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1. INTRODUCTION

It is well-known that for a coalgebra C, every autoequivalence of the category
of comodules MC is given by an invertible (C,C)-bicomodule. The Picard group
of C, denoted by Pic(C), is the set of all isomorphism classes of invertible
(C,C)-bicomodules. It becomes a group with the multiplication induced by the
cotensor product.

If Aut(C) and Inn(C) are the groups of automorphisms and inner automor-
phisms of C respectively, there is an exact sequence

1 -Inn(C) -Aut(C) ω -Pic(C)

where ω(f) = [ fC1] for all f ∈ Aut(C) and fC1 is the coalgebra C with
comultiplication twisted by f . Then, ω induces a monomorphism from the
group of outer automorphism Out(C) = Aut(C)/Inn(C) into Pic(C).

In this note we study when the map ω is surjective. Coalgebras verifying this
are called coalgebras with Aut-Pic property and its Picard group is isomorphic
to the group of outer automorphisms. Examples of these coalgebras are those
such that every injective comodule is free, matrix coalgebras over coalgebras
with Aut-Pic, the smash coproduct coalgebra associated to a graded irreducible
coalgebra, etc. The main result shows that basic coalgebras (in particular,
pointed coalgebras) also have Aut-Pic. As a consequence, we obtain that for
any coalgebra C, Pic(C) ∼= Out(C ′) with C ′ Morita-Takeuchi equivalent to C.
This result allows us to provide new examples of Picard groups of coalgebras as
well as to reduce the study of Pic(C) to computational facts on automorphisms
of basic coalgebras.

We also find an exact sequence relating Pic(C) and the Picard group of its
coradical, Pic(C0), when C0 is finite dimensional. From this exact sequence, we
deduce an interpretation of Picent(C) in terms of cocentral automorphisms.
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Finally, we give some applications to graded coalgebras. Graded crossed
coproducts were introduced in [DNR] in connection with the cohomological in-
terpretation of the Brauer group of a coalgebra (see [VZ]). These coalgebras are
examples of strongly graded coalgebras. We prove that for a graded coalgebra
C = ⊕σ∈GCσ with Ce having the Aut-Pic property, the graded dual algebra
R = ⊕σ∈GRσ is a strongly graded ring if and only if C is a graded crossed
coproduct. If Ce is, in addition, finite dimensional, then C is a strongly graded
coalgebra precisely when C is a graded crossed coproduct.

We next fix our notation and present some preliminaries. Throughout k
is a fixed ground field and Mk denotes the category of k-vector spaces. All
coalgebras, vector spaces and unadorned ⊗, Hom, etc., are over k.

Coalgebras and Comodules (See [A], [SW]). For a coalgebra C, let ∆ and
ε be the comultiplication and the counit, respectively. The category of right
C-comodules is denoted by MC ; for X in MC , ρ

X
is the comodule structure

map. For X, Y ∈ MC , Com−C(X, Y ) is the space of right C-comodule maps
from X to Y . Similarly, CM denotes the category of left C-comodules. If D is
another coalgebra, then X is a (D,C)-bicomodule if X ∈ MC via ρ

X
, X ∈ DM

via
X
ρ and (1⊗ ρ

X
)

X
ρ = (

X
ρ⊗ 1)ρ

X
.

A comodule X ∈ MC is said to be:
- a cogenerator if C ↪→ W ⊗X for some W ∈ Mk,
- injective if the functor Com−C(−, X) is exact, and
- simple if it has no proper subcomodules.

Every simple comodule is of finite dimension. Since the category MC is locally
finite, then it is locally noetherian. It is well-known that an injective object
X ∈ MC has a unique decomposition X = ⊕α∈ΓE(Sα) where Sα are simple
right comodules and E(Sα) is the injective hull of Sα.

Every simple right comodule is isomorphic to a simple right coideal of C.
Let I be a simple right coideal and J its isotypic component, i.e., the sum of
all right coideal isomorphic to I. Then J is a simple subcoalgebra; that is, it
has no proper subcoalgebras. All these facts can be found in [G].

Morita-Takeuchi Theory (See [T]). A comodule X ∈ MC is called quasi-
finite if Com−C(Y,X) is finite dimensional for every finite dimensional comodule
Y ∈ MC . For a quasi-finite comodule X ∈ MC and any Y ∈ MC , the co-hom
functor is defined by

h−C(X, Y ) = lim−→
λ
Com−C(Yλ, X)∗,

where {Yλ} is a directed system of finite dimensional subcomodules of Y such
that Y = lim−→

λ
Yλ. When Y = X, then h−C(X,X) is denoted by e−C(X) and
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it becomes a coalgebra, called the co-endomorphism coalgebra. The following
result, due to Takeuchi, characterizes the equivalences between two categories
of comodules, [T, Prop. 2.5, Th. 3.5]:

Theorem 1.1. Let C,D be coalgebras.

a) If F : MC → MD is a left exact linear functor that preserves direct sums,
then there exists a (C,D)-bicomodule M such that F (−) ∼= −2CM .

b) Let M be a (C,D)-bicomodule. The following assertions are equivalent:

i) The functor −2CM : MC → MD is an equivalence.

ii) M is a quasi-finite injective cogenerator as D-comodule and e−D(M) ∼=
C as coalgebras.

When the conditions hold, N = h−D(M,D) is a (D,C)-bicomodule and the
inverse equivalence is given by −2DN : MD → MC. The coalgebras C and D
are called Morita-Takeuchi equivalent coalgebras.

The cocenter (See [TVZ]). Let C be a coalgebra. If we view C as a right
Ce-comodule (Ce = Cop ⊗ C), then C is quasi-finite. The co-endomorphism
coalgebra has the following universal property:

i) e−Ce(C) is a cocommutative coalgebra with a surjective coalgebra map
ε : C → e−Ce(C) which is cocentral, i.e., for all c ∈ C,∑

(c) ε(c1)⊗ c2 =
∑

(c) ε(c2)⊗ c1.

ii) For any cocentral coalgebra map f : C → D, there exists a unique
coalgebra map g : e−Ce(C) → D such that f = gε. In particular, an injective
coalgebra map induces a coalgebra map from e−Ce(C) to e−De(D).

e−Ce(C) is denoted by Z(C) and it is called the cocenter of C. Let C be a
cocommutative coalgebra, a coalgebra D is said to be a C-coalgebra if D is a
coalgebra together a cocentral coalgebra map η : D → C called C-counit. A
map of C-coalgebras is a coalgebra map which respects the C-counits.

The Picard group (See [TZ]). A (C,C)-bicomodule M is called invertible if
the functor −2CM : MC → MC defines a Morita-Takeuchi equivalence. This
is equivalent to the existence of a (C,C)-bicomodule N and two bicomodule
isomorphisms M2CN ∼= C and N2CM ∼= C. The Picard group of C, denoted
by Pic(C), was introduced in [TZ] and it is defined as the set of all bicomodule
isomorphism classes [M ] of invertible (C,C)-bicomodules. Pic(C) becomes a
group with the multiplication induced by the cotensor product.

Let M be a (C,C)-bicomodule with right and left structure maps ρM and

Mρ respectively, ε : C → Z(C) the universal cocentral map from C to its
cocenter and τ : M ⊗ C → C ⊗M the twist map. The set
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Picent(C) = {[M ] ∈ Pic(C) : τ(ε⊗ 1)ρM = (1⊗ ε) Mρ}

is a subgroup of Pic(C) called Picent of C.

The following three results were proved in [TZ]:

Proposition 1.2. Let C and D be Morita-Takeuchi equivalent coalgebras,
then Pic(C) ∼= Pic(D).

Let Aut(C) be the group of automorphisms of the coalgebra C. An auto-
morphism f ∈ Aut(C) is said to be inner if there is a unit u ∈ C∗ such that
f(c) = (u ⊗ 1 ⊗ u−1)(∆ ⊗ 1)∆(c) for all c ∈ C. The group of inner automor-
phisms of C, Inn(C), is a normal subgroup of Aut(C) and the factor group
Out(C) = Aut(C)/Inn(C) is called the group of outer automorphisms of C.

Let M be a (C,C)-bicomodule and f, g ∈ Aut(C). We denote by fMg the
bicomodule constructed in the following way: as a vector space fMg = M and
ρ

f Mg = (1⊗ g)ρM ,
f Mgρ = (f ⊗ 1) Mρ.

Theorem 1.3. There is an exact sequence

1 -Inn(C) -Aut(C) ω -Pic(C)

where ω(f) = [ fC1] for all f ∈ Aut(C). Hence, ω induces a monomorphism
from Out(C) to Pic(C).

Proposition 1.4. Let [M ], [N ] ∈ Pic(C). Then, M ∼= N as right como-
dules if and only if there exists f ∈ Aut(C) such that N ∼= fM1 as bicomodules.

2. THE AUT-PIC PROPERTY

Definition 2.1. A coalgebra C has the Aut-Pic property if ω of Theorem 1.3
is surjective. In this case Pic(C) ∼= Out(C).

If a coalgebra C has the Aut-Pic property, the Picent of C is also des-
cribed in terms of automorphisms. Let AutZ(C)(C) and InnZ(C)(C) be the
groups of Z(C)-automorphisms and Z(C)-inner automorphisms, respectively
and OutZ(C)(C) = AutZ(C)(C)/InnZ(C)(C).

Proposition 2.2. Suppose C has the Aut-Pic property, then Picent(C) ∼=
OutZ(C)(C).
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Proof. Let [M ] ∈ Picent(C) ⊆ Pic(C). By hypothesis, there exists f ∈
Aut(C) such that M ∼= fC1 as (C,C)-bicomodules. Since M ∈ Picent(C),
τ(ε⊗ 1)(f ⊗ 1)∆ = (1⊗ ε)∆, that is, for c ∈ C, we have:∑

(c) c1 ⊗ ε(c2) =
∑

(c) c2 ⊗ εf(c1).

Applying ε ⊗ 1, εf(c) = ε(c) and this just means that f is a map of Z(C)-
coalgebras. Hence Picent(C) ∼= OutZ(C)(C).

The first example of coalgebra which has the Aut-Pic property was given in
[TZ, Th. 2.10]:

Proposition 2.3. Let C be a cocommutative coalgebra, then Pic(C) ∼=
Aut(C).

Next, we introduce another family of coalgebras with the Aut-Pic property.

Proposition 2.4. Let C be a coalgebra verifying that every right injective
comodule is free. Then C has Aut-Pic.

Proof. Let M be an invertible (C,C)-bicomodule, then M is a quasi-finite
injective cogenerator as a right comodule. By hypothesis, M ∼= C(n) for some
n ≥ 1 as right comodules. Let N be the inverse of M , then

C ∼= M2CN ∼= C(n)2CN ∼= N (n)

as right comodules. Again by hypothesis, we have that N ∼= C(m) for some
m ≥ 1 as right comodules, therefore C ∼= C(nm). Since C has the IBN property,
cf. [NTV, Prop. 4.1], then nm = 1 and so M ∼= C as right comodules. From
Proposition 1.4, there exists f ∈ Aut(C) such that M ∼= fM1 as bicomodules.

More examples of coalgebras with Aut-Pic are obtained in the following
proposition via matrix coalgebras. We remember that the matrix coalgebra of
order n over k, denoted by k∗n, is given by the vector space generated by the set
{xij : 1 ≤ i, j ≤ n} with comultiplication and counit

∆(xij) =
∑n

u=1 xiu ⊗ xuj, ε(xij) = δij,

for all i, j = 1, ..., n, where δij is the Kronecker symbol. For a coalgebra C, the
matrix coalgebra of order n over C is defined as the coalgebra C ⊗ k∗n.

Proposition 2.5. Let C be a coalgebra with Aut-Pic. Then the matrix
coalgebra D = C ⊗ k∗n has Aut-Pic for all n ≥ 1.
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Proof. Let W be a vector space of dimension n with basis {w1, ..., wn}.
The left C-comodule C ⊗ W has co-endomorphism coalgebra isomorphic to
the comatrix coalgebra D, cf. [DNRV, Prop. 3.1]. Also C ⊗W is a (D,C)-
bicomodule with the structure maps:

ρl : C ⊗W → (C ⊗W )⊗ C, c⊗ wi 7→
∑

(c) c1 ⊗ wi ⊗ c2
ρr : C ⊗W → D ⊗ (C ⊗W ), c⊗ wi 7→

∑
(c)

∑n
u=1 c1 ⊗ xiu ⊗ c2 ⊗ wu.

Analogously, W ⊗ C is a (C,D)-bicomodule and by [DNRV, Prop. 3.1] both
are inverse to each other. From Proposition 1.2, there is a group isomorphism
Pic(C) → Pic(D), [X] 7→ [(C ⊗W )2CX2C(W ⊗ C)].

We also have a group monomorphism φ : Aut(C) → Aut(D), f 7→ f ⊗ 1.
We claim that the below diagram is commutative:

Aut(C) ωC-Pic(C)

? ?

Aut(D) ωD-Pic(D)

Let f ∈ Aut(C), we have to show that (C ⊗W )2C fC12C(W ⊗ C) ∼= φ(f)D1

as (D,D)-bicomodules. First, it is not hard to check that the maps

Φ : (C ⊗W )2C fC1 → φ(f)(C ⊗W ),
∑

j cj ⊗ wj ⊗ dj 7→
∑

j ε(dj)f
−1(cj)⊗ wj

Ψ : φ(f)(C ⊗W ) → (C ⊗W )2C fC1, c⊗ wi 7→
∑

(c) f(c1)⊗ wi ⊗ c2

are (D,C)-bicomodule maps inverse to each other. Then,

(C ⊗W )2C fC12C(W ⊗ C) ∼= φ(f)((C ⊗W )2C(W ⊗ C))

as (D,D)-bicomodules. But the map

Θ : φ(f)((C ⊗W )2C(W ⊗ C)) → φ(f)D1, c⊗ wi ⊗ wj ⊗ d 7→ cε(d)⊗ xij

is an isomorphism of (D,D)-bicomodules. Thus, the commutativity is proved.
Since, by hypothesis, ωC is onto, we obtain that ωD is also onto.

We recall from [CM] that a coalgebra is basic if every simple subcoalgebra
is the dual of a division algebra over k. The following theorem shows that basic
coalgebras also have Aut-Pic.
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Theorem 2.6. Let C be a basic coalgebra, then C has Aut-Pic.

Proof. First, we prove that basic coalgebras verify that the isotypic compo-
nent of a simple right coideal only contains that coideal. Let I be a simple right
coideal of C and let J be the isotypic component of I. Then J is a simple sub-
coalgebra, cf [MTW] or [G], therefore there exists a finite dimensional division
algebra D over k such that J ∼= D∗ as coalgebras. Since I is a right coideal of
J , I⊥ is a right ideal of D and then I⊥ = {0}. This gives that I = J .

Secondly, by Proposition 1.4, we are going to show that every invertible
bicomodule is isomorphic to C as right comodules. Let [M ] ∈ Pic(C), then
M is a right quasi-finite injective cogenerator. Since M is quasi-finite, by [T,
Prop. 4.5] soc(M) ∼= ⊕α∈ΓS

(nα)
α where {Sα} is a representative family of simples

and nα is a finite cardinal number. As M is an injective cogenerator, then
M ∼= ⊕α∈ΓE(Sα)(nα) where nα ≥ 1 for all α ∈ Γ. Every Sα is isomorphic to a
simple right coideal Iα of C and C ∼= ⊕α∈ΓE(Iα) as right comodules.

Set P = ⊕α∈ΓE(Sα)(nα−1), then M ∼= C ⊕ P as right comodules. Let N be
the inverse of M , then C ∼= M2CN ∼= (C2CN)⊕ (P2CN) as right comodules
and so soc(C) ∼= soc(N) ⊕ soc(P2CN). If we write N ∼= ⊕α∈ΓE(Sα)(tα), it
follows that tα ≤ 1 for all α ∈ Γ from the above isomorphism. But, since N is
a cogenerator, tα ≥ 1, it must be tα = 1 for all α ∈ Γ. Thus, N ∼= C as right
comodules and from C ∼= N2CM , we have that M ∼= C as right comodules.

In [CM, Cor. 2.2] it was proved that any coalgebra is Morita-Takeuchi equi-
valent to a basic one. If we combine this with Proposition 1.3 and the above
result, we obtain that computing the Picard group of any coalgebra reduces
to compute automorphisms of a basic coalgebra. This is the content of the
following corollary:

Corollary 2.7. Let C be a coalgebra and D its Morita-Takeuchi equivalent
basic coalgebra, then Pic(C) ∼= Out(D).

Remark. 1.- In the ring case, this property happens if the ring is semiperfect,
cf. [B, Prop. 3.8]. However, in the coalgebra case this result is possible because
finiteness conditions automatically appear in the category of comodules.

2.- In light of Proposition 2.4 and Corollary 2.7, it is natural to ask whether
the Aut-Pic property is a Morita-Takeuchi invariant. For the ring case the
answer is false as it was shown in [B, Ex. 1.7]. In this example the rings are
finite dimensional k-algebras, hence if we consider the finite dual coalgebras of
them, we have an example where the Aut-Pic property is not a Morita-Takeuchi
invariant.

Noting that pointed coalgebras are basic coalgebras we have:
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Corollary 2.8. Every pointed coalgebra has Aut-Pic.

Example. Let C be the Sweedler coalgebra, i.e., the coalgebra generated by
the set {gn, sn : n ∈ IN} with comultiplication and counit given by

∆(gn) = gn ⊗ gn ε(gn) = 1
∆(sn) = gn ⊗ sn + sn ⊗ gn+1 ε(sn) = 0

C is a pointed coalgebra, and by the above corollary, Pic(C) ∼= Out(C). We
show that Pic(C) is trivial. Before computing Aut(C), it is easy to observe:

i) For i, j ∈ IN with j 6= i + 1 the (gi, gj)-primitive elements are λ(gi − gj)
for λ ∈ k.

ii) For all n ∈ IN , the (gn, gn+1)-primitive elements are αngn +βnsn−αngn+1

with αn, βn ∈ k.
Let f ∈ Aut(C), noting that f takes group-like elements into such elements,

(gi, gj)-primitives into (f(gi), f(gj))-primitives, and that f is bijective, we con-
clude that f is of the form:

f(gi) = gi f(si) = αigi + βisi − αigi+1

with αi ∈ k and βi ∈ k∗ for all i ∈ IN . Now, we check that every automorphism
is inner and hence Pic(C) is trivial. Let f as above, we define u, v : C → k by:

u(g1) = 1 v(g1) = 1
u(gi+1) = β−1

i u(gi) v(gi+1) = βiu(gi)
−1

u(si) = −αiu(gi+1) v(si) = u(gi)
−1αi

It is not hard to prove by induction that u is a unit with inverse v and that
f = (u⊗ 1⊗ u−1)(∆⊗ 1)∆.

If C is a coalgebra with finite dimensional coradical C0, in [L, Th. 5] it is
shown that every autoequivalence in MC induces an equivalence in the category
of left C∗-modules C∗M. In fact, if M is an invertible (C,C)-bicomodule,
the dual M∗ is an invertible (C∗, C∗)-bimodule. The map (−)∗ : Pic(C) →
Pic(C∗), [M ] 7→ [M∗] is a group monomorphism. When C is finite dimensional,
the above map is a group isomorphism. The next theorem relates the Picard
groups of C and C0 when the latter is of finite dimension.

We denote by Aut(C,C0) the set of automorphisms of C that are the identity
on C0 and analogously for Inn(C,C0). J = C⊥

0 is the Jacobson radical of
the dual algebra C∗ and Aut(C∗, J) is the set of automorphism of C∗ which
induce the identity on C∗/J . Similarly for Inn(C∗, J). We have inclusions
from Aut(C,C0) to Aut(C∗, J) and from Inn(C,C0) to Inn(C∗, J) via the map
f 7→ f ∗.
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Theorem 2.9. Let C be a coalgebra with finite dimensional coradical C0.
The following diagram has exact rows and commutative squares,

1 -Inn(C,C0) -Aut(C,C0) ω-Pic(C) Φ-Pic(C0)

? ? ? ?

1 -Inn(C∗, J) -Aut(C∗, J) ω′
-Pic(C∗) Φ′

-Pic(C∗/J)

where Φ([M ]) = [M2CC0] for all [M ] ∈ Pic(C).

Proof. We first prove that if [M ] ∈ Pic(C), then M2CC0 = C02CM and
hence M2CC0 is a (C0, C0)-bicomodule. Identifying M2CC and C2CM with
M via the maps 1⊗ ε and ε⊗ 1 we have that

M2CC0 = {m ∈M : ρM(m) ∈M ⊗ C0},
C02CM = {m ∈M : Mρ(m) ∈ C0 ⊗M}.

Since C0 is of finite dimension, by [L, Th. 5] M∗ is an invertible (C∗, C∗)-
bimodule. On the other hand, C∗/J ∼= C∗

0 and so C∗ is a semilocal ring.
From [CR, Ex. 55.7], JM∗ = M∗J . We check that M2CC0 = C02CM . Let
m ∈M2CC0 then ρM(m) ∈M ⊗C0 and suppose that Mρ(m) is not in C0⊗M .
Then, there exist non zero elements m1, ...,mr,m

′
1, ...,m

′
t ∈ M, c1, ..., cr ∈ C0

and c′1, ..., c
′
t ∈ C − C0 such that

Mρ(m) =
∑r

i=1 ci ⊗mi +
∑t

j=1 c
′
j ⊗m′

j.

We can suppose {ci, c′j} linearly independent and choose c∗ ∈ C∗, m∗ ∈ M∗

with < c∗, c′1 >= 1, < m∗,m′
1 >= 1 and zero elsewhere. Thus,

c∗m∗(m) =
∑r

i=1 < c∗, ci >< m∗,mi > +
∑t

j=1 < c∗, c′j >< m∗,m′
j >6= 0.

As JM∗ = M∗J there are n∗1, ..., n
∗
s ∈ M∗ and d∗1, ..., d

∗
s ∈ C⊥

0 such that
c∗m∗ =

∑s
i=1 n

∗
i d

∗
i . But (

∑s
i=1 n

∗
i d

∗
i )(m) = 0 since ρM(m) ∈ M ⊗ C0 which

is a contradiction. A similar argument proves the converse.

Thus we can define Φ : Pic(C) → Pic(C0) by Φ([M ]) = [M2CC0] that is a
group homomorphism. We show that ker(Φ) = ω(Aut(C,C0)). It is clear that
ω(Aut(C,C0)) ⊆ ker(Φ). Conversely, let [M ] ∈ Pic(C) such that M2CC0

∼=
C0 as (C0, C0)-bicomodules and let ψ denote this isomorphism as right C0-
comodules.
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Since soc(M) ∼= M2CC0
∼= soc(C) and M is injective, we can lift ψ to an

isomorphism of right C-comodules from M to C. Let g be the automorphism
of C given by Proposition 1.3 such that M ∼= gC1 as bicomodules. Hence

g|C0
C0

∼= C0 as bicomodules and by [TZ, Lem. 2.6], g ∈ Inn(C0), that is,

there is a unit u ∈ C∗
0 such that g(d) =

∑
(d) u(d1)d2u

−1(d3) for all d ∈ C0. If
i : C0 → C denotes the inclusion map, then i∗ : C∗ → C∗/J is the canonical
projection. There is a unit v ∈ C∗ such that i∗(v) = u. Let f be the inner
automorphism of C given by the unit v−1, then fg ∈ Aut(C,C0) and gC1

∼= fgC1

as bicomodules. Thus, [M ] = [ fgC1] and [M ] ∈ ω(Aut(C,C0)).

The maps ω′ : Pic(C∗) → Pic(C∗/J) and Φ′ : Aut(C∗, J) → Pic(C∗/J) are
defined by (see [CR, Th. 55.41]) ω′(f) = [ fC

∗
1 ] and Φ′([M ]) = [M ⊗C∗ C

∗/J ]
for all f ∈ Aut(C∗, J), [M ] ∈ Pic(C∗). It is not hard to check that the squares
are commutative.

If we put AutZ(C)(C,C0) for the set of cocentral automorphisms of C that
are the identity on C0 and similarly for InnZ(C)(C,C0) we obtain:

Corollary 2.10. Let C be a coalgebra with finite dimensional coradical C0,
and suppose that the induced map in the cocenters by the inclusion is injective,
then Picent(C) ∼= OutZ(C)(C,C0).

Proof. If we look at Picent in the diagram of the above theorem, the hy-
pothesis yields that Φ(Picent(C)) ⊆ Picent(C0) and the following sequence is
exact.

1 -Inn
Z(C)

(C,C0)-Aut
Z(C)

(C,C0) -Picent(C) -Picent(C0).

By [TZ, Th. 2.13], the Picent of a cosemisimple coalgebra is trivial, thus
Picent(C0) is trivial and the desired result is proved.

3. APPLICATIONS TO GRADED COALGEBRAS

The theory of graded coalgebras also provides us some examples of coalge-
bras with Aut-Pic. We previously need some definitions.

A coalgebra C is graded by a group G (see [NT]) if it admits a decomposition
as a direct sum of subspaces C = ⊕g∈GCg verifying:

1) ∆(Cg) ⊆
∑

ab=g Ca ⊗ Cb.
2) ε(Cg) = 0 for all g 6= e, with e the identity element in G.

If M is a right C-comodule, then M is called a G-graded comodule over C
if M = ⊕g∈GMg, with Mg subspaces of M and ρM(Mg) ⊆

∑
ab=g Ma ⊗ Cb for
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any g ∈ G. If m ∈ M , then m =
∑

g∈Gmg, with mg ∈ Mg (the sum has only a
finite number of nonzero elements). Each mg, g ∈ G, is called the homogeneous
components of degree g of m and we write deg(mg) = g. grC denotes the
category of right graded C-comodules. ForM,N ∈ grC a morphism f : M → N
is a C-colinear map with f(Mg) ⊆ Ng for all g ∈ G. This map is called graded
C-colinear map and the set of these maps is denoted by Comgr−C(M,N). Let
M = ⊕g∈GMg be an object in grC and h ∈ G. Then, the h-suspension of M ,
M(h), coincides with M as a vector space but with the grading M(h)g = Mhg

for all g ∈ G. M(h) is again an object in grC . The map M 7→M(σ) defines an
isomorphism of categories from grC to grC .

Definition 3.1. Let C = ⊕σ∈GCσ be a graded coalgebra and X ∈ grC.

i) A graded subcoalgebra D ⊆ C is called gr-simple if it has no proper graded
subcoalgebras.

ii) C is said to be gr-irreducible if it has an unique graded gr-simple subcoal-
gebra.

iii) X is called gr-free if X∼=gr⊕g∈GC(g)(Ig) for some indexed sets Ig for all
g ∈ G where ∼=gr denotes a graded isomorphism.

Lemma 3.2. Let C = ⊕σ∈GCσ be a cocommutative gr-irreducible graded
coalgebra. Then every gr-injective C-comodule is gr-free.

Proof. Let X ∈ grC gr-injective. We know that X = ⊕i∈IE
gr(Si) where

Egr(Si) denotes the graded injective hull of the gr-simple comodule Si for all
i ∈ I. Since C is gr-irreducible then it has an unique gr-simple subcoalgebra S
and the only gr-simple comodules are of the form S(g) with g ∈ G. Thus, we
can set X ∼= ⊕g∈GE

gr(S(g))(Ig). But Egr(S(g)) = C(g) for all g ∈ G. Hence
X ∼= ⊕g∈GC(g)(Ig) and so X is gr-free.

Every graded coalgebra C has associated another coalgebra C >/ kG, called
smash coproduct, constructed in the following way: as a vector space C >/ kG =
C ⊗ kG, for any homogenous element c ∈ C and g ∈ G the comultiplication
and the counit are:

∆(c >/ g) =
∑

(c)(c(1) >/ deg(c(2))g)⊗ (c(2) >/ g),
ε(c >/ g) = ε(c).

For M ∈ grC , M becomes a right C >/ kG-comodule via

ρ : M →M ⊗ (C >/ kG), m 7→ ∑
(m)m(0) ⊗m(1) >/ deg(m)−1

11



for homogeneous m ∈ M . Any morphism f : M → N of graded como-
dules is also a morphism of C >/ kG-comodules. Thus, we have a functor
A : grC → MC>/kG which verifies that A(⊕g∈GC(g)) ∼= C >/ kG as right
C >/ kG-comodules. In [DNRV, Th. 1.6] it was proved that A defines an iso-
morphism between the categories grC and MC>/kG. Hence, the category grC is
a locally finite category.

Proposition 3.3. Let C = ⊕σ∈GCσ be a cocommutative gr-irreducible
graded coalgebra. Then the smash coproduct coalgebra C >/ kG has Aut-Pic.

Proof. Let A : grC → MC>/kG and B : MC>/kG → grC be the isomorphisms
between both categories. Suppose that [M ] ∈ Pic(C >/ kG), then M is a
quasi-finite injective cogenerator as right C >/ kG-comodule. Hence B(M)
is a quasi-finite injective cogenerator as graded right C-comodule. Since C is
gr-irreducible, by the above lemma, B(M) is gr-free, that is, B(M)∼=gr ⊕g∈G

C(g)(Ig). As B(M) is a quasi-finite cogenerator, from [T, Prop. 4.5], Ig is a finite
index set and |Ig| ≥ 1 for all g ∈ G. We can write B(M)∼=gr⊕g∈GC(g)⊕V with
V ∈ grC , then M ∼= AB(M) ∼= A(⊕g∈GC(g)) ⊕ A(V ). But A(⊕g∈GC(g)) ∼=
C >/ kG as right C >/ kG-comodules. Thus M ∼= (C >/ kG) ⊕ W with
W = A(V ) as right C >/ kG-comodules.

On the other hand, since M is invertible, there is an invertible C >/ kG-
bicomodule N such that M2C>/kGN ∼= C >/ kG as right C >/ kG-comodules.
Then, (C >/ kG2C>/kGN)⊕ (W2C>/kGN) ∼= C >/ kG. Setting Z = W2C>/kG

N we have thatN⊕Z ∼= C >/ kG, and so soc(N)⊕soc(Z) ∼= soc(C >/ kG). The
argument of the above paragraph applied to N gives that N ∼= (C >/ kG)⊕W ′

and then soc(N) ∼= soc(C >/ kG)⊕soc(W ′). Combining this with the fact that
N is a quasi-finite injective cogenerator and C >/ kG contains all simples of the
category, we conclude that soc(Z) = {0} and therefore Z = {0}. Using that
−2C>/kGN is an equivalence, it follows that W = {0}. Thus, M ∼= C >/ kG
as right C >/ kG-comodules. Finally, from Proposition 1.4 we have the desired
result.

In [DNR] graded crossed coproducts were defined and it was proved that e-
very graded crossed coproduct is a strongly graded coalgebra. As application of
the above results, we give a converse of this fact for strongly graded coalgebras
with the component of degree e having the Aut-Pic property. We first have to
remember some definitions and properties on strongly graded coalgebras (see
[NT] and [DNR]).

Proposition 3.4. [NT, Prop. 3.1]. Let C = ⊕σ∈GCσ be a graded coalgebra
and M = ⊕σ∈GMσ a right graded C-comodule.
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i) If σ, τ ∈ G there exists a unique linear map uM
σ,τ : Mστ → Mσ ⊗ Cτ such

that uM
σ,τπ

M
στ = (πM

σ ⊗πC
τ )ρM where πg : C → Cg denotes the canonical projection

for all g ∈ G.

ii) For any σ, τ, λ ∈ G: (uM
σ,τ ⊗ 1)uM

στ,λ = (1⊗ uC
τ,λ)u

M
σ,τλ.

iii) If σ ∈ G, (1⊗ ε)uM
σ,e = 1.

iv) If we write ∆e = uC
e,e : Ce → Ce ⊗ Ce, then (Ce,∆e, ε) is a coalgebra

and πe : C → Ce is a coalgebra map. Moreover, if M = ⊕σ∈GMσ is a right
C-comodule, then for any σ ∈ G, Mσ is a right Ce-comodule via the canonical
map uM

σ,e : Mσ →Mσ ⊗ Ce.

Definition 3.5. Let C = ⊕σ∈GCσ be a graded coalgebra. C is said to be
strongly graded coalgebra if the maps uC

σ,τ : Cστ → Cσ ⊗ Cτ are injective for all
σ, τ ∈ G.

For any σ ∈ G we put Rσ = {f ∈ C∗ | f(Cτ ) = 0 for all τ 6= σ}, (note that
Rσ

∼= C∗
σ as vector spaces). We define R =

∑
σ∈GRσ = ⊕σ∈GRσ. By [NT, Prop.

6.1], R is a G-graded ring with multiplication defined as follows: for f ∈ Rσ,
g ∈ Rτ and c ∈ C, (f ∗ g)(c) =

∑
(c) f(πσ(c1))g(πτ (c2)) and ε : C → k as the

unit. R is called the graded dual algebra of the graded coalgebra C.

The following proposition is [DNR, Cor. 2.2, 2.4] and [NT, Cor. 5.5].

Proposition 3.6. Let C = ⊕σ∈GCσ be a graded coalgebra and R = ⊕σ∈GRσ

the graded dual algebra.

i) If R is a strongly graded algebra, then C is a strongly graded coalgebra.
When Ce is finite dimensional, the converse is true.

ii) If C is a strongly graded coalgebra, then for each σ ∈ G, Cσ is an inver-
tible (Ce, Ce)-bicomodule.

Definition 3.7. A graded coalgebra is called a graded crossed coproduct if
C 6= 0 and for any σ ∈ G there exist linear maps uσ : Cσ → k and vσ : Cσ−1 → k
such that∑

(c) uσ(πσ(c1))vσ(πσ−1(c2)) =
∑

(c) vσ(πσ−1(c1))uσ(πσ(c2)) = ε(c), ∀c ∈ Ce.

Proposition 3.8. [DNR, Cor. 2.6]. Every graded crossed coproduct is a
strongly graded coalgebra.

We are now able to prove our result.

Proposition 3.9. Let C = ⊕σ∈GCσ be a graded coalgebra such that Ce has
the Aut-Pic property. The following assertions are equivalent:

i) The graded dual algebra is strongly graded.

ii) C is a graded crossed coproduct.

13



Proof. ii) ⇒ i) If C is a graded crossed coproduct then the graded dual
algebra is a crossed product. Hence, it is a strongly graded ring.

i) ⇒ ii) Suppose that R is a strongly graded ring. By Proposition 3.6 C is
a strongly graded coalgebra and every Cσ is an invertible (Ce, Ce)-bicomodule.
From the hypothesis, there is an automorphism fσ : Ce → Ce such that Cσ

∼=
fσCe1 as (Ce, Ce)-bicomodules. Let θσ : Cσ → fσCe1 be this isomorphism.
Noting that ( fσCe1)

∗ ∼= f∗σRe1 where f ∗σ : Re → Re is the dual automorphism
of fσ, we have an isomorphism of (Re, Re)-bimodules θ∗σ : f∗σRe1 → Rσ. If we
write uσ = θ∗σ(ε), then Rσ = Re ∗ uσ = uσ ∗ Re. Since R is strongly graded,
then Rσ ∗ Rσ−1 = Re and thus uσ ∗ Re ∗ uσ−1 = Re and uσ−1 ∗ Re ∗ uσ = Re.
Let φ, ψ ∈ Re such that uσ ∗ φ ∗ uσ−1 = ε and uσ−1 ∗ ψ ∗ uσ = ε. We write
vσ = φ ∗ uσ−1 = uσ−1 ∗ ψ, then for c ∈ Ce we have that:

∑
(c) uσ(πσ(c1))vσ(πσ−1(c2)) =

∑
(c) vσ(πσ−1(c1))uσ(πσ(c2)) = ε(c)

and so C is a graded crossed coproduct.

We do not know if this result is also true when the coalgebra is only strongly
graded although if we add that Ce is of finite dimension the following corollary
gives an affirmative answer.

Corollary 3.10. Let C = ⊕σ∈GCσ be a graded coalgebra such that Ce is
finite-dimensional and it has the Aut-Pic property. Then, C is a strongly graded
coalgebra if and only if C is a graded crossed coproduct.

Proof. It is just to combine Proposition 3.6 i) and the foregoing proposition.
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