a coalgebra C with coradical decomposition C0 = ⊕i∈IM

c(Di, ni) (the D∗
i ’s are division

algebras) is serial if and only if I is contable, D(C) is a chain or a cycle and Di
∼= Dj

for every i, j ∈ I. In the algebraically closed case, indecomposable serial coalgebras are
recognized, up to Morita-Takeuchi equivalence, as subcoalgebras of the path coalgebra kΓ,
where Γ is a cycle or a chain. If, in addition, C is hereditary, then it is isomorphic to kΓ,
Theorem 2.10.

A serial coalgebra C is said to be uniserial if each uniserial comodule has a homogeneous
composition series. Uniserial coalgebras are described as direct sums of matrix coalgebras
with coefficients in colocal serial coalgebras. It is also shown that a coalgebra C is uniserial
if and only if every right coideal is coprincipal. Equivalently, its diagram D(C) consists of
isolated points and loops, see Theorem 3.1. In the cocommutative case, the notion of serial
and uniserial coincide, as shown in Theorem 3.2. In such a case, the dual of each irreducible
component is a local noetherian algebra whose lattice of ideals consists of the powers of the
principal maximal ideal. Under the hypothesis of the field k being algebraically closed, we
prove that cocommutative coalgebras are isomorphic to a direct sum of subcoalgebras of the
divided power coalgebra.

Let us to fix some notation and present some preliminaries. Throughout this paper k is
a fixed ground field. All algebras, coalgebras, vector spaces and ⊗, Hom, etc., are over k.
Every map is a k-linear map. The reader is expected to be familiar with coalgebra theory.
Basic references are [1], [8], [18], and [22]. In the sequel C always stands for a coalgebra and
∆, ε will denote its comultiplication and counit respectively. The category of right (resp. left)
C-comodules is denoted by MC (resp. CM); for an object M of MC , its comodule structure
map is denoted by ρM . The fundamental properties of the categories of comodules can be
found in several places, see e.g. [13], [14], and [23]. We emphasize that MC is a locally finite
category and every injective indecomposable comodule is given as the injective envelope E(S)
of a simple comodule S. We will use that CC = ⊕i∈IE(Si)(ni) where {E(Si)}i∈I is a full set
of injective indecomposable right comodules, and the n′is are finite cardinals. For aspects of
equivalences between comodule categories, in particular for the definition and properties of
the co-endomorphism coalgebra, we refer to [23].

We recall from [6] the definition of a path coalgebra. Let Γ denote a quiver, the path
coalgebra kΓ is the k-vector space generated by the paths in Γ with comultiplication and
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counit given by

∆(α) =
∑

βγ=α

β ⊗ γ, ε(α) =
{

0 if |α| > 0
1 if |α| = 0 ,

where βγ is the concatenation of paths and |α| the length of α.

1 Serial coalgebras: definition and first properties

Every right C-comodule M has a filtration {0} ⊂ soc(M) ⊂ soc2(M) ⊂ ...., called the
Loewy series of M , defined as follows: soc(M) is the socle of M , and for n > 1, socn(M) is
the unique subcomodule of M satisfying socn−1(M) ⊂ socn(M) and soc(M/socn−1(M)) =
socn(M)/socn−1(M), see [14, 1.4]. There is an alternative description of this series. Let
{Cn}n∈IN be the coradical filtration of C, then socn+1(M) = ρ−1

M (M2CCn).

Definition 1.1 A right C-comodule M is called uniserial if its lattice of subcomodules is a
chain (finite or infinite).

Lemma 1.2 The following assertions are equivalent for M ∈MC :

i) M is uniserial.

ii) The Loewy series is a composition series for M (and each term is finite dimensional).

iii) Every finite dimensional subcomodule of M is uniserial.

Proof: i) ⇒ ii) Suppose that there is a non simple factor socn(M)/socn−1(M) =
soc(M/socn−1(M)). It contains two simple comodules S1, S2. The subcomodules T1, T2 of
M such that Si = Ti/soc

n(M), i = 1, 2 would be incomparable, contrary to the hypothesis.
Recall that a simple comodule is finite dimensional. Since the Loewy series is a composition

series, and soc(M), soc2(M)/soc(M) are finite dimensional, soc2(M) is finite dimensional. By
induction it follows that socn(M) is finite dimensional for all n ∈ IN .

ii) ⇒ iii) Let N be a finite dimensional subcomodule of M . There is n ∈ IN such that
N ⊂ socn(M). Let r = max{s ∈ IN : socs(M) ⊆ N} and assume that N 6= socr+1(M).
Then, N ∩ socr+1(M) = socr(M) and thus (N/socr(M)) ∩ soc(M/socr(M)) = {0}. Hence
N = socr(M).

iii) ⇒ i) For m ∈ M , let (m) be the subcomodule generated by m which is finite di-
mensional. Notice that M is uniserial if and only if either (m) ⊂ (n) or (n) ⊂ (m) for all
m,n ∈M . For any n,m ∈M we may compare (n), (m) in (n,m) which is finite dimensional,
and consequently uniserial by hypothesis.

Definition 1.3 Let C be a coalgebra.

i) C is said to be a right serial coalgebra if its right injective indecomposable comodules
are uniserial. A left serial coalgebra is defined in a symmetric way.
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ii) C is called serial if it is right and left serial.

iii) C is uniserial if it is serial and the composition factors of each indecomposable injective
comodule are isomorphic (homogeneous uniserial).

Example 1.4 1) Any cosemisimple coalgebra is uniserial.

2) Let C be the path coalgebra associated to the quiver A∞∞

... - • - • - • - ....

Denote by {gi : i ∈ ZZ} the set of vertices. The family {kgi}i∈ZZ is a representative family of
simple right (left) comodules. Let ei be the idempotent in C∗ defined as 〈ei, gi〉 = 1 and zero
elsewhere. The injective hull of kgi (as a right comodule) is Ei = Cei and it consists of all
paths starting at gi. The family {Ei}i∈ZZ is a representative set of injective indecomposable
right comodules. Every proper subcomodule of Ei is spanned by the paths connecting the
vertex gi and some fixed vertex gj with j ≥ i. Therefore, the subcomodules of Ei are clearly
totally order and thus C is right serial. Similarly, C is left serial (the injective hull of kgi as
a left C-comodule is Fi = eiC consisting of all paths ending at gi).

3) Let C = k{c0, c1, c2, ...} be the divided power coalgebra. Its comultiplication and counit
are given by:

∆(cn) =
n∑

i=0

ci ⊗ cn−i, ε(cn) = δn,0,

for all n ∈ IN , where δn,0 denotes the Kronecker’s delta. This coalgebra is just the path
coalgebra associated to the quiver consisting of a unique vertex with a loop. We see that
it is uniserial. Since C is cocommutative, every right (resp. left) subcomodule of C is a
subcoalgebra. It is known that Ci = k{c0, c1, ..., ci} are the only subcoalgebras of C. The
only simple comodule is C0 and E(C0) = C. Hence CC = CC is a uniserial comodule with
composition series {0} ⊂ C0 ⊂ C1 ⊂ ....

Proposition 1.5 Let C be a coalgebra and D a subcoalgebra of C. If C is right serial (resp.
uniserial), then D is right serial (resp. uniserial).

Proof: Let D be a subcoalgebra of C and S a simple right D-comodule. Let i :
S → ED(S), j : S → EC(S) be the canonical embeddings. There is a C-comodule map
g : ED(S) → EC(S) such that gi = j. Since i is essential and j injective, g is injective.
Hence ED(S) is uniserial. For the uniserial case, notice that socn(ED(S))/socn−1(ED(S)) is
a subcomodule of socn(EC(S))/socn−1(EC(S)).

Proposition 1.6 A finite dimensional coalgebra C is right serial (resp. uniserial) if and
only if its dual algebra C∗ is right serial (resp. uniserial).
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Proof: This fact follows from the duality between the categories of finite dimensional
right C-comodules and finite dimensional right C∗-modules. It is defined as follows: For a
finite dimensional right C-comodule N , its dual space N∗ is a right C∗-comodule via the map
· : N∗ → C∗ ⊗ N∗ given by 〈n∗ · c∗, n〉 =

∑
(n)〈n∗, n(0)〉〈c∗, n(1)〉 for all n∗ ∈ N∗, c∗ ∈ C∗

and n ∈ N . Moreover, the lattice of C-subcomodules of N is isomorphic to the lattice of
C∗-submodules of N∗ via the orthogonal space (−)⊥(N∗). It is proved in [14, 1.3a] and [16,
Lemma 15] that S is a simple C-comodule if and only if S∗ is a simple C∗-module, and I is
the injective hull of S if and only if I∗ is the projective cover of S∗, see [14, 1.3a] and [16,
Lemma 15] for further details.

Given a right C-comodule M , let cf(M) denote the coefficients space of M , see [14, page
142]. It is known that cf(M) is the smallest subcoalgebra of C such that the structure map
ρM : M → M ⊗ C factorises throughout M ⊗ cf(M), making M a right cf(M)-comodule.
Note that a vector subspace N of M is a C-subcomodule of M if and only if it is a cf(M)-
subcomodule of M . Then, the lattice of C-subcomodules of M coincides with the lattice of
cf(M)-subcomodules of M . Hence M is uniserial as C-comodule if and only if it is uniserial
as cf(M)-comodule. Finally, recall that if M is finite-dimensional, then so is cf(M).

Proposition 1.7 A coalgebra C is right serial if and only if C1 is right serial.

Proof: Assume that C1 is right serial and let E = EC(S) be the injective hull of a simple
right C-comodule S. Let N be a finite dimensional subcomodule of E. By Lemma 1.2, it
suffices to prove that N is uniserial. Consider D = cf(N) and J the Jacobson radical of D∗.
We know that J = D

⊥(D∗)
0 and, since D is finite dimensional, J2 = D

⊥(D∗)
1 . By hypothesis

and Proposition 1.5, D1 is right serial. Proposition 1.6 yields that D∗
1
∼= D∗/J2 is a right

serial algebra. By [9, Corollary 10.2.1], D∗ is right serial and thus D is right serial. Since
soc(N) = S, the subcomodule N embeds in ED(S). Hence N is uniserial as a D-comodule
and so uniserial as a C-comodule.

Theorem 1.8 The following properties about a coalgebra C are equivalent:

i) C is serial.

ii) Every finite dimensional right C-comodule is a direct sum of uniserial comodules.

iii) Every finite dimensional left C-comodule is a direct sum of uniserial comodules.

iv) Every finite dimensional indecomposable right C-comodule is uniserial.

v) Every finite dimensional indecomposable left C-comodule is uniserial.

vi) Every finite dimensional subcoalgebra of C is serial.

vii) C1 is serial.

5



Proof: i) ⇒ ii) Let M be a finite dimensional right C-comodule and D = cf(M). Since D
is a finite dimensional subcoalgebra of C, Propositions 1.5, 1.6 show that D∗ is serial. In view
of the isomorphism of categories MD ∼= D∗M and the Nakayama-Skorniakov Theorem ([9,
Theorem 10.1.1]), N is a direct sum of uniserial D-comodules. But a uniserial D-comodule
is uniserial as a C-comodule. Note that the same argument is valid to prove vi) ⇒ ii).

ii) ⇒ iv) Obvious.
iv) ⇒ i) Let S be a simple right comodule and E = EC(S) its injective hull. It suffices

to check that for any m,n ∈ E, either (n) ⊂ (m) or (m) ⊂ (n). This follows by comparing
(n), (m) in (n,m), which is finite dimensional and indecomposable.

i) ⇒ vi) Straightforward from Proposition 1.5.
i) ⇔ vii) It follows from Proposition 1.7.
i) ⇔ iii) ⇔ v) is symmetric to i) ⇔ ii) ⇔ iv) by the Nakayama-Skorniakov Theorem for

finite dimensional algebras, [9, Theorem 10.1.11].

We recall from [12] that a coalgebra C is called left quasi-coFrobenius if C as a left C∗-
module embeds in a free left C∗-module. The coalgebra C is called quasi-coFrobenius if it
is left and right quasi-coFrobenius. It has been shown in [12, Remarks 1.5 (a)] that a finite
dimensional coalgebra C is quasi-coFrobenius if and only if the dual algebra C∗ is quasi-
Frobenius.

Theorem 1.9 The following assertions about a coalgebra C are equivalent:

i) C is uniserial.

ii) Every finite dimensional right C-comodule is a direct sum of homogeneous uniserial
comodules.

iii) Every finite dimensional left C-comodule is a direct sum of homogeneous uniserial co-
modules.

iv) Every finite dimensional indecomposable right C-comodule is homogeneous uniserial.

v) Every finite dimensional indecomposable left C-comodule is homogeneous uniserial.

vi) Every finite dimensional subcoalgebra of C is quasi-coFrobenius.

vii) C1 is uniserial.

Proof: Keeping in mind the characterization of uniserial algebras given in [9, Theorem
9.4.1, Corollary 9.4.5] and [11, Theorem 2.1], one may adapt the proof of Theorem 1.8 to
uniserial coalgebras.

Corollary 1.10 Let C be a coalgebra and {Ci}i∈I a family of subcoalgebras such that C =
⊕i∈ICi. Then, C is serial (resp. uniserial) if and only if Ci is serial (resp. uniserial) for all
i ∈ I.
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Proof: Assume that Ci is serial for all i ∈ I, and let M be a finite dimensional C-
comodule. Then M = ⊕n

j=1Mij with Mij = ρ−1
M (M2CCij ) for some i1, ..., in ∈ I. Since Mij

is a Cij
-comodule and Cij

is serial, Theorem 1.8 implies that Mij
is a direct sum of uniserial

Cij
-comodules. Hence M is a direct sum of uniserial C-comodules. Theorem 1.8 implies that

C is serial. The converse is deduced from Proposition 1.5.
For uniserial coalgebras the argument is analogous using Theorem 1.9.

We recall that the finite dual coalgebra of an algebra A is A0 = {f ∈ A∗ : f(I) = 0 for
some ideal I of A with dim(A/I) <∞}.

Corollary 1.11 Let A be an algebra and assume that every finite dimensional quotient alge-
bra of A is serial. Then A0 is serial. As a consequence:

i) If A is serial, then A0 is serial.

ii) If A is an hereditary noetherian prime algebra, then A0 is serial. In particular, the
finite dual of a Dedekind domain is serial.

Proof: Every finite dimensional subcoalgebra of A0 is of the form (A/I)∗ where I is a
cofinite two-sided ideal of A. Combining the hypothesis and Proposition 1.6 we have that
every finite dimensional subcoalgebra of A0 is serial. Theorem 1.8 now applies.

By [4, Theorem 32.2] every quotient algebra of a serial algebra is serial. This proves i).
The assertion ii) follows from [10, Corollary 3.2] which claims that every proper quotient
algebra of an hereditary noetherian prime algebra is serial. Dedekind domains are examples
of such algebras.

Remark 1.12 One of the most important results in the theory of serial rings is that for
a left artinian serial ring every left and every right module decomposes as a direct sum of
uniserial modules, see [4, Theorem 32.3]. We do not know whether this result holds for
serial coalgebras. Although it is true for coalgebras having a finite coradical filtration, see
Proposition 1.13. Note that this hypothesis assures that every comodule has finite Loewy
length. In the artinian ring case this is a consequence of the nilpotency of the Jacobson
radical.

Proposition 1.13 Let C be a serial coalgebra and M a right C-comodule. Then socn(M) is
a direct sum of uniserial comodules for all n ∈ IN . In particular, if C = Cn for some n ∈ IN ,
every right C-comodule is a direct sum of uniserial comodules.

Proof: LetM be a right C-comodule such thatM = socn+1(M). ThenM = ρ−1
M (M2CCn)

= socn+1(M) and thusM is a Cn-comodule. We prove the result by induction on the length of
the Loewy series {soci(M)}n+1

i=1 . It is clear that soc(M) is a direct sum of uniserial comodules.
Assume that socn(M) is a direct sum of uniserial comodules. Let M 6= socn(M), then there
is m ∈ socn+1(M) − socn(M). Let (m) be the subcomodule generated by m. By Theorem

7



1.8, (m) = ⊕s
j=1Uj where each Uj is uniserial. We claim that for some j ∈ {1, 2, ..., s} it holds

that Uj 6= socn(Uj). If Uj = socn(Uj) for all j = 1, ..., n, then

(m) = ⊕s
j=1Uj = ⊕s

j=1soc
n(Uj) = socn(⊕s

j=1Uj) = socn((m)) ⊂ socn(M).

From this, m ∈ socn(M), a contradiction. Since Uj is uniserial and C is serial, EC(Uj) is
uniserial. There is h ∈ IN such that Uj

∼= ECh
(Uj). It must be h = n because Uj has

length n+1. By Zorn’s Lemma there exists a maximal independent family U of uniserial Cn-
subcomodules of M of length n+ 1. Let U = ⊕X∈UX. Since U is injective as Cn-comodule,
we can express M = U ⊕ L where U is a direct sum of uniserial comodules and L does not
contain uniserial subcomodules of length n + 1. We claim that L = socn(L). If there is
y ∈ socn+1(L)− socn(L), then reasoning as in the above paragraph we would find a uniserial
subcomodule of L of length n+ 1. Applying the hypothesis to L we are done.

We recall from [16] that a coalgebra is called right semiperfect if the injective hull of a
right simple comodule is finite dimensional.

Proposition 1.14 Let C be a serial coalgebra. Every subcoalgebra with finite coradical fil-
tration is semiperfect (both sides). In particular, if C has finite coradical filtration, C is
semiperfect.

Proof: Let S be a simple C-comodule and E = EC(S). It is not difficult to see that
ECn

(S) = ρ−1
M (E2CCn) = socn+1(EC(S)). By Lemma 1.2 we get that ECn

(S) is finite
dimensional for all n ∈ IN .

2 Structure theorems for serial coalgebras

Let C be a coalgebra and let {Si}i∈I be a full set of simple right C-comodules. The set
{E(Si)}i∈I is a representative family of injective indecomposable right C-comodules. For
each Si there is a primitive idempotent ei in C∗0 such that Si

∼= C0ei. Each idempotent ei

may be lifted to a primitive idempotent ei ∈ C∗ such that E(Si) ∼= Cei, see [7] for more
details. The family {ei}i∈I is called a basic set of idempotents for C. For a fixed ei the right
C0-comodule C1ei/C0ei is cosemisimple, then

C1ei/C0ei
∼= ⊕j∈IC0e

(mij)
j ,

where the m′
ijs are cardinal numbers. The right diagram of C is defined as the directed graph

D(C) with vertex set {ei}i∈I and with mij arrows between ei and ej . From the definition it
is clear that D(C) = D(C1).

Proposition 2.1 A coalgebra C is right serial if and only if there is at most one arrow
starting at each vertex in D(C).
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Proof: Assume that C is right serial and let ei be a vertex of D(C). Since Cei is uniserial,
C1ei/C0ei is simple or zero. If it is non zero, then C1ei/C0ei

∼= C0ej for some ej . Thus there
is an arrow from ei to ej . There is only one because {ei}i∈I is basic. Conversely, given ei

such that C1ei is not simple, there is a unique ej such that C1ei/C0ei
∼= C0ej by hypothesis.

Hence C1ei is uniserial which gives that C1 is right serial. That C is right serial follows from
Proposition 1.7.

We now compare the right diagram of C with the right Ext-quiver of C. We recall from
[17] that the right Ext-quiver of C is the diagram Γ(C) whose vertices are the simples {Si}i∈I

in MC and for i, j ∈ I there is an arrow Si → Sj if there is an indecomposable C-comodule
P and an exact sequence 0 → Si → P → Sj → 0.

Two simple right C-comodules Si and Sj are said to be connected if there is a path in
Γ(C) (as an undirected quiver) from Si to Sj . It was proved in [17] that there is a family
{Cα}α∈∆ of subcoalgebras of C such that C = ⊕α∈∆Cα where each Cα is associated to a
connected component of Γ(C).

Remark 2.2 When C is a right serial coalgebra then D(C) and Γ(C) are isomorphic.
Let Si and Sj be two simple right C-comodules and ei, ej two primitive idempotents of

C∗ such that Si
∼= C0ei and Sj

∼= C0ej . If there is an arrow from ei to ej in D(C), then it is
clear that there is an arrow from Si to Sj in Γ(C).

Assume that there is an arrow from Si to Sj in Γ(C). Let P be the indecomposable C-
comodule appearing in a short exact sequence with Si and Sj as extremes. Then Si = soc(P ).
Taking EC1(P ) ∼= C1ei we have that Sj embeds in EC1(P )/soc(EC1(P )). But this is simple
by hypothesis. Hence EC1(P )/soc(EC1(P )) ∼= Sj and thus there is an arrow from ei to ej in
D(C).

We recall from [20] the definition of the cotensor coalgebra and some related properties.
Let C be a coalgebra and M a C-bicomodule. The cotensor coalgebra of M over C, denoted
by T c

C(M) is defined as follows: as a vector space T c
C(M) = ⊕n∈INM

2Cn where M2Cn

denotes the cotensor product of M with itself n times. When n = 0, M2Cn = C. The
comultiplication ∆ : M2Cn →

∑
i+j=nM

2Ci ⊗M2Cj is given by the comodule structure
map of M when i = 0 or j = 0, and when i, j > 0 it is induced by the map x1 ⊗ ... ⊗ xn →∑

i(x1 ⊗ ... ⊗ xi) ⊗ (xi+1 ⊗ ... ⊗ xn). The counit is εCπ where εC is the counit of C and
π is the projection from T c

C(M) into C. The coradical filtration of T = T c
C(M) is given

by Tn = ⊕n
i=0M

2Ci. The path coalgebra associated to a quiver is a particular case of the
cotensor coalgebra, see [6, Remark 4.2].

The space P = C1/C0 is a (C0, C0)-bicomodule via the maps

ρ+
P : P → P ⊗ C0, c+ C0 7→

∑
(c)(c(1) + C0)⊗ c(2)

ρ−P : P → C0 ⊗ P, c+ C0 7→
∑

(c) c(1) ⊗ (c(2) + C0)

When the coradical of C is coseparable (the dual of each simple subcoalgebra is separable
over k), C is isomorphic to a subcoalgebra of T c

C(P ), see [24, 4.6]. We say that a C0-
bicomodule M is right serial if Me is simple or zero for any primitive idempotent e ∈ C∗0 .
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Proposition 2.3 Let C be a coalgebra and P = C1/C0.

i) C is right (resp. left) serial if and only if P is right (resp. left) serial.

ii) If C is right serial and C0 is coseparable, then C is isomorphic to a subcoalgebra of
T c

C0
(P ) where P is a right serial C0-bicomodule.

iii) If M is a right serial C0-bicomodule, then any subcoalgebra of T c
C0

(M) is right serial.

Proof: i) Recall from [7, Proposition 1.17] that an idempotent e ∈ C∗ is primitive if
and only if e = e |C0 is primitive. If C is right serial, then Ce is uniserial for any primitive
idempotent e ∈ C∗. Hence soc2(Ce)/soc(Ce) = C1e/C0e ∼= (C1/C0)e is simple. Conversely,
assume that Pe is simple or zero for any primitive idempotent e ∈ C∗0 . By lifting e to
an idempotent e′ ∈ C∗1 we have that C1e

′ is uniserial. Hence C1 is right serial, and from
Proposition 1.7, C is right serial.

ii) It follows from i).

iii) Let T = T c
C0

(M). Since T1/T0
∼= M as T0-comodules, T is right serial. Now it is just

to apply Lemma 1.5.

In view of the foregoing result, in order to characterize right serial coalgebras, it suffices
to find the subcoalgebras of T = T c

C(P ) where C is a cosemisimple and coseparable coalgebra
and P is a C-bicomodule that is serial as a right C-comodule. We may assume that C is
basic. Then C = ⊕i∈ICi where C∗i is a division algebra. For each i ∈ I let ei be the primitive
and central idempotent such that Ci = Cei. We are able to characterize the right semiperfect
subcoalgebras of T = T c

C(P ). Suppose that D is a right semiperfect subcoalgebra of T . Then,
DD = ⊕j∈JED(Cj). Since ED(Cj) ⊂ Tej and Tej is uniserial, ED(Cj) = Tljej for some
lj ∈ IN . Here Tlj denotes the lj-th term of the coradical filtration of T . Hence any right
semiperfect subcoalgebra of T is of the form D = ⊕j∈JDj where Dj = Tljej for some set of
index J ⊂ I.

Given a family {lj}j∈J of natural numbers we study whenD = ⊕j∈JTljej is a subcoalgebra
of T . We need some previous facts.

Lemma 2.4 Let C be a coalgebra, e ∈ C∗ a central idempotent, and M a left C-comodule.

i) For any c ∈ C,
∑

(c)〈e, c(1)〉c(2) =
∑

(c)〈e, c(2)〉c(1).

ii) Ce2CM = Ce2CMe.

iii) If N is a C-bicomodule, then (N2CM)e = Ne2CM.

Proof: i) Let λC : C → C∗∗ be the canonical embedding defined as 〈λC(c), c∗〉 = 〈c∗, c〉
for all c ∈ C, c∗ ∈ C∗. Since e is central, ec∗ = c∗e for all c∗ ∈ C∗. Then,

〈λC(
∑

(c)〈e, c(1)〉c(2)), c∗〉 =
∑

(c)〈e, c(1)〉〈c∗, c(2)〉
=

∑
(c)〈e, c(2)〉〈c∗, c(1)〉

= 〈λC(
∑

(c)〈e, c(2)〉c(1)), c∗〉.
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The injectivity of λC yields the claim.

ii) Let x =
∑n

l=1 cle⊗ml ∈ Ce2CM . By definition of the cotensor product,

n∑
l=1

∑
(cl)

cl(1)e⊗ cl(2) ⊗ml =
n∑

l=1

∑
(ml)

cle⊗ml(−1) ⊗ml(0). (1)

Now,
x =

∑n
l=1 cle⊗ml =

∑n
l=1

∑
(cl)
〈e, cl(2)〉cl(1) ⊗ml

=
∑n

l=1

∑
(cl)
〈e, cl(1)〉cl(2) ⊗ml since e is central

=
∑n

l=1

∑
(cl)
〈e, cl(1)〉cl(2)〈e, cl(3)〉 ⊗ml

=
∑n

l=1

∑
(cl)

cl(1)e⊗ 〈e, cl(2)〉ml

=
∑n

l=1

∑
(ml)

cle⊗ 〈e,ml(−1)〉ml(0) by applying 1⊗ e⊗ 1 to (1)
=

∑n
l=1 cle⊗mle.

iii) Let x = (
∑n

l=1 nl ⊗ml)e ∈ (N2CM)e. Then,

x =
n∑

l=1

〈e, (nl ⊗ml)(−1)〉(nl ⊗ml)(0) =
n∑

l=1

〈e, nl(−1)〉nl(0) ⊗ml =
n∑

l=1

nle⊗ml.

For C a cosemisimple coalgebra and P a right serial (C,C)-bicomodule one can construct
a diagram D(C,P ) associated to C and P in a similar manner to D(C). Indeed, if C is right
serial, then D(C) ∼= D(C0, P ) where P = C1/C0. A vertex is called a sink when it is not the
tail of any arrow.

Theorem 2.5 Let C be a basic cosemisimple and coseparable coalgebra and {ei}i∈I be a
family of primitive central idempotents of C∗ such that εC =

∑
i∈I ei. Let P be a right serial

C-bicomodule and T = T c
C(P ). Finally, let {li}i∈I be a family of natural numbers, Di = Tliei

and D = ⊕i∈IDi. Then, D is a subcoalgebra of T if and only if li = 0 for every sink ei in
D(C,P ) and li ≤ lj + 1 for every arrow from ei to ej in D(C,P ).

Proof: If ei1 → ei2 → ... → ein
is a path in D(C,P ), then Peis

∼= Ceis+1 for all
s = 1, ..., n− 1. Using the above lemma,

(P2CP )ei1 = Pei12CP ∼= Cei22CP = Cei22CPei2
∼= Pei12CPei2 .

In general, P2Chei1
∼= Pei12CPei22C ...2CPeih

for h ≤ n. We identify these two spaces.
Then,

∆(P2Chei) ⊆
∑

a+b=h P
2Caei2CP

2Cb =
∑

a+b=h(P2Ca2CP
2Cb)ei

= Cei2CP
2Chei + Pei2CP

2C(h−1)ei1 + P2C2ei2CP
2C(h−2)ei2 + ...+

P2Ch−1ei2CPeih−1 + P2Chei2CC (∗)

11



⇐) Assume that i is a sink and li = 0. ThenDi = Cei and it follows that ∆(Di) ⊂ Di⊗Di.
If there is an arrow ei → ej and li ≤ lj + 1, then Tli−1ej ⊂ Tljej . From (∗) we get for h ≤ li,

∆(P2Chei) ⊂ Cei ⊗ Thei + T1ei ⊗ Th−1es1 + ...+ Th−1ei ⊗ T1esh−1 + Thei ⊗ C
⊂ Cei ⊗Di +Di ⊗Ds1 +Di ⊗Ds2 + ...+Di ⊗Dsh−1 +Di ⊗ C
⊂ D ⊗D

where ei → es1 → ...→ esh
. This gives ∆(Di) ⊆ D ⊗D and so D is a subcoalgebra of T .

⇒) Suppose that D is a subcoalgebra of T and let ei be a sink in D(C,P ). Since P is
right serial, Pei = {0}. We thus get Tliei = Cei, and hence li = 0. Let ei → ej be an arrow
in D(C,P ). Since D is a subcoalgebra, from (∗) it follows that li − 1 ≤ lj .

Definition 2.6 Let C be a coalgebra and D(C) its diagram. An admissible sequence for D(C)
is a map l : D(C) → IN, i 7→ li such that li = 0 if ei is a sink and li ≤ lj + 1 if there is an
arrow from ei to ej.

Corollary 2.7 Let C be a right serial and right semiperfect basic coalgebra with coseparable
coradical. Then C is determined by the following data: C0, C1/C0, and an admissible sequence
for D(C).

Proposition 2.8 Let D = (D0, P, {li}i∈I) and D′ = (D′
0, P

′, {l′i}i∈I′) be two right serial and
right semiperfect basic coalgebras. The coalgebras D and D′ are isomorphic if and only if
there is a coalgebra isomorphism φ : D0 → D′

0 and a bicomodule isomorphism φ : P → P ′

verifying that li = l′θ(i) where θ is the diagram isomorphism induced by φ and φ.

Proof: Assume that φ : D → D′ is a coalgebra isomorphism, then φ induces a coalgebra
isomorphism φ0 : D0 → D′

0 and a bicomodule isomorphism φ : D1/D0 → D′
1/D

′
0. Consider

the dual map φ∗ : D′∗ → D∗. If {e′i}i∈I′ is a basic set of idempotents for D′, then {φ∗(e′i)}i∈I′

is a basic set of idempotents for D. Moreover, for ei = φ∗(e′i), φ(Dei) = D′e′i. Thus φ also
induces a diagram isomorphism θ : D(D) → D(D′). Since li is the length of Dei, it holds
that li = l′θ(i).

Conversely, a coalgebra isomorphism ϕ : D0 → D′
0 and a bicomodule isomorphism f :

P → P ′ induces a coalgebra isomorphism φ : T c
D0

(P ) → T c
D′

0
(P ′). From the hypothesis it

follows that φ(D) = D′.

Theorem 2.9 Let C be an indecomposable coalgebra and C0 = ⊕i∈IM
c(Di, ni) be a decom-

position of its coradical with {D∗
i }i∈I a family of division algebras.

i) If I is finite, then C is serial if and only if D(C) is a cycle or a finite chain and Di
∼= Dj

for any vertex ei, ej in D(C).

ii) If I is infinite, then C is serial if and only if I is contable, D(C) is a chain, and Di
∼= Dj

for any pair of vertex ei, ej in D(C).

12



Proof: This proof is inspired in [9, Theorem 10.3.1] and the methods used there for
finite dimensional algebras may be extended for infinite dimensional coalgebras as we next
show. We can assume that C is basic since the notion of serial coalgebra is invariant under
Morita-Takeuchi equivalences, and in this case D(C) is also so.

Since C is basic, ε =
∑

i∈I ei where {ei}i∈I is a basic set of idempotents for C. The
idempotents ei = ei |C0 are central and C0ei = Di, see [7, Theorem 3.10, Corollary 3.12]. By
hypothesis and Proposition 2.3 i), Pei and eiP are simple or zero right and left C0-comodules
respectively, where P = C1/C0. We claim that two different arrows in D(C) may not have
the same head. Let eh, ei, ej be vertex of D(C) and ei → ej , eh → ej be arrows. Then
ejPei 6= {0} and ejPeh 6= {0}. These would be two direct summands of the simple left
C-comodule ejP yielding a contradiction. Combining this fact and Lemma 2.1 we know that
there is at most one arrow starting at each vertex and a vertex can not be the head of two
arrows.

If I is finite, then D(C) is a cycle or a chain. Assume that I is infinite. Since C is serial,
the Ext-quiver coincides with D(C). As C is indecomposable, D(C) is connected. Fix a
vertex i0. We know that for any vertex i there is a path from i to i0 or from i0 to i. Let n
be the length a such path. In the first case we label i with −n and in the second one i with
n. Thus we have a map from I to ZZ. This map is injective in view of the above observation.
Hence I is contable and D(C) has to be a chain.

Let ej → ei be an arrow in D(C). Then Pij = eiPej 6= {0} and eiP = Pij = Pej .
As a right (resp. left) C0-comodule, Pij is isomorphic to Di (resp. Dj). Hence Pij is a
(Dj , Di)-bicomodule. By the universal property of the co-endomorphism coalgebra, there is
a coalgebra map λ : e−C0(Pej) → Dj . Since Pej

∼= C0ei as right C0-comodules, e−C0(Pej) ∼=
e−C0(C0ei) ∼= Di. Hence we have a coalgebra map λ : Di → Dj . It is an isomorphism because
D∗

i , D
∗
j are division algebras verifying dim(Di) = dim(Pij) = dim(Dj).

Conversely, assume that D(C) is a cycle or a chain and Di
∼= Dj for any pair of vertex

ei, ej in D(C). From Lemma 2.1, C is right serial. If ei is a sink, then eiP = {0}. Let
ej → ei be an arrow, then Pej

∼= C0ei
∼= Di as right C0-comodules. On the other hand,

since P is semisimple as a left C0-comodule P ∼= ⊕l∈ID
(Tl)
l . Then eiP ∼= D

(Ti)
i as left C0-

comodules. Thus eiP = eiPej
∼= D

(Ti)
i as left C0-comodules. Now, eiP ∼= ⊕l∈ID

(Sl)
l as a

right C0-comodules. Hence eiPej = D
(Sj)
j . The isomorphism Pej

∼= Di
∼= Dj forces Sj = 1.

Summarizing, we have that D(Ti)
i

∼= Di as vector spaces. So Ti = 1 and eiP is simple as a
left C0-comodule. From Proposition 2.3, C is left serial.
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Theorem 2.10 Let C be an indecomposable serial coalgebra over an algebraically closed field.

i) C is Morita-Takeuchi equivalent to a subcoalgebra B of kΓ where Γ is one of the following
quivers:

a) A cycle or a finite chain.

b) A∞ : 0 → 1 → 2 → 3 → ...

c) A∞ : ...→ −3 → −2 → −1 → 0.

d) A∞∞ : ...→ −3 → −2 → −1 → 0 → 1 → 2 → 3 → ...

ii) If C is right semiperfect, then B is determined by an admissible sequence associated to
Γ.

iii) If C is hereditary, then B ∼= kΓ.

Proof: i) Let B be the basic coalgebra associated to C and Γ the Ext-quiver of C. By
[6, Theorem 4.3], B may be taken as a subcoalgebra of kΓ containing to (kΓ)1. Since C is
serial, Γ = D(C), and from Theorem 2.9, Γ is one of the listed quivers.

ii) Since k is algebraically closed, B0 is pointed, [6, Corollary 2.5]. Thus each simple
subcoalgebra is given by a group-like element, and V = D1/D0 consists of the non trivial
skew-primitive elements. Then T c

B0
(P ) ∼= kΓ ([6, Remark 4.2]), and from Theorem 2.5, B is

determined by an admissible sequence.

iii) It follows from [5, Theorem 1] which claims that an hereditary basic coalgebra is
isomorphic to the path coalgebra of its Ext-quiver.

Remark 2.11 The form of the Ext-quiver in Theorem 2.10 may be deduced from [2]. It is
claimed without proof in page 86 that the Ext-quiver of an uniserial connected category is
a cycle or a chain. For a serial indecomposable coalgebra C its category of right comodules
MC is a uniserial connected category, Theorem 1.8.

Remark 2.12 If the coalgebra C is assumed to be pointed, then C is isomorphic to a sub-
coalgebra of kΓ and the hypothesis of k being algebraically closed in Theorem 2.10 is not
necessary.

Remark 2.13 In case D(C) = A∞, the coalgebra C is left pure semisimple, see [21, Corollary
2.5]. This means that any left C-comodule decomposes as a direct sum of finite dimensional
comodules. Applying Theorem 1.8 to each summand, any left C-comodule is a direct sum of
uniserial comodules. This partially answers the problem proposed in Remark 1.12. Similarly,
if D(C) = A∞, then C is right pure semisimple and thus every right C-comodule is a direct
sum of uniserial comodules.

We finish this section by giving a characterization of serial coalgebras in terms of its
coradical being a coprincipal coideal.
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Definition 2.14 A right coideal I of a coalgebra C is said to be coprincipal if there is a right
C-comodule map f : C → C such that ker(f) = I.

Example 2.15 Let C = k{c0, c1, c2, ...} be the power divided coalgebra. Consider the map
f : C → C, c0 7→ 0, ci 7→ ci−1. It is easy to check that f is a C-comodule map. For i ∈ IN ,
let f i denote the composition of f with itself i times. Then ker(f i) = Ci and so Ci is a
coprincipal coideal.

Lemma 2.16 Let I be a right coideal of C.

i) I is coprincipal in C if and only if I⊥(C∗) is a principal ideal in C∗.

ii) If D is a subcoalgebra of C and I is coprincipal, then I ∩D is a coprincipal coideal of
D.

Proof: i) Assume that I is coprincipal and let f : C → C be a right C-comodule
map such that ker(f) = I. The dual map f∗ : C∗ → C∗ is a right C∗-module map and
Im(f∗) = Ker(f)⊥(C∗) = I⊥(C∗). Then I⊥(C∗) = ψC∗ where ψ = f∗(ε). Conversely,
suppose that I⊥(C∗) = ψC∗ for some ψ ∈ C∗. We define f : C → C, c 7→

∑
(c)〈ψ, c(1)〉c(2). It

is routine to check that f is a right C-comodule map and ker(f) = I.

ii) Let i : D → C be the inclusion map and consider i∗ : C∗ → D∗ the dual map. We have
that i∗(I⊥(C∗)) = i−1(I)⊥(D∗) = (I ∩D)⊥(D∗). By hypothesis and the above item, I⊥(C∗) is
a principal right ideal of C∗. Hence (I ∩D)⊥(D∗) is a principal right ideal of D∗, and from i)
we conclude that I ∩D is coprincipal in D.

Theorem 2.17 Let C be a basic coalgebra. Then, C is serial if and only if C0 is a coprincipal
right and a coprincipal left coideal.

Proof: The socle of the right C-comodule V = C/C0 is equal to C1/C0. Since C is serial,
each simple comodule appears only once in V . This also happens in C because C is basic.
Taking injective envelopes, we get that E(V ), and hence V , embeds in C as a right comodule.
This implies that C0 is a coprincipal right coideal. A symmetric argument proves that C0 is
a coprincipal left ideal.

Conversely, suppose that C0 is a coprincipal right coideal of C. In light of the above
lemma C0 is a coprincipal coideal of C1. Then C1/C0 embeds in C1 as a right C1-comodule.
Since C is basic, each simple of C1/C0 appears with multiplicity one. Hence for each primitive
idempotent e ∈ C∗0 , (C1/C0)e is simple or zero. From Proposition 3.4 i), it follows that C is
right serial. Analogously, C is left serial.

Example 2.18 Let C be the path coalgebra associated to the quiver A∞∞. For each vertex i
let Sn

i be the path of length n starting at i. We define f : C → C by

f(S0
i ) = 0, f(Sn

i ) = Sn−1
i+1 .

It is not difficult to check that f is a bicomodule map whose kernel is C0. Hence C0 is a coprin-
cipal right and left coideal of C. Note that under the canonical isomorphism Com−C(C,C) ∼=
C∗, f 7→ εf = f∗(ε), the space of bicomodule maps ComC−C(C,C) ∼= Z(C∗), the center of
C∗. Thus φ = f∗(ε) ∈ Z(C∗) and C⊥(C∗)

0 = C∗φ = φC∗.
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3 Uniserial coalgebras characterized

A coalgebra C is said to be colocal if C0 is the dual of a finite dimensional division algebra.

Theorem 3.1 Let C be a coalgebra. The following assertions are equivalent:

i) C is uniserial.

ii) C ∼= ⊕α∈∆M
c(Dα, nα) where Dα is a colocal serial coalgebra.

iii) Every right (left) coideal of C is coprincipal.

iv) The diagram of C consists of isolated points and loops.

Proof: i) ⇒ ii) Since any coalgebra is a direct sum of indecomposable coalgebras, we may
assume that C is indecomposable and uniserial. Suppose that C = P (n) ⊕ P ′ where P is an
indecomposable injective coideal and P ′ has no direct summands isomorphic to P . We prove
that P ′ = {0}. If P ′ 6= {0}, then P ′ contains a simple coideal T such that T is not isomorphic
to S, where S = soc(P ). As C is indecomposable, its Ext-quiver its connected. There are
simple comodules S1, ..., Sn with S1 = S, Sn = T and indecomposable comodulesM1, ...,Mn−1

satisfying that soc(Mi) ∼= Si and Mi/Si
∼= Si+1. Hence E(Mi) is indecomposable and, by

hypothesis, homogeneous uniserial. Since soc(E(Mi)/Si) ∼= Si, we get Si+1
∼= Si. From this,

S ∼= T which is a contradiction. Thus, C = P (n). Now, C ∼= e−C(P (n)) ∼= M c(e−C(P ), n)
and e−C(P ) is the basic coalgebra of C with S as unique simple coideal. We conclude that
e−C(P ) is colocal.

ii) ⇒ iii) If J is a right coideal of C, then J = ⊕α∈∆Jα where Jα is a right coideal of
M c(Dα, nα). Since the direct sum of coprincipal coideals is coprincipal, we may assume that
C = M c(D,n) where D is a colocal serial coalgebra. On the other hand, every right coideal
of C is of the form M c(I, n) where I is a right coideal of D. Moreover, if I is coprincipal,
then M c(I, n) is so. Hence, it suffices to prove that every right coideal of D is coprincipal.
The only proper right coideals of D are of the form Dn = socn(D) for n ∈ IN . Since D0 is the
only simple of D and D is serial, soc(D/Dn) = Dn+1/Dn

∼= D0. Then E(D/Dn) ∼= D and so
there is an injective D-comodule map from D/Dn into D. This gives that Dn is coprincipal
for all n ∈ IN .

iii) ⇒ i) Let P be an injective indecomposable C-comodule. We can write C = P (n) ⊕
P ′ where P ′ has no direct summands isomorphic to P . By hypothesis, soc(P ) ⊕ {0} is a
coprincipal coideal of C. Let f : C → C be the C-comodule map such that ker(f) =
soc(P )⊕ {0}. Let i : P → C be the inclusion map and π : C → P the canonical projection.
Consider g = πfi. We claim that ker(g) = {x ∈ P : f(x) ∈ P ′} = soc(P ). Assume that
there is p ∈ P with f((p, 0)) 6= 0. Let I be a simple coideal of C such that I ⊂ f(P ) and
X = {x ∈ P : f(p) ∈ I}.

On the other hand, f establishes an isomorphism between the set of simple coideals non
isomorphic to soc(P ). There is a simple coideal J such that f(J) = I. Since f(X) = f(J),
we may pick y ∈ J such that f((p, 0)) = f((0, y)). Then (p,−y) ∈ soc(P ) ⊕ {0} yielding a
contradiction. We conclude that ker(g) = soc(P ) and thus

soc2(P )/soc(P ) = soc(P/soc(P )) ∼= soc(Im(g)) ∼= soc(P ).
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Now soc2(P ) ⊕ {0} is a coprincipal coideal of C. Let f : C → C be a C-comodule map
such that ker(f) = soc2(P ) ⊕ {0}. Consider g = πfi. Arguing as before, it may be proved
that ker(g) = soc2(P ). Then

soc3(P )/soc2(P ) = soc(P/soc2(P )) ∼= soc(Im(g)) ∼= soc(P ).

Continuing this process we see that the socle series is a composition series for P .

i) ⇒ iv) Note that for each primitive idempotent ei, the comodule C1ei/C0ei is either
zero or isomorphic to C0ei by hypothesis.

iv) ⇒ i) The assumption on D(C) implies that C1 is uniserial. By Theorem 1.9, C is
uniserial.

Theorem 3.2 Let C be a cocommutative coalgebra. The following assertions are equivalent:

i) C is serial.

ii) The dual of each irreducible component of C is noetherian and its only ideals are the
powers of the maximal ideal which is principal.

iii) C is uniserial.

When C is pointed and serial, each irreducible component is isomorphic to a subcoalgebra of
the divided power coalgebra.

Proof: i) ⇒ ii) Let {Ci}i∈I be a family of irreducible subcoalgebras such that C =
⊕i∈ICi. Since Ci is serial, (Ci)1/(Ci)0 is simple. Hence (Ci)1 is finite dimensional. By
[15, Theorem 5.2.1], C∗i is noetherian. Any ideal I of C∗ is finitely generated. From [15,
Proposition 1.3.1] it must be of the form I = D⊥(C∗) for some subcoalgebra D of C. Since
Ci is serial, D = (Ci)n for some n ∈ IN . Then I = D⊥(C∗

i ) = (Ci)
⊥(C∗

i )
n = Jn+1 where

J = (Ci)
⊥(C∗

i )
0 is the only maximal ideal, [15, Corollary 4.1.2]. From Lemma 2.16 and

Theorem 2.17, J is a principal ideal.
ii) ⇒ iii) It follows from Theorem 3.1 and Corollary 1.10.
iii) ⇒ i) Obvious.
If Ci is pointed and uniserial, its Ext-quiver Γ is an isolated point with a loop, Theorem

3.1. Hence kΓ is isomorphic to the power divided coalgebra. Now Theorem 2.10 i) and
Remark 2.12 apply.

We give an application of this result to compute the finite dual of some Hopf algebras. It
is known that a pointed cocommutative Hopf algebra H is isomorphic to the smash product
H1#kG(H) where G(H) is the set of group-like elements of H, H1 is the irreducible compo-
nent of H containing to 1, and G(H) acts on H1 by conjugation, see [18, Corollary 5.6.4]. If
char(k) = 0, then H1

∼= U(P (H1)), the universal enveloping algebra of the primitive elements
P (H1) of H1, see [18, Theorem 5.6.5].
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Let H be a commutative Hopf algebra such that H0 is pointed and serial. By Theorem
3.2, P (H0

1 ) is one dimensional and hence U(P (H0
1 )) ∼= k[x]. Then H0 ∼= k[x]#kG(H0). If in

addition H0 is commutative, then H0 ∼= k[x]⊗ kG(H0).
Using this result we can give an alternative computation of H = k[x]0, k[x, x−1]0 or k[[x]]0

when k is algebraically closed and of characteristic zero. The group-like elements of H are the
algebra maps from H to k. By Corollary 1.11 ii), H0 is serial. Then k[x]0 ∼= k[x] ⊗ k(k,+)
where (k,+) is the additive group of k; k[x, x−1]0 ∼= k[x] ⊗ k(k∗, ·), where (k∗, ·) is the
multiplicative group of k; and k[[x]]0 ∼= k[x].
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