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04120 Almeŕıa, Spain
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1 Introduction.

In the classical theory of the Brauer group of a commutative ring R important
subgroups related to group theory appear, i.e, the Schur and projective Schur
subgroups relative to a class H of finite groups closed by finite products. The
H-projective Schur subgroup represents classes of Azumaya R-algebras which
are epimorphic image of a twisted group algebra R ∗α G for some G ∈ H.
Restricting to the case where only the trivial cocycle appears we obtain the
H-Schur subgroup.

On the other hand, the Brauer group of a cocommutative coalgebra C
was introduced in [15]. In this paper we introduce an H-Schur and an H-
projective Schur subgroup of the Brauer group of a cocommutative coalgebra.
For this, we consider the twisted cogroup coalgebra which is a particular case
of crossed coproduct C >/α H where H = (kG)∗ for some G ∈ H, (kG)∗

coacts trivially on C and the cocycle α is convolution invertible. Then,
we define the H-projective Schur subgroup of C consisting of the classes
of C-Azumaya coalgebras which are subcoalgebras of some twisted cogroup
coalgebra C >/α (kG)∗ with G ∈ H. If we impose α to be trivial we obtain
the definition of the H-Schur group. The interest of C-Azumaya coalgebras
represented in this way comes from the good structure of the twisted cogroup
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coalgebras. For example, in general the Brauer group of C is not a torsion
group, however the H-Schur and H-projective Schur subgroups are torsion
when the ground field of C is of characteristic zero.

The paper is organized as follows: In Section 3 we study some properties
of the twisted cogroup coalgebra. In Section 4 we introduce the H-Schur
and H-projective Schur subgroups of the Brauer group of C. When C is
finite dimensional these subgroups coincide with the H-Schur respectively
H-projective Schur subgroup of C∗. This also is true if the coalgebra C is
coreflexive and irreducible. In this case, if C0 denotes the coradical of C then
SH(C) ∼= SH(C0) and SH(C0) is the classicalH-Schur subgroup of the Brauer
group of some finite field extension. In general, for PSH(C) we cannot claim
this property though if the ground field of C is of characteristic zero then
PSH(C) ∼= PSH(C0). With this isomorphism we can deduce some results
for PSH(C) using the classical results for PSH(C0). Finally, in Section 5
we provide examples of H-Schur, H-projective Schur and Brauer group of
several cocommutative coalgebras.

2 Notation and preliminaries.

Throughout k is a fixed field. All algebras, coalgebras, vector spaces and
unadorned ⊗ are over k. We use the usual sigma notation for coalgebras and
comodules. MC denotes the category of right C-comodules and for right
C-comodules X,Y , Com−C(X, Y ) denotes the vector space of all C-colinear
maps from X to Y.

Let α : C → D be a coalgebra map. Every right C-comodule X may be
viewed as a right D-comodule with the structure map:

(1⊗ α)ρX : X → X ⊗ C → X ⊗D

In this case, we will sayXD is induced byXC via α. A (C−D)-bicomodule
is a left C-comodule and a right D-comodule X, denoted by CXD, such that
the C-comodule structure map ρX : X → X ⊗ C is D-colinear.

Cotensor product : Let M a right C-comodule and N a left C-comodule
with structure maps ρM and ρN . Then the cotensor product M2C N is the
kernel of the map
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ρM ⊗ 1− 1⊗ ρN : M
⊗
N →M

⊗
C

⊗
N

The functors M2C− and −2CN are left exact and preserve direct sums.
If CMD and DNE are bicomodules, then M2CN is a (C − E)-bicomodule
with comodule structures induced by those of X and Y .

Co-hom functor: A right C-comodule X is quasi-finite if Com−C(Y,X)
is finite dimensional for any finite dimensional comodule Y. A comodule
X ∈MC is said to be a cogenerator if for any comodule M ∈MC there is a
vector space W such that M ↪→ W ⊗X as comodules. X is injective if the
functor Com−C(−, X) is exact, or equivalently, the functor X2C− is exact.

Now, we recall from [14] the definition of the co-hom functor:

Lemma 2.1 Let CXD be a bicomodule. Then XD is quasi-finite if and only
if the functor −2CX : MC → MD has a left adjoint functor, denoted by
h−D(X,−). That is, for comodules YD and ZC,

Com−C(h−D(X, Y ), Z) ∼= Com−D(Y, Z2CX) (1)

where,

h−D(X, Y ) = lim→µCom−D(Yµ, X)∗

is a right C-comodule and {Yµ} is a directed family of finite dimensional
subcomodules of YD such that YD = ∪µYµ. We denote by θ the canonical
D-colinear map Y → h−D(X, Y )2CX which corresponds to the identity map
h−D(X, Y ) → h−D(X, Y ) in (1).

If we assume thatXD is a quasi-finite comodule, then e−D(X) = h−D(X,X)
is a coalgebra, called the co-endomorphism coalgebra of X. The comultipli-
cation of e−D(X) corresponds to (1 ⊗ θ)θ : X → e−D(X) ⊗ e−D(X) ⊗X in
(1) when C = k and the counit of e−D(X) corresponds to the identity map
1X .

Crossed coproduct (See [3]): Let C be a coalgebra and H a Hopf algebra
which weakly coacts on C to the left, i.e., there is a linear map C → H ⊗C,
c 7→ ∑

(c) c(−1) ⊗ c(0), such that the following conditions hold:

(W1)
∑
c(−1) ⊗ c(0)1 ⊗ c(0)2 =

∑
c1(−1)c2(−1) ⊗ c1(0) ⊗ c2(0),

(W2)
∑

(c) c(−1)ε(c(0)) = ε(c)1H ,

(W3)
∑

(c) ε(c(0))c(−1) = c, c ∈ C.
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Let α : C → H⊗H be a linear map, α(c) =
∑
α1(c)⊗α2(c). Let C >/α H

be the vector space C ⊗H with comultiplication given by:

∆α(c >/ h) =
∑

c1 >/ c2(−1)α1(c3)h1 ⊗ c2(0) >/ α2(c3)h2

C >/α H is said to be a crossed coproduct if ∆α is coassociative and εC ⊗ εH

is a counit.

Lemma 2.2 C >/α H is a crossed coproduct if and only if the following
conditions hold:

(CU) (normal cocycle condition);

∑
ε(α1(c))α2(c) =

∑
ε(α2(c))α1(c) = ε(c)1H

(C) (cocycle condition);∑
c1(−1)α1(c2)⊗ α1(c1(0))α2(c2)1 ⊗ α2(c1(0))α2(c2)2 =

=
∑
α1(c1)α1(c2)1 ⊗ α2(c1)α1(c2)2 ⊗ α2(c2)

(TC) (Twisted comodule condition);∑
c1(−1)α1(c2)⊗ c1(0)(−1)α2(c2)⊗ c1(0)(0) =

=
∑
α1(c1)c2(−1)1 ⊗ α2(c1)c2(−1)2 ⊗ c2(0)

Proof: cf. [3, Lem. 2.2, 2.3]

Brauer group (See [15]): We recall the notion of Azumaya coalgebra, the
Brauer group of a cocommutative coalgebra and some of its properties. A
coalgebra map f : D → E is said to be cocentral if

∑
(c) f(c1)⊗ c2 =

∑
(c) f(c2)⊗ c1

For a coalgebra D, there exists a cocommutative coalgebra Z(D) with a sur-
jective, cocentral coalgebra map 1d : D → Z(D) which satisfies the universal
property: for any cocentral coalgebra map f : D → E there is a unique
coalgebra map g : Z(D) → E such that f = g1d. (Z(D), 1d) is called the
cocenter of D. In fact, Z(D) = h−De(D,D) = e−De(D) where De = D⊗Dop.
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Let C be a cocommutative coalgebra. A C-coalgebra D is a k-coalgebra
with a cocentral coalgebra map εD : D → C, called the C-counit. A k-
coalgebra map f : D → E is a C-coalgebra map if εEf = εD. A C-coalgebra
D is said to be cocentral if Z(D) ∼= C and D is said to be C-coseparable
if there is a D-bicomodule map π : D2CD → D such that π∆ = 1D.
An Azumaya C-coalgebra is defined to be a C-cocentral and C-coseparable
coalgebra. If P is an injective quasi-finite cogenerator then e−C(P ) is an
Azumaya coalgebra. Denote by B(C) the set of the isomorphism classes of
Azumaya C-coalgebras. In [15], an equivalence relation (indeed a Morita-
Takeuchi equivalence relation) was introduced in B(C) as follows: if E,F ∈
B(C), then E is equivalent to F , denoted by E ∼ F, if there exist two
quasi-finite injective cogenerators M,N in MC such that

E2e−C(M) ∼= F2e−C(N).

The quotient set B(C)/ ∼, denoted by Br(C), is an abelian group with
the multiplication [E][F ] = [E2F ], unit element [C] and for [E] the inverse
is [Eop]. The group Br(C) is called the Brauer group of the cocommutative
coalgebra C.

Let η : D → C a cocommutative coalgebra map, then η induces a group
homomorphism η∗ : Br(C) → Br(D) given by η∗([E]) = [E2D] for all [E] ∈
Br(C). If C is of finite dimension, then the Brauer group of C is isomorphic
to the Brauer group of the commutative algebra C∗. To compute the Brauer
group of C it is enough to compute the Brauer group of an irreducible coal-
gebra and if C is irreducible, the map (−)∗ : Br(C) → Br(C∗), [D] 7→ [D∗] is
a group homomorphism. Moreover, if C is coreflexive then Br(C) ∼= Br(C∗)
and Br(C) ∼= Br(C0) where C0 is the coradical of C and Br(C0) is isomor-
phic to the classical Brauer group of some finite field extension.

3 Twisted cogroup coalgebra.

Let G be a finite group and we regard the Hopf algebra H = (kG)∗ with
basis {pg : g ∈ G} dual to the basis of kG; that is pg(h) = δg,h ∀g, h ∈ G.
The comultiplication and counit are defined by:

∆(pg) =
∑

hk=g ph ⊗ pk ε(pg) = δg,e

5



with e the identity element in G. We consider a linear map α : C → (kG)∗⊗
(kG)∗ expressed in the following way:

α(c) =
∑

x,y∈G αx,y(c)px ⊗ py ∀c ∈ C

with αx,y ∈ C∗ for all x, y ∈ G and the trivial coaction C → (kG)∗ ⊗ C, i.e.,
c 7→ 1(kG)∗ ⊗ c =

∑
g∈G pg ⊗ c. In this case Lemma 2.2 transforms to:

Lemma 3.1 C >/α (kG)∗ is a crossed coproduct if and only if the following
conditions hold:

(CU) αg,e(c) = αe,g(c) = ε(c) ∀g ∈ G, c ∈ C.

(C)
∑

(c) αs,rq(c2)αr,q(c1) =
∑

(c) αs,r(c1)αsr,q(c2) ∀s, r, q ∈ G, c ∈ C.

(TC)
∑

(c) αs,t(c2)c1 =
∑

(c) αs,t(c1)c2 ∀s, t ∈ G, c ∈ C.

Proof: It is only apply the Lemma 2.2 to this situation and note that {pg :
g ∈ G} is a basis of orthogonal idempotents and ε(pg) = δg,e for all g ∈ G.

We note that if C is cocommutative, (TC) is trivial. In the sequel we
suppose that C is cocommutative and we may forget this condition. The
following two propositions can be proved straightforward.

Proposition 3.2 Let C >/α (kG)∗ be a crossed coproduct where (kG)∗ coacts
trivially on C. The map εα = (1⊗ε) : C >/α (kG)∗ → C,

∑
g∈G cg >/ pg 7→ ce

is a cocentral coalgebra map. Hence C >/α (kG)∗ is a C-coalgebra.

Proposition 3.3 Let α : C → (kG)∗
⊗

(kG)∗ be a linear map expressed as
α(c) =

∑
x,y∈G αx,y(c)px ⊗ py. Then α is convolution invertible if and only if

αx,y ∈ U(C∗), the set of units of C∗ for all x, y ∈ G.

Definition 3.4 A convolution invertible map α : C → (kG)∗
⊗

(kG)∗ satis-
fying (CU) and (C) is said to be a convolution invertible cocycle.

Definition 3.5 We say that C >/α (kG)∗ is a twisted cogroup coalgebra if
C >/α (kG)∗ is a crossed coproduct with the trivial coaction of (kG)∗ on C
and α is a convolution invertible cocycle.
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Proposition 3.6 Let α : C → (kG)∗
⊗

(kG)∗ be a convolution invertible
cocycle. Then,

i) αop : C → (kG)∗op ⊗
(kG)∗op ∼= (kGop)∗

⊗
(kGop)∗ defined by

αop(c) =
∑

x,y∈G αy,x(c)px ⊗ py is a convolution invertible cocycle.

ii) (C >/α (kG)∗)op ∼= C >/αop (kGop)∗ as C-coalgebras.

Proof: We write αop(c) =
∑

x,y∈G α
op
x,y(c)px ⊗ py with αop

x,y(c) = αy,x(c) for
all x, y ∈ G. Using (CU), (C) of α, the definition of product in kGop and
the above proposition it follows the first claim. For the second one, the
isomorphism is given by the identity map.

Proposition 3.7 Let G,H be finite groups and α : C → (kG)∗
⊗

(kG)∗,
β : C → (kH)∗

⊗
(kH)∗ convolution invertible cocycles. Then,

i) The map α × β : C → (kG × H)∗ ⊗ (kG × H)∗ defined by α × β =
(1⊗τ⊗1)(α⊗β)∆, where τ is the twist map, is a convolution invertible
cocycle.

ii) (C >/α (kG)∗)2C(C >/β (kH)∗) ∼= C >/α×β (kG×H)∗ as C-coalgebras.

Proof: i) For all c ∈ C, we express α, β and ρ = α× β as

α(c) =
∑

x,y∈G
αx,y(c)px ⊗ py, β(c) =

∑
z,t∈H

βz,t(c)pz ⊗ pt

ρ(c) = (α× β)(c) =
∑

(x,z),(y,t)∈G×H
ρ(x,z),(y,t)(c)p(x,z) ⊗ p(y,t)

where ρ(x,z),(y,t)(c) =
∑

(c) αx,y(c1)βz,t(c2).

(CU) Using that α and β satisfy (CU), we obtain:

ρ(x,z),(e,e)(c) =
∑

(c) αx,e(c1)βz,e(c2) =
∑

(c) ε(c1)ε(c2) = ε(c).

Similarly, ρ(e,e),(y,t)(c) = ε(c).

(C) Using the cocommutativity of C and (C) of α, β we have:∑
(c) ρ(a,b),(x,z)(y,t)(c1)ρ(x,z),(y,t)(c2) =

∑
(c) ρ(a,b),(xy,zt)(c1)ρ(x,z),(y,t)(c2)

=
∑

(c)(
∑

(c1) αa,xy(c11)βb,zt(c12))(
∑

(c2) αx,y(c21)βz,t(c22))

=
∑

(c)(
∑

(c2) αx,y(c21)αa,xy(c22))(
∑

(c1) βz,t(c11)βb,zt(c12))
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=
∑

(c)(
∑

(c2) αa,x(c21)αax,y(c22))(
∑

(c1) βb,z(c11)βbz,t(c12))

=
∑

(c)(
∑

(c1) αa,x(c11)βb,z(c12))(
∑

(c2) αax,y(c21)βbz,t(c22))

=
∑

(c) ρ(a,b),(x,z)(c1)ρ(a,b)(x,z),(y,t)(c2).

The inverse of ρ is given by ρ−1(c) =
∑

(x,z),(y,t)∈G×H ρ
−1
(x,z),(y,t)(c)p(x,z) ⊗ p(y,t),

with ρ−1
(x,z),(y,t)(c) =

∑
(c) α

−1
x,y(c1)β

−1
z,t (c2).

ii) C >/α (kG)∗, C >/β (kH)∗ are right and left C-comodules respec-
tively with the maps ωα = (1 ⊗ εα)∆α and ωβ = (εβ ⊗ 1)∆β. We have that∑

g∈G,h∈H cg >/ pg ⊗ dh >/ ph ∈ (C >/α (kG)∗)2C(C >/β (kH)∗) if and only
if cg ⊗ dh ∈ C2CC for all g ∈ G, h ∈ H. (2)

We define

ψ : (C >/α (kG)∗)2C(C >/β (kH)∗) → C >/α×β (kG×H)∗

c >/ pg ⊗ d >/ ph 7→ cε(d)p(g,h).

ψ is well-defined by (2) since if c⊗ d ∈ C2CC then cε(d) = ε(c)d. We check
that ψ is a C-coalgebra map:

εψ(cg >/ pg ⊗ dh >/ ph) = ε(cgε(dh)p(g,h)) = ε(cg)ε(dh)δ(g,h),(e,e)

= ε(cg >/ pg ⊗ dh >/ ph).

∆ψ(cg >/ pg ⊗ dh >/ ph) = ∆(cgε(dh) >/ p(g,h))

=
∑

(a,u)(b,v)=(g,h)

∑
ρ(a,u),(b,v)(cg3)ε(dh)cg1 >/ p(a,u) ⊗ cg2 >/ p(b,v)

=
∑

(a,u)(b,v)=(g,h)

∑
(
∑
αa,b(cg31)βu,v(cg32)ε(dh))cg1 >/ p(a,u) ⊗ cg2 >/ p(b,v)

Since δ : C
⊗
C → C, c⊗ d 7→ ε(d)c is a coalgebra map we have

∑
(cg3) cg31⊗

cg32ε(dh) = cg3 ⊗ dh =
∑

(dh) cg3 ⊗ dh3ε(dh2)ε(dh1). Applying this to the last
equality we obtain,

=
∑

(a,u)(b,v)=(g,h)

∑
αa,b(cg3)βu,v(dh3)ε(dh1)cg1 >/ p(a,u) ⊗ cg2ε(dh2) >/ p(b,v)

= (ψ ⊗ ψ)∆(cg >/ pg ⊗ dh >/ ph).

We remember that, cf [15, Prop. 2.9], (C >/α (kG)∗)2C(C >/β (kH)∗) is a
C-coalgebra with the map ε,

∑
g∈G,h∈H cg >/ pg ⊗ dh >/ ph 7→ ceε(de),
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ερψ(
∑

g∈G,h∈H
cg >/ pg ⊗ dh >/ ph) = ερ(

∑
g∈G,h∈H

cgε(dh) >/ p(g,h))

= ceε(de) = ε(
∑

g∈G,h∈H
cg >/ pg ⊗ dh >/ ph)

Hence ψ is a C-coalgebra map. Indeed, ψ is an isomorphism of C-coalgebras.
We suppose that

ψ(
∑

g∈G,h∈H cg >/ pg⊗dh >/ ph) =
∑

g∈G,h∈H cgε(dh) >/ p(g,h) = 0.

Then cgε(dh) = 0 for all g ∈ G, h ∈ H. But, by (2), cg ⊗ dh ∈ C2CC thus

cg ⊗ dh =
∑

(cg) cg1 ⊗ cg2ε(dh) = ∆(cgε(dh)) = 0.

Therefore,
∑

g∈G,h∈H cg >/ pg ⊗ dh >/ ph = 0.

To see that ϕ is surjective let
∑

(g,h)∈G×H c(g,h) >/ p(g,h) ∈ C >/α×β (kG×H)∗.
Since c(g,h) =

∑
(c(g,h))

c(g,h)1ε(c(g,h)2), we obtain:

ψ(
∑

g∈G,h∈H

∑
(c(g,h))

c(g,h)1 >/ pg ⊗ c(g,h)2 >/ ph) =
∑

(g,h)∈G×H
c(g,h) >/ p(g,h)

and
∑

g∈G,h∈H

∑
(c(g,h))

c(g,h)1 >/ pg ⊗ c(g,h)2 >/ ph ∈ (C >/α (kG)∗)2C(C >/β

(kH)∗) by (2).

Proposition 3.8 Let f : D → C be a map of cocommutative coalgebras and
α : C → (kG)∗

⊗
(kG)∗ a convolution invertible cocycle. Then,

i) The map α : D → (kG)∗
⊗

(kG)∗ given by α(d) = αf(d) is a convolu-
tion invertible cocycle.

ii) (C >/α (kG)∗)2CD ∼= D >/α (kG)∗ as D-coalgebras.

Proof: i) We express α as α(d) =
∑

x,y∈G αx,y(d)px ⊗ py with αx,y(d) =
αx,y(f(d)). Using (CU) and (C) of α and the fact that f is a map of cocom-
mutative coalgebras we obtain:

(CU) αg,e(d) = αg,e(f(d)) = ε(f(d)) = ε(d). Similarly, αe,g(d) = ε(d).

(C)
∑

(d) αs,rq(d2)αr,q(d1) =
∑

(d) αs,rq(f(d2))αr,q(f(d1))

=
∑

(f(d)) αs,rq(f(d)2)αr,q(f(d)1) =
∑

(f(d)) αs,r(f(d)1)αsr,q(f(d)2)

=
∑

(d) αs,r(f(d1))αsr,q(f(d2)) =
∑

(d) αs,r(d1)αsr,q(d2).
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Since α is convolution invertible, αx,y ∈ U(C∗) for all x, y ∈ G. The map
β(d) =

∑
x,y∈G α

−1
x,y(f(d))px ⊗ py is the inverse of α.

ii) This can be proved in a similar way to ii) of the above proof.

Proposition 3.9 Let α : C → kG∗ ⊗
kG∗ be a convolution invertible cocy-

cle. Then,

i) α∗ : kG
⊗
kG → C∗ is a normalized cocycle and α∗(kG

⊗
kG) ⊆

U(C∗).

ii) (C >/α (kG)∗)∗ ∼= C∗ ∗α∗ kG as C∗-algebras.

Proof: i) If we express α(c) =
∑

x,y∈G αx,y(c)px ⊗ py then 〈α∗(x, y), c〉 =
αx,y(c). By Proposition 3.3, αx,y ∈ U(C∗) for all x, y ∈ G and from (C) and
(CU) of α, α∗ is a normalized cocycle.

ii) It follows from i) and [3, Remark 2.6].

Proposition 3.10 Let R be a commutative k-algebra, G a finite group and
α : kG

⊗
kG→ U(R) a normalized cocycle.

i) If R0 is the finite dual of R, then αo : R0 → kG∗ ⊗
kG∗ is a convolution

invertible cocycle.

ii) The finite dual of the twisted group algebra R ∗α kG, (R ∗α kG)0, is
isomorphic to R0 >/α0 (kG)∗ as a R0-coalgebra.

Proof: i) We write αo(a∗) =
∑

x,y∈G α
o
x,y(a

∗)px⊗py with αo
x,y ∈ R∗∗. Then,

if a∗ ∈ R0 we have 〈a∗, α(g ⊗ h)〉 = 〈αo(a∗), g ⊗ h〉 = αo
(g,h)(a

∗). Using this
fact and that α is a normalized cocycle we obtain the properties (C) and
(CU) for α0. Since α is convolution invertible, given g, h ∈ G we can find
β(g ⊗ h) ∈ R such that α(g ⊗ h)β(g ⊗ h) = 1. For a∗ ∈ R0 we define
βg,h(a

∗) = 〈a∗, β(g ⊗ h)〉. Then β(a∗) =
∑

g,h∈G βg,h(a
∗)pg ⊗ ph is the inverse

of α0.

ii) By [11, Lem. 6.0.1] we have that (R⊗kG)0 ∼= R0⊗kG∗ as vector spaces
and it is not difficult to check that this is an isomorphism of R0-coalgebras
from (R ∗α kG)0 to R0 >/α0 kG∗.
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In the following proposition we characterize when the twisted cogroup
coalgebra is coseparable and we obtain a dual result to the classic one. We
remember from [15, Prop. 3.2] the notion of coseparability idempotent. Let
D be a coseparable C-coalgebra, a C-colinear map ρ : D2CD → C is a
coseparibility idempotent of D if ρ∆ = ε and (1⊗ρ)(∆⊗1) = (ρ⊗1)(1⊗∆).

Proposition 3.11 C >/α (kG)∗ is C-coseparable if and only if |G|−1 ∈ k.

Proof: We suppose that |G|−1 ∈ k, we define ρ : C >/α (kG)∗2CC >/α

(kG)∗ → C,
∑

a,b∈G ca >/ pa ⊗ db >/ pb 7→ 1
|G|

∑
a∈G α

−1
a,a−1(ca)da−1 . It is

routine to check that ρ is a coseparability idempotent of C >/α (kG)∗. From
[15, Prop. 3.2] we have that C >/α (kG)∗ is C-coseparable.

Conversely, we suppose that C >/α (kG)∗ is C-coseparable. Let D an
irreducible subcoalgebra of C and D0 its coradical. From [15, Prop. 3.6] and
Proposition 3.8 D0 >/ᾱ (kG)∗ is D0-coseparable. Since D0 is cosemisimple,
from [15, Prop. 3.4], D0 >/ᾱ (kG)∗ is cosemisimple. Using Proposition 3.9
D∗

0 ∗ᾱ∗G is semisimple because D0 is finite dimensional and hence |G|−1 ∈ k.

4 Subgroups of the Brauer group.

From now on, unless otherwise stated, H is a class of groups closed by finite
product and opposite.

Definition 4.1 Let A be a C-coalgebra. We say that A is a projective
Schur C-coalgebra relative to H (H-PSC) if A is C-Azumaya and there
exists a twisted cogroup coalgebra C >/α (kG)∗ with G ∈ H and an in-
jective C-coalgebra map i : A → C >/α (kG)∗. When α is trivial, i.e.,
α(c) =

∑
x,y∈G ε(c)px ⊗ py, A is called Schur C-coalgebra relative to H (H-

SC).

Proposition 4.2 The set PSH(C) = {[A] ∈ Br(C) : A is H− PSC} is
a subgroup of Br(C). This subgroup is called H-proyective Schur subgroup
of C.

Proof: Let [A], [B] ∈ PSH(C), then there are twisted cogroup coalgebras
C >/α (kG)∗, C >/β (kH)∗ with G,H ∈ H and injective C-coalgebra maps
i : A → C >/α (kG)∗ and j : B → C >/β (kH)∗. The map jop : Bop →

11



(C >/β (kH)∗)op is an injective C-coalgebra map and (C >/β (kH)∗)op ∼=
C >/βop (kHop)∗ by Proposition 3.6. Using the left exactness of −2Bop and
C >/α (kG)∗2− it follows that i21 : A2Bop → C >/α (kG)∗2Bop and
12jop : C >/α (kG)∗2Bop → C >/α (kG)∗2C >/βop (kHop)∗ are injective
C-coalgebra maps. From Proposition 3.7, C >/α (kG)∗2C >/βop (kHop)∗ ∼=
C >/α×βop (kG×Hop)∗ and the composition (12jop)(i21) is an injective C-
coalgebra map from A2Bop to C >/α×βop (kG×Hop)∗. By hypothesis on H,
G×Hop ∈ H and hence [A]2[B]op = [A2Bop] ∈ PSH(C).

Corollary 4.3 The set SH(C) = {[A] ∈ Br(C) : A is H − SC} is a
subgroup of Br(C) called H-Schur subgroup of C.

Examples 4.4 We restrict our attention to the following classes of finite
groups.

(1) If H is the class of finite groups then we denote PSH(C) and SH(C)
simply by PS(C) and S(C). PS(C) is called the projective Schur sub-
group of Br(C) and S(C) the Schur subgroup.

(2) If H is the class of finite abelian groups, finite nilpotent groups or p-
groups, we write PSab(C), PSnil(C), PSp(C) respectively for PSH(C).

(3) Let [D] ∈ PSH(C) with injective C-coalgebra map i : D → C >/α (kG)∗

where C >/α (kG)∗ is C-coseparable. The set of this classes, denoted
by PSH∗ (C), is a subgroup of PS(C) since the cotensor product of two
C-coseparable coalgebras is again C-coseparable.

(4) All the above definition hold for SH(C)

Proposition 4.5 Let η : D → C be a map of cocommutative coalgebras,
then η induces group homomorphisms η∗ : PSH(C) → PSH(D) and η∗∗ :
SH(C) → SH(D). Hence, PSH(−) and SH(−) are contravariant functors
from the category of cocommutative coalgebras to abelian groups.

Proof: By [15, page 563] the map η∗ : Br(C) → Br(D), [A] 7→ [A2D] is a
group homomorphism. We consider the restriction of η∗ to PSH(C) and we
show its image is contained in PSH(D). Let [A] ∈ PSH(C) with injective C-
coalgebra map i : A→ C >/α (kG)∗ for some G ∈ H. By the left exactness of
−2D, we have an injectiveD-coalgebra map i21 : A2D → C >/α (kG)∗2D.
Since C >/α (kG)∗2D ∼= D >/α (kG)∗ by Proposition 3.8, it follows that
[A2D] ∈ PSH(D).

12



Proposition 4.6 Suppose that C is a finite dimensional cocommutative coal-
gebra and let A be a C-coalgebra. Then

i) A is a projective Schur (resp. Schur) C-coalgebra relative to H if and
only if A∗ is a projective Schur (resp. Schur) C∗-algebra relative to H.

ii) PSH(C) ∼= PSH(C∗) (resp. SH(C) ∼= SH(C∗)) mapping [A] 7→ [A∗].

Proof: First, we recall from [15, Prop. 4.6] that A is C-Azumaya if and
only if A∗ is C∗-Azumaya, and A is finite dimensional. Moreover, the map
(−)∗ : Br(C) → Br(C∗), [A] 7→ [A∗] is a group isomorphism.

i) If A is a projective Schur C-coalgebra relative to H then A is C-
Azumaya and there is a twisted cogroup coalgebra C >/α (kG)∗ with G ∈ H
and an injective C-coalgebra map i : A → C >/α (kG)∗. Dualizing, we have
A∗ is C∗-Azumaya and i∗ : (C >/α (kG)∗)∗ → A∗ is a surjective C∗-algebra
map. Since (C >/α (kG)∗)∗ ∼= C∗ ∗α∗ kG by Proposition 3.9 and G ∈ H it
follows that A∗ is a projective Schur C∗-algebra relative to H. The converse
is similar using Proposition 3.11 since C∗∗ ∼= C and A∗∗ ∼= A.

When α is trivial, C >/α (kG)∗ = C ⊗ (kG)∗ and (C ⊗ (kG)∗)∗ ∼= C∗[G].
Reasoning as above combined with the fact that C∗[G]∗ ∼= C ⊗ (kG)∗ prove
the claim for Schur C-coalgebras.

ii) The restriction of (−)∗ to PSH(C) (resp. SH(C)) is an injective group
homomorphism. i) show that the image is PSH(C∗) (resp. SH(C∗)).

Next, we study the behaviour of the functors PSH(−), SH(−) with res-
pect to direct sums.

Proposition 4.7 Let {Ci}i∈I be a family of subcoalgebras of C such that
C = ⊕i∈ICi. Then PSH(C) ↪→ ∏

i∈I PS
H(Ci).

Proof: By [15, Lem. 4.8] we have that every C-coalgebra D is of the form
⊕i∈IDi with Di = D2Ci and conversely, if D′

is are Ci-coalgebras then,
⊕i∈IDi is a C-coalgebra and Di

∼= D2Ci. Moreover, D is C-Azumaya if
and only if Di is Ci-Azumaya for all i ∈ I. By [15, Th. 4.9] the map
η : Br(C) → ∏

i∈I Br(Ci), [D] 7→ ∏
i∈I [Di] is a group isomorphism. Re-

garding η restricted to PSH(C) we obtain a group monomorphism. We show
its image is contained in

∏
i∈I PS

H(Ci). Let D be a H-projective Schur coal-
gebra, reasonig as in Proposition 4.5 for each Ci we obtain that Di = D2Ci
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is a proyective Schur Ci-coalgebra relative to H for all i ∈ I. Therefore∏
i∈I [Di] ∈

∏
i∈I PS

H(Ci).

Corollary 4.8 With C as before, SH(C) ↪→ ∏
i∈I S

H(Ci).

In general, we cannot prove that foregoing monomorphisms are surjective.
However, if C is the group-like coalgebra or the set I is finite then it holds
for the Schur subgroup.

Proposition 4.9 Let {Ci}n
i=1 subcoalgebras of C with C = ⊕n

i=1Ci. Then
SH(C) ∼=

∏n
i=1 S

H(Ci).

Proof: In view of Corollary 4.8 we only have to show that the map η :
SH(C) → ∏n

i=1 S
H(Ci), [D] 7→ ∏n

i=1[Di] with Di = D2Ci is surjective. Let∏n
i=1[Di] ∈

∏n
i=1 S

H(Ci), then Di is Ci-Azumaya and there exists an injective
Ci-coalgebra map ji : Di → Ci ⊗ (kGi)

∗ with Gi ∈ H for i = 1, ..., n.
Thus, D = ⊕n

i=1Di is C-Azumaya and we have an injective C-coalgebra
map j = ⊕n

i=1ji : D → ⊕n
i=1Ci ⊗ (kGi)

∗. Put G =
∏n

i=1Gi, then (kGi)
∗ ↪→∏n

i=1(kGi)
∗ ∼= (kG)∗ and ⊕n

i=1Ci ⊗ (kGi)
∗ ↪→ C ⊗ (kG)∗. So there is an

injective C-coalgebra map from D to C ⊗ (kG)∗ and G ∈ H, i.e., D is a
C-Schur coalgebra relative to H, and η([D]) =

∏n
i=1[Di].

Proposition 4.10 Let C be the group-like coalgebra over a set T . Then
SH(C) ∼=

∏
T S

H(k).

Proof: With η as before, it is enough to prove that η is surjective. Let
C = ⊕t∈Tkt and

∏
t∈T [Dt] ∈

∏
T S

H(kt) then Dt is kt-Azumaya and there
exist a finite group Gt ∈ H and an injective kt-coalgebra map jt : Dt →
(kt⊗ kGt)

∗ for all t ∈ T . We regard D = ⊕t∈TDt which is C-Azumaya with
Dt = D2kt. For a fixed t ∈ T we write G = Gt and let s ∈ T arbitrary,
then Ds = D2ks ∼= D2kt = Dt. This induced an injective ks-coalgebra
map is : Ds → kt ⊗ (kG)∗ for all s ∈ S. From this we have an injective
C-coalgebra map i : D = ⊕t∈TDt → ⊕t∈Tkt⊗ (kG)∗ ∼= C ⊗ (kG)∗. It follows
that D is a C-Schur coalgebra relative to H and η([D]) =

∏
t∈T [Dt]. Because

kt is one dimensional, by Proposition 4.6 SH(kt) ∼= SH(k) for all t ∈ T.

This result has an interesting consequence. Let C = ⊕n∈INQI, in [15] was
proved that Br(C) is not a torsion group. On the other hand, it is well-known

14



that the Schur group of QI consists of central simple algebras with exponent
less or equal than 2. Hence

∏
IN S(QI) is torsion and by Corollary 4.8 S(C) is

torsion. This remark is a particular case of the following proposition.

Proposition 4.11 Let C be a cocommutative coalgebra over a field k, then
SH∗ (C) and PSH∗ (C) are torsion groups. If char(k) = 0 then PSH(C) and
SH(C) are torsion.

Proof: Let [D] ∈ SH∗ (C), then there exists an injective C-coalgebra map
i : D → C ⊗ (kG)∗ with G ∈ H and |G|−1 ∈ k. By the universal property
of the cocenter it is not hard to prove that the cocenter of C ⊗ (kG)∗ is
C ⊗ Z(kG)∗. Since |G|−1 ∈ k, kG is Azumaya over Z(kG) then there is
n ∈ IN such that (kG)n ∼= Mn(Z(kG)). If Dn denote the cotensor product
of D n times, by Proposition 3.7, Dn ↪→ C ⊗ (kGn)∗ ∼= C ⊗Mn(Z(kG))∗ ∼=
C⊗Z(kG)∗⊗Mn(k)∗. The map i induces a map between the cocenters, cf [15,
page 544], Z(i) : C → C⊗Z(kG) and D becomes a C⊗Z(kG)∗-subcoalgebra
of C ⊗ Z(kG)∗ ⊗ Mn(k)∗. Since C ⊗ Z(kG)∗ ⊗ Mn(k)∗ is Azumaya over
C⊗Z(kG)∗, from [15, Cor. 3.17] there exists a subcoalgebra C ′ of C⊗Z(kG)∗

such that Dn ∼= C ′ ⊗ Mn(k)∗. Hence their cocenters are isomorphic, i.e,
C ∼= C ′ and Dn ∼= C ⊗Mn(k)∗. Thus, [D]n is trivial in Br(C).

We note that for a large n ∈ IN , αn is trivial and C >/αn (kG)∗ ∼=
C ⊗ (kG)∗. The Proposition 3.7 and the above argument prove the claim for
PSH(C). If char(k) = 0 then the twisted cogroup coalgebra is always C-
coseparable by Proposition 3.11 and PSH(C) = PSH∗ (C), SH(C) = SH∗ (C).

We conjecture that this result is also valid in characteristic non zero
and we leave for a future work the final answer. Next, we study PSH(C)
and SH(C) where C is a cocommutative, irreducible coalgebra. We relate
PSH(C) and SH(C) with PSH(C∗) and SH(C∗) respectively, via the group
homomorphism (−)∗ : Br(C) → Br(C∗), cf [15, page 566]. In general, we
only have a group homomorphism from PSH(C) (resp. SH(C)) to PSH(C∗)
(resp. SH(C∗)). But, when C is coreflexive and irreducible this homomor-
phism is an isomorphim.

Proposition 4.12 Let C be a cocommutative and irreducible coalgebra then
there are group homomorphisms PSH(C) → PSH(C∗) and SH(C) → SH(C∗).

Proof: From [15, Prop. 4.10], if A is C-Azumaya, then A∗ is C∗-Azumaya
and there is a group homomorphism (−)∗ : Br(C) → Br(C∗), [A] 7→ [A∗].
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The restriction of this map to PSH(C) is a group homomorphism. Reasoning
as in Proposition 4.6 i), we prove that the image of (−)∗ is contained in
PSH(C∗). For SH(C) we use the same argument combined with the fact
that α trivial implies α∗ trivial.

Proposition 4.13 If C is a cocommutative, coreflexive and irreducible coal-
gebra then PSH(C) ∼= PSH(C∗) and SH(C) ∼= SH(C∗). Also, PSH∗ (C) ∼=
PSH∗ (C∗) and SH∗ (C) ∼= SH∗ (C∗)

Proof: If C is coreflexive and irreducible then the map (−)∗ : Br(C) →
Br(C∗) is a group isomorphism, cf [15, Th. 3.10]. The restriction to PSH(C)
yields an injective group homomorphism by the above proposition. We prove
that this map is also surjective. Let [D] ∈ PSH(C∗) then D is C∗-Azumaya
and there exists a surjective C∗-algebra map p : C ∗α kG → D with G ∈
H. Since (−)∗ : Br(C) → Br(C∗) is surjective we can find a C-Azumaya
coalgebra E such that E∗ ∼= D. Hence, we have a surjective C∗-algebra map
from C∗∗αkG to E∗. Dualizing, we obtain an injective C-coalgebra map from
E∗0 to (C ∗α (kG)∗)0. But, by Proposition 3.11, (C∗ ∗α (kG))0 ∼= C∗0 >/α0

(kG)∗ and as C is coreflexive, C∗0 ∼= C and E∗0 ∼= E, cf [15, Prop. 4.12].
Hence, E is a projective Schur C-coalgebra relative to H and we have proved
the surjectivity.

By Proposition 3.11 we have that C >/α (kG)∗ is C-coseparable if and
only if C∗ ∗α∗ kG is C∗-separable. This fact and the above prove the second
claim.

With this proposition we can use the classical results for PSH(C∗) and
SH(C∗) and we obtain similar results to PSH(C) and SH(C).

Corollary 4.14 Let C be a cocommutative and coreflexive coalgebra over a
field k of characteristic non zero. Then S(C) = {0}.

Proof: We know that C = ⊕i∈ICi where each Ci is irreducible, cf. [11,
Th. 8.0.5]. By [6, Prop. 3.1.4] subcoalgebras of coreflexive coalgebras are
coreflexive, so Ci is coreflexive and irreducible for all i ∈ I. Since k is a field
of characteristic non zero, C∗

i is a k-algebra of characteristic non zero and by
[4, Prop. 1] S(C∗

i ) = {0}. From the above proposition we have S(Ci) = {0}
and since S(C) ↪→ ∏

i∈I S(Ci), we deduce S(C) = {0}.
REMARK: We conjecture that if C is a cocommutative coalgebra over

a field of positive characteristic then S(C) = {0}.

16



Proposition 4.15 Let C be a cocommutative, irreducible and coreflexive
coalgebra.

i) If D is a projective Schur C-coalgebra relative to p-groups with injective
C-coalgebra map i : D → C >/α (kG)∗, then C >/α (kG)∗ is Azumaya
over C.

ii) As above, if |G|−1 ∈ k, then D is a direct summand of C >/α (kG)∗.

iii) LetH be the class of abelian groups, p-groups or nilpotent groups. Then,
PSH∗ (C) = PSH(C). Moreover, Snil(C) = {0}.

Proof: i) From Proposition 4.12 we know that D∗ is a projective Schur
C∗-coalgebra relative to p-groups. Since D∗ is C∗-Azumaya, then C∗ ∗α∗ kG
is C∗-Azumaya by [8, Lem. 2.6]. By the surjectivity of the map (−)∗ :
PSp(C) → PSp(C∗) we obtain that C >/α (kG)∗ is C-Azumaya.

ii) Using [8, Th. 2.9] we find that D∗ is a direct summand of C∗ ∗α∗ kG.
Since the finite dual preserve finite direct sums, cf [13, Prop. 6.0.5], D∗0 is
a direct summand of (C∗ ∗α∗ kG)0. But D ∼= D∗0 and (C∗ ∗α∗ kG)0 ∼= C >/α

(kG)∗. Hence D is a direct summand of C >/α (kG)∗.

iii) From [8, Th. 2.8] we know that PSH∗ (C∗) ∼= PSH(C∗). By Propo-
sition 4.12 PSH∗ (C) ∼= PSH∗ (C∗) and PSH(C) ∼= PSH(C∗). From this, we
obtain the first claim. From [10, Th. 3.11] we find that Snil(C∗) is trivial
and by Proposition 4.12 Snil(C) ∼= Snil(C∗). Thus, Snil(C) = {0}.

The following theorem improves the Proposition 4.12 and we can relate
the H-Schur and H-projective Schur group of an irreducible and coreflexive
coalgebra with the H-Schur and H-projective Schur group of a finite field
extension.

Theorem 4.16 Let C be a cocommutative, coreflexive and irreducible coal-
gebra with coradical C0. Then,

i) SH(C) ∼= SH(C0)

ii) PSH(C) ↪→ PSH(C0) and if the ground field of C is of characteristic
zero PSH(C) ∼= PSH(C0).

17



Proof: From [15, Th. 4.13] we retain that C∗ is a complete local algebra
and by [2, Th. 6.5] it follows that Br(C∗) ∼= Br(C∗/J) where J is the
Jacobson radical of C∗. By [5, Th. 2.2] we obtain SH(C∗) ∼= SH(C∗/J).
Since J = C⊥

0 , and C∗/J ∼= C∗
0 we have SH(C∗/J) ∼= SH(C∗

0). Moreover,
because C0 is finite dimensional, SH(C∗

0) ∼= SH(C0) from Proposition 4.6 and
we obtain the following commutative diagram:

SH(C)
(−)∗

- SH(C∗)

i∗

? ?

SH(C0)
(−)∗

- SH(C0
∗) ∼= SH(C∗/J)

As the horizontal arrows represent isomorphisms (Propositions 4.6 and 4.12)
and the right arrow is an isomorphism, the commutativity of the diagram
yields i∗ is an isomorphism. This proves the first assertion. For the second
one, we note that Br(C∗) ∼= Br(C∗/J) implies PSH(C∗) ↪→ PSH(C∗/J) and
applying the above argument we have PSH(C) ↪→ PSH(C0). If the ground
field of C is of characteristic zero then the same proof of [5, Th. 2.2] yields
PSH(C∗) ∼= PSH(C∗/J) and by an argument again similar to the above we
obtain PSH(C) ∼= PSH(C0).

5 Examples.

From [6, 2.2] we recall that a coalgebra C over a field k is connected if it is
pointed and irreducible. In this case, C0

∼= k.

Corollary 5.1 Let C be a cocommutative, coreflexive and connected coalge-
bra. Then Br(C) ∼= Br(k).

Proof: By [15, Th. 3.10], Br(C) ∼= Br(C∗) ∼= Br(C∗/J) ∼= Br(C0).

Corollary 5.2 If C is a cocommutative, coreflexive and connected coalgebra
then PSH(C) ∼= PSH(k) and SH(C) ∼= SH(k). If k is a number field then
PS(C) ∼= Br(C) and if k is a field containing enough roots of unity we have
Br(C) ∼= PSab(C).
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Proof: The claim for S(C) is directly from the above theorem. By the
foregoing theorem we have PSH(C) ⊆ PSH(k). On the other hand, k is
a subcoalgebra of C and the inclusion map i satisfies εi = 1k. The in-
duced maps ε∗ and i∗ on PSH(C) and PSH(k) verify i∗ε∗ = 1PSH(k). Hence
PSH(C) = PSH(k)⊕Ker(i∗). Since we have PSH(C) ⊆ PSH(k), it follows
that PSH(C) = PSH(k).

If k is a number field, from [8, Th. 4.6] we have Br(k) ∼= PS(k) and by the
above results Br(C) ∼= Br(k) and PS(C) ∼= PS(k). Hence Br(C) ∼= PS(C).
If k contains enough roots of unity, from [9, page 278] we obtain Br(k) ∼=
PSab(k). Since Br(C) ∼= Br(k) and PSab(C) ∼= PSab(k), we conclude that
Br(C) ∼= PSab(C).

Now, we prove that the Brauer group of a cosemisimple or semiperfect
coalgebra is the product of classical Brauer groups of some finite dimensional
field extensions.

Proposition 5.3 Let C be a cocommutative coalgebra. If C is cosemisimple
or semiperfect then Br(C) ∼=

∏
i∈I Br(Ci

∗) where {Ci}i∈I is a family of finite
dimensional subcoalgebras of C.

Proof: If C is cosemisimple then C = ⊕i∈ICi where Ci’s are simple sub-
coalgebras of C. Applying [15, Prop. 4.6, Th 4.9] we obtain Br(C) ∼=∏

i∈I Br(Ci
∗). If C is semiperfect, as a particular case of [18, 15.2] we have

that the RatC functor is exact and by [12, Th. 3.10] C = ⊕i∈ICi where Ci’s
are finite dimensional subcoalgebras of C. Again, applying [15, Prop. 4.6,
Th. 4.9] we obtain Br(C) ∼=

∏
i∈I Br(Ci

∗).

Examples 5.4 Let V be a finite-dimensional vector space and C = B(V ) the
Birkhoff-Witt coalgebra of divided powers associated with V. C∗ = B(V )∗ ∼=
k[[x1, ..., xn]] where n = dimk V , cf [11, pag. 278], and since k[[x1, ..., xn]]
is noetherian, by [6, Th. 5.2.1] C is of finite type. Because C is connected
and of finite type, [6, Th. 4.2.6] yields C is coreflexive. The above results
lead to: Br(C) ∼= Br(k), PSH(C) ∼= PSH(k) and SH(C) ∼= SH(k). We note
that if k is of characteristic zero then the symmetric algebra over V, S(V ),
is isomorphic to B(V ). In this case, we have that Br(S(V )) ∼= Br(k),
PSH(S(V )) ∼= PSH(k) and SH(S(V )) ∼= SH(k).

Depending of the ground field of C we have a curiosly fact. If k is a
number field then Br(C) ∼= PS(C) by Corollary 5.2. If k is the rational
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function field in two variables over ZZ2. By [1, Ex. 3.8] PS(k) is a proper
subgroup of Br(k), so PS(C) is a proper subgroup of Br(C) from Corollary
5.2.

Let L be a finite dimensional Lie algebra over a field of characteristic
zero and we consider U(L) its universal enveloping algebra. From [11, Prop.
11.0.11] we obtain that U(L) is connected, and since char(k)=0, the set of
primitive elements is L. Hence U(L) is of finite type, [6, Th. 4.2.6] yields
U(L) is coreflexive. Therefore, Br(U(L)) ∼= Br(k), PSH(U(L)) ∼= PSH(k)
and SH(U(L)) ∼= SH(k).
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