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Introduction

Takeuchi’s theory of equivalences between comodule categories [1] rests on
the notion of co-hom functor and the always slippery construction of the co-
endomorphism coalgebra of a quasi-finite comodule. In fact, only a few cases
have been computed in [2], [3], [4] and [5], using smash coproducts. One of the
most basic applications of Takeuchi’s theory is the foundation of a well behaved
notion of basic coalgebra [6]. However, this construction of the basic coalgebra
as the co-endomorphism coalgebra of a minimal injective cogenerator for the
category of all (right) comodules is not very handy, at least from the point of
view of the original coalgebra. In this notes, with inspiration in the classical the-
ory of idempotents for finite dimensional algebras, we offer an easier approach to
basic coalgebras. To do this, we develop in Section 1 the theory of idempotents
for coalgebras, initiated in [7], [8]. Our approach is based upon the remark-
able fact that, given an idempotent e ∈ C∗, the functor e(−) : MC → MeCe

which associates to any right comodule M the eCe–comodule eM is naturally
equivalent to the co-hom functor h−C(Ce,−) : MC →MeCe (Theorem 1.5). In
Section 2 we give a description in terms of idempotents and matrix coalgebras
of the coalgebras strongly equivalent [9] to a given coalgebra. In section 3 we
introduce the notion of basic idempotent for a coalgebra and we show that the
basic coalgebra in the sense of [6] of a coalgebra C, is given by eCe, where e
is a basic idempotent for C. Basic idempotents may be lifted via the corad-
ical. Using this new point of view, we may prove that if two coalgebras are
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Morita-Takeuchi equivalent, their coradicals are so. Our approach is shown to
be equivalent to the given in [6].

1 A theory of idempotents for coalgebras

Throughout this paper k is a fixed ground field and Mk stands for the category
of k-vector spaces. More generally, for a k–algebra A, the category of all left
(resp. right) A–modules is denoted by AM (resp. MA). We will assume that
the reader is familiarized with the theory of coalgebras. Basic references are
[10] and [11]. All coalgebras, vector spaces and unadorned ⊗, Hom, etc., are
over k. Every map is a k-linear map. For a coalgebra C, ∆ and ε denote
the comultiplication and the counit respectively. The category of right (resp.
left) C-comodules is denoted by MC (resp. CM); for M in MC , ρM is the
comodule structure map. Given M,N ∈ MC (resp. CM), Com−C(M,N)
(resp. ComC−(M,N)) denotes the space of right (resp. left) C-comodule maps
from M to N . The fundamental properties of the categories of comodules can
be found in several places, see e.g. [12], [1] and [13].

Let C be a coalgebra and C∗ its dual algebra. As usual, we consider C as a
left (resp. right) C∗-module via the actions:

c∗c =
∑
(c)

〈c∗, c(2)〉c(1), cc∗ =
∑
(c)

〈c∗, c(1)〉c(2), (c∗ ∈ C∗, c ∈ C).

Definition 1.1 An element e ∈ C∗ is said to be an idempotent for C if e is an
idempotent in C∗. This means that 〈e, c〉 =

∑
(c)〈e, c(1)〉〈e, c(2)〉 for all c ∈ C.

For any idempotent e for C, it was proved in [7, Lemma 6] that eCe is a
coalgebra with comultiplication and counit given by:

∆(ece) =
∑
(c)

ec(1)e⊗ ec(2)e, ε(ece) = 〈e, c〉.

Moreover, the natural map η : eC∗e → (eCe)∗ defined by 〈η(ec∗e), ece〉 =
〈ec∗e, c〉 = 〈c∗, ece〉 is an algebra isomorphism.

Let C,D be coalgebras. Any (C,D)-bicomodule M is a (D∗, C∗)-bimodule
via the actions

d∗m =
∑
(m)

〈d∗,m(1)〉m(0), mc∗ =
∑
(m)

〈c∗,m(−1)〉m(0) (c∗ ∈ C∗, d∗ ∈ D∗,m ∈M).
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If e, d are idempotents in C∗ and D∗ respectively, then we may consider the
eC∗e-module Me and the dD∗d-module dM . Clearly, Me is a direct summand
of M as D-comodule since Me⊕Me′ = M where e′ = εC−e. Similarly for dM.

Lemma 1.2 Let M be a (C,D)-bicomodule, and e, d idempotents for C and D
respectively.

i) Me is an (eCe,D)-bicomodule via the maps:

ρ+ : Me→ eCe⊗Me, me 7→ ∑
(m) em(−1)e⊗m(0)e

ρ− : Me→Me⊗D, me 7→ ∑
(m)m(0)e⊗m(1)

ii) dM is a (C, dDd)-bicomodule via the maps:

ω+ : dM → C ⊗ dM, dm 7→ ∑
(m)m(−1) ⊗ dm(0)

ω− : dM → dM ⊗ dDd, dm 7→ ∑
(m) dm(0) ⊗ dm(1)d

iii) (Me)∗ ∼= eM∗ and (dM)∗ ∼= M∗d as (eC∗e,D∗) and (C∗, dD∗d)-bimodules
respectively.

Proof: i),ii) Straightforward.

iii) (Me)∗ is a (eC∗e,D∗)-bimodule via the actions:

〈(ec∗e)φ,me〉 =
∑

(m)〈ec∗e, em(−1)e〉〈φ,m(0)e〉,
〈φd∗,me〉 =

∑
(m)〈φ,m(0)e〉〈d∗,m(1)〉.

for all φ ∈ (Me)∗, c∗ ∈ C∗, d∗ ∈ D∗, and m ∈ M . The isomorphism is given
by Ψ : eM∗ → (Me)∗ defined as 〈Ψ(em∗),me〉 = 〈m∗,me〉 = 〈em∗,m〉 for all
m∗ ∈M∗,m ∈M .

A comodule X ∈ MC is called quasi-finite if Com−C(Y,X) is finite di-
mensional for every finite dimensional comodule Y ∈ MC . This is equiva-
lent [1] to the existence of a left adjoint h−C(X,−), called co-hom functor, to
− ⊗ X. In the case that X is a (D,C)–bicomodule, the functor h−C(X,−)
becomes a left adjoint to the cotensor product functor −2DX : MD → MC .
We recall from [1] some basic facts concerning with the co-hom functors. Let
θY : Y → h−C(X, Y )2DX denote the unit of the adjunction. If we assume
that XC is a quasi-finite comodule, then e−C(X) = h−C(X,X) is a coalgebra,
called the co-endomorphism coalgebra of X. The comultiplication of e−C(X)
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corresponds to (1⊗ θX)θX : X → e−C(X)⊗ e−C(X)⊗X in the adjunction iso-
morphism when D = k, and the counit of e−C(X) corresponds to the identity
map 1X . X is a (e−C(X), C)-bicomodule via θX : X → e−C(X)⊗X. Moreover,
there is a coalgebra map λ : D → e−C(X) such that ρD = (λ⊗ 1)θX .

Morita-Takeuchi contexts were introduced in [1] with the name of pre-
equivalence data (see also [14]). Next, we give a new example of Morita-Takeuchi
context. An explicit example of co-endomorphism coalgebra is also computed.

Example 1.3 Let C be a coalgebra, and e an idempotent for C. In view of the
above lemma, Ce is a (eCe, C)-bicomodule, and eC is a (C, eCe)-bicomodule.
We define the maps

f : eCe→ Ce2CeC, ece 7→
∑

(c) c(1)e⊗ ec(2)

g : C → eC2eCeCe, c 7→
∑

(c) ec(1) ⊗ c(2)e

It is routine to check that f and g are bicomodule maps and (eCe, C,Ce, eC, f, g)
is a Morita-Takeuchi context.

Proposition 1.4 The map f is injective. Hence e−C(Ce) ∼= eCe.

Proof: Suppose that f(ece) = 0. Then,

0 =
∑
(c)

c(1)e⊗ ec(2) =
∑
(c)

〈e, c(1)〉c(2) ⊗ c(3)〈e, c(4)〉.

Applying 1⊗ e,

0 =
∑
(c)

〈e, c(1)〉c(2)〈e, c(3)〉〈e, c(4)〉 =
∑
(c)

〈e, c(1)〉c(2)〈e, c(3)〉 = ece.

By [1, Theorem 2.5], f is an isomorphism, and e−C(Ce) ∼= eC−(eC) ∼= eCe.

We will see later (see Corollary 1.8) that the above context is strict if and
only if Ce is a cogenerator as C-comodule.

In light of Lemma 1.2, we have functors

(−)e : CM→ eCeM, M 7→Me, f 7→ f |Me

e(−) : MC →MeCe, M 7→ eM, f 7→ f |eM
Since Ce is a direct summand of C as right C-comodule, Ce is a quasi-finite
injective C-comodule. Note that C is quasi-finite and for a finite dimensional
Y ∈MC , Com−C(Y,Ce) is a quotient space of Com−C(Y,C).
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Theorem 1.5 The functor e(−) : MC → MeCe is naturally equivalent to
h−C(Ce,−) : MC →MeCe.

Proof: By the uniqueness of adjoints, we need just to prove that e(−) : MC →
MeCe is a left adjoint to−2eCeCe : MeCe →MC . Let Y ∈MC and Z ∈MeCe.
We claim that the map

Φ : Com−C(Y, Z2eCeCe) → Com−eCe(eY, Z)

defined by Φ(f) = (1⊗ e)f is a natural isomorphism.
We first check that Φ is well-defined, that is, Φ(f) is a eCe-comodule map.

In order to do this, we need a pair of facts. Let y ∈ Y, and set f(y) =
∑

i zi⊗cie.
Since f(y) ∈ Z2eCeCe, then∑

i

∑
(zi)

zi(0) ⊗ zi(1) ⊗ cie =
∑

i

∑
(ci)

zi ⊗ eci(1)e⊗ c(2)e.

Applying 1⊗ e, we obtain the formula:∑
i

∑
(zi)

zi(0) ⊗ zi(1)〈e, ci〉 =
∑

i

∑
(ci)

zi ⊗ eci(1)e〈e, ci(2)〉 =
∑

i

zi ⊗ ecie. (1)

On the other hand, using that f is a C-comodule map, we deduce:∑
(y) f(y(0))⊗ y(1) =

∑
(f(y)) f(y)(0) ⊗ f(y)(1)

=
∑

i

∑
(zi) zi(0) ⊗ zi(1) ⊗ cie

=
∑

i

∑
(ci) zi ⊗ eci(1)e⊗ c(2)e.

(2)

[ρZΦ(f)](ey) = ρZ(
∑

(y)〈e, y(1)〉(1⊗ e)f(y(0)))
=

∑
i

∑
(ci) ρZ(〈e, ci(2)e〉zi〈e, eci(1)e〉) by (2)

=
∑

i

∑
(zi)〈e, ci〉zi(0) ⊗ zi(1)

=
∑

i zi ⊗ ecie by (1)
=

∑
i

∑
(ci)〈e, ci(1)e〉zi ⊗ eci(2)e

=
∑

(f(y))(1⊗ e)(f(y)(0) ⊗ ef(y)(1)e)
=

∑
(y)(1⊗ e)f(y(0))⊗ ey(1)e

=
∑

(y)(1⊗ e)f(ey(0))⊗ ey(1)e
= (Φ(f)⊗ 1)ρCe(ey).

For g ∈ Com−eCe(eY, Z), the inverse to Φ is given by Ψ(g)(y) =
∑

(y) g(ey(0))⊗
y(1)e for all y ∈ Y. We next check that Ψ is well-defined, that is, Ψ(g) is a C-
comodule map, and ImΨ(g) ⊆ Z2eCeCe. The first fact may be easily checked.
We only see the second one.
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(ρZ ⊗ 1)[Ψ(g)(y)] =
∑

(y)

∑
(g(ey(0)))

g(ey(0))(0) ⊗ g(ey(0))(1) ⊗ y(1)e

=
∑

(y) g(ey(0))⊗ ey(1)e⊗ y(2)e
since g is a eCe− comodule map

= (1⊗ ρ−Ce)[Ψ(g)(y)].

Finally, we see that the maps Φ and Ψ are inverse to each other.

ΨΦ(f)(y) = Ψ[(1⊗ e)f ](y) =
∑

(y)(1⊗ e)f(ey(0))⊗ y(1)e
=

∑
(y)〈e, y(1)〉〈e, y(2)〉(1⊗ e)f(y(0))⊗ y(3)

=
∑

(y)(1⊗ e)f(y(0))⊗ y(1)e
=

∑
(y)(1⊗ e)f(y)(0) ⊗ f(y)(1)e

since f is a C − comodule map
=

∑
i〈e, ci(1)e〉zi ⊗ ci(2)e

=
∑

i zi ⊗ cie = f(y) ⇒ ΨΦ(f) = f.

ΦΨ(g)(ey) = (1⊗ e)(
∑

(y) g(ey(0))⊗ y(1)e)
=

∑
(y)〈e, y(1)〉〈e, y(2)〉g(ey(0))

= g(ey) ⇒ ΦΨ(g) = g.

Corollary 1.6 Let M be a (D,C)-bicomodule and e, e′ idempotents for C.

i) eM ∼= h−C(Ce,M) as (D, eCe)-bicomodules.

ii) h−C(Ce,Ce′) ∼= eCe′ as (e′Ce′, eCe)-bicomodules.

iii) e(−) : MC →MeCe is naturally equivalent to −2CeC : MC →MeCe.

Proof: i) We already know that they are isomorphic as eCe-comodules. Let
ρ− : M → D ⊗M be the structure map. The D-comodule structure map of
eM may be viewed as the induced map e(ρ−) = ρ− |eM : eM → e(D ⊗M) =
D ⊗ eM. Similarly, h−C(Ce,M) is a D-comodule via the map h−C(Ce, ρ−) :
h−C(Ce,M) → h−C(Ce,D ⊗M) ∼= D ⊗ h−C(Ce,M) (see [1, 1.7]). The claim
follows now since the isomorphisms are natural.

ii) This is a particular case of i) for M = Ce′.

iii) Since Ce is quasi-finite injective as C-comodule, by [1, Proposition
1.14], −2Ch−C(Ce,C) is naturally equivalent to h−C(Ce,−). By ii), eC ∼=
h−C(Ce,C) as bicomodules. Then the functor −2CeC and −2Ch−C(Ce,C)
are naturally equivalent, [1, Lemma 2.2]. These facts and Theorem 1.5 yield
the result.

6



Remark 1.7 A symmetric version of all the above results may be done for
hC−(eC,−). In particular, the functors (−)e, hC−(eC,−) and Ce2C− : CM→
eCeM are naturally equivalent.

Consider the functors

Mk

−⊗ eCe
�

UeCe

- MeCe

−2eCeCe
�

e(−)

-
MC

where UeCe is the forgetful functor. Notice that (− ⊗ eCe)2eCeCe ∼= − ⊗ Ce.
Then the functor UeCe ◦ e(−) is a left adjoint of − ⊗ Ce. For W in Mk, Y in
MC , let Θ be the composition of the isomorphisms,

Com−C(Y,W ⊗ Ce) ∼= Com−C(Y, (W ⊗ eCe)2eCeCe)
∼= Com−eCe(eY,W ⊗ eCe)
∼= Homk((UeCe ◦ e)(Y ),W )

and Π its inverse. Analyzing the definition of each isomorphism, we may deduce
that Θ(f) = (1⊗ e)f and Π(g) is defined as Π(g)(y) =

∑
(y) g(ey(0))⊗ y(1)e for

all f ∈ Com−C(Y,W ⊗ Ce) and g ∈ Homk((UeCe ◦ e)(Y ),W ). Under these
identifications the context of Example 1.3 is nothing but the Morita-Takeuchi
context associated to the right quasi-finite C-comodule Ce, see [1, Section 3].
By [1, Corollary 3.4] we get:

Corollary 1.8 The Morita-Takeuchi context (eCe, C,Ce, eC, f, g) of Example
1.3 is strict if and only if Ce is a cogenerator as C-comodule.

Next, we will show that the decomposition theory of quasi-finite comodule is
equivalent to the theory of idempotents of its coendomorphims coalgebra. Our
exposition parallelizes the standard treatment of this topic for finite dimensional
modules over algebras of finite dimension. For M ∈ MC , E(M) denotes the
injective hull of M .

Lemma 1.9 Let e be an idempotent for C and consider ē = e |C0.

i) E(C0ē) ∼= Ce.

ii) soc(Ce) ∼= C0ē
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Proof: i) It is well-known that C is the injective hull of C0, see [12]. The
inclusion map i : C0 → C is essential. Consider the inclusion map j : C0ē→ Ce.
Since Ce is injective, it suffices to see that j is essential. LetN be a subcomodule
of Ce such that Im(j)∩N = {0}. Pick x ∈ Im(i)∩N , then x ∈ C0 and x = ce
for some c ∈ C. The element x = ce = (ce)e = xe ∈ N ∩ C0ē. By hypothesis,
x = 0. Then Im(i) ∩N = {0}, and since i is essential, N = {0}.

ii) For any right C-comodule M , soc(M) ∼= M2CC0. Then soc(Ce) ∼=
Ce2CC0

∼= C0ē.

Proposition 1.10 Let e, e′ be idempotents for C. The following assertions are
equivalent: i) Ce ∼= Ce′; ii) C0ē ∼= C0ē′; iii) eC ∼= e′C; iv) ēC0

∼= ē′C0.

Proof: i) ⇔ ii) If Ce ∼= Ce′, then C0ē ∼= soc(Ce) ∼= soc(Ce′) ∼= C0ē′. Con-
versely, if C0ē ∼= C0ē′, then Ce ∼= E(C0ē) ∼= E(C0ē′) ∼= Ce′.

iii) ⇔ iv) Symmetric version of the above.

i) ⇔ iii) If Ce ∼= Ce′, then eC ∼= h−C(Ce,C) ∼= h−C(Ce′, C) ∼= e′C. The
converse is similar using hC−(−, C).

Let M ∈ MC be quasi-finite. Since − ⊗M is right adjoint to h−C(M,−)
we get an isomorphism Φ : Com−C(M,M) → e−C(M)∗ given by

Com−C(M,M) ∼= Com−C(M,k ⊗M) ∼= Homk(h−C(M,M), k) ∼= e−C(M)∗.

Lemma 1.11 The isomorphism Φ gives an algebra isomorphism

e−C(M)∗ ∼= End−C(M)op = EndC∗(M)op.

Moreover, the (C∗, e−C(M)∗)-bimodule structure induced on M by its (e−C(M), C)-
bicomodule structure is compatible, via Φ, with the canonical (C∗, EndC∗(M)op)-
bimodule structure of C∗M .

Proof: Since h−C(M,−) is left adjoint to −⊗M , we can consider the unit of
the adjunction θM : 1 → h−C(M,−)⊗M . We may reconstruct Φ and Φ−1 from
θM since it verifies the following universal property: for any f ∈ Com−C(M,M)
there is a unique map u ∈ e−C(M)∗ such that f = (u ⊗ 1)θM . Then Φ(f) = u
and Φ−1(u) = (u⊗ 1)θM .

We check that Φ−1 is indeed an algebra map. We denote by ∗ the convolution
product in e−C(M)∗. Let u, v ∈ e−C(M)∗ and f = (u ⊗ 1)θM , g = (v ⊗ 1)θM .
Then,
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[(u ∗ v)⊗ 1]θM = [(u ∗ v)∆⊗ 1]θM

= (u⊗ v ⊗ 1)(∆⊗ 1)θM

= (u⊗ v ⊗ 1)(1⊗ θM)θM

= (u⊗ 1⊗ 1)(1⊗ (v ⊗ 1)θM)θM

= (u⊗ 1)(1⊗ g)θM

= g(u⊗ 1)θM = gf.

Hence Φ−1(uv) = Φ−1(v)Φ−1(u). Clearly (ε ⊗ 1)θM = 1M since M is a left
e−C(M)-comodule via θM .

For the second part, we recall that M is a (C∗, e−C(M)∗)-bimodule via the
maps

c∗m =
∑
(m)

〈c∗,m(1)〉m(0), md∗ =
∑
(m)

〈d∗,m(−1)〉m(0),

where θM(m) =
∑

(m)m(−1) ⊗m(0). On the other hand, if we consider M as a
left C∗-module, then M is a (C∗, EndC∗(M)op)-bimodule. Both structure are
compatible with Φ−1. Let d∗ ∈ e−C(M)∗,

md∗ =
∑
(m)

〈d∗,m(−1)〉m(0) = Φ−1(d∗)(m) = mΦ−1(d∗).

Lemma 1.11 entails that the decomposition theory of a quasi-finite right C–
comodule M is encoded by the idempotents of its coendomorphism coalgebra
e−C(M). We summarize the most relevant facts in the following two proposi-
tions.

Proposition 1.12 Let M ∈MC be quasi-finite and {Mi}i∈I a family of subco-
modules of M . Then, M = ⊕i∈IMi if and only if there is a family of orthogonal
idempotents {ei}i∈I for e−C(M) such that Mi = Mei.

Proof: M = ⊕i∈IMi as right C-comodules if and only if M = ⊕i∈IMi as
left C∗-modules. By [15, Proposition 6.18], there exists a family of orthogonal
idempotents {ei}i∈I in EndC∗(M)op such that Mi = Mei. Now it is enough to
take into account Lemma 1.11.

Proposition 1.13 Let M ∈MC be quasi-finite.

a) The following assertions are equivalent:
i) M is indecomposable.
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ii) 0 and ε are the only idempotents for e−C(M).
iii) ε is a primitive idempotent for e−C(M).

b) Let d be an idempotent for e−C(M). Then Md is indecomposable if and
only if d is a primitive idempotent for e−C(M).

c) M is indecomposable injective if and only if there is a primitive idempotent
e for C such that M ∼= Ce as right C-comodules.

Proof: Note that M is indecomposable as right C-comodule if and only if it
is indecomposable as left C∗-module. Taking in mind Lemma 1.11, a),b) follow
from [15, Proposition 5.10] and [15, Corollary 5.11] respectively.

c) If M is indecomposable injective, then M is isomorphic to a direct sum-
mand of C. By Proposition 1.12, there is an idempotent e for e−C(C) ∼= C such
that M ∼= Ce. Since M is indecomposable, e is primitive. The converse follows
from b).

Remark 1.14 If the family {Mi}i∈I appearing in Proposition 1.12 consists of
indecomposable comodules, then the idempotents {ei}i∈I are primitive.

Example 1.15 (see [16, Ex. 1.6]) Let C be the Sweedler coalgebra, that is,
the vector space generated by the set {gn, sn : n ∈ IN} with comultiplication
and counit given by:

∆(gn) = gn ⊗ gn, ε(gn) = 1, ∆(sn) = gn ⊗ sn + sn ⊗ gn+1, ε(sn) = 0.

for all n ∈ IN . Consider the elements in C∗ defined as:

g∗n(gi) = δn,i, g∗n(si) = 0, s∗n(gi) = 0, s∗n(si) = δn,i,

where δi,j is the Kronecker delta. The family {g∗n : n ∈ IN} is a family of
orthogonal idempotents of C∗ such that ε =

∑
n∈IN g

∗
n. The right C-comodule

Cg∗n = k〈gn, sn〉 is indecomposable. Thus the family {g∗n} consits of primitive
idempotents. The coradical C0 = ⊕n∈INkgn, and the simple comodules of C are
of the form kgn = C0ḡ∗n for n ∈ IN . Hence the family {Cg∗n : n ∈ IN} is a full
set of indecomposable injective right C-comodules.

As a consequence of the locally finite property in coalgebras and Zorn’s
Lemma, it is shown in [8, Section 2.2] that idempotents may be lifted in the
dual algebra of a coalgebra. Let C be a coalgebra and e an idempotent in C∗.
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We denote by ē the restriction of e to C0. It is known that J = C⊥
0 is the

Jacobson radical of C∗. Let i : C0 → C denotes the inclusion map, and identify
C∗

0 with C∗/J , then i∗ : C∗ → C∗
0
∼= C∗/J is the canonical projection. Then ē =

i∗(e). Now, [8, Proposition 2.2.2] states that if {ui}i∈I is a family of orthogonal
idempotents in C∗

0 , then there exists a family of orthogonal idempotents {ei}i∈I

in C∗ such that ēi = ui for all i ∈ I. If, in addition, ε̄ =
∑

i∈I ui, then ε =
∑

i∈I ei

(the sum e =
∑

i∈I ei makes sense since for a given c ∈ C, only finitely many of
the ei(c)

′s are not zero).

Lemma 1.16 Let C be a cosemisimple coalgebra, and e an idempotent for C.
Then e is primitive if and only if (eCe)∗ is a division algebra.

Proof: If e is primitive, then Ce is a simple C-comodule. Hence (eCe)∗ ∼=
eC∗e ∼= e−C(Ce)∗ ∼= EndC∗(Ce) is a division algebra, by Schur’s Lemma. Con-
versely, suppose that (eCe)∗ is a division algebra, then e is the unique idem-
potent for eCe ∼= e−C(Ce). Thus e is a primitive idempotent for e−C(Ce). By
Proposition 1.13 a), Ce is indecomposable, and by b), e is primitive.

Proposition 1.17 Let e be an idempotent for C. Then e is primitive if and
only if ē = e |C0 is primitive.

Proof: Suppose that e is primitive, then by Proposition 1.13 b), Ce is inde-
composable. It is well-known that the endomorphism ring of an indecompos-
able comodule is local. Hence eC∗e ∼= e−C(Ce)∗ ∼= EndC∗(Ce)op is local. Then
eC∗e/Rad(eC∗e) = eC∗e/eC⊥

0 e
∼= ēC∗

0 ē
∼= (ēC0ē)

∗ is a division algebra. By
Lemma 1.16, ē is primitive.

Conversely, assume that ē is primitive, then C0ē is simple. Hence Ce ∼=
E(C0ē) is indecomposable injective. By Proposition 1.13 c), e is primitive.

Remark 1.18 The foregoing proposition in conjunction with the property of
lifting of idempotents shows that primitive idempotents may be lifted.

Definition 1.19 A coalgebra is said to be colocal if its coradical is the dual of
a division algebra. Equivalently, its dual algebra is a local algebra.

Reasoning as in the proof of Proposition 1.17, we arrive to:

Proposition 1.20 Let e be an idempotent for a coalgebra C. Then Ce is an
indecomposable right C-comodule if and only if eCe is colocal.
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Corollary 1.21 A coalgebra C is indecomposable as a C-comodule if and only
if C is colocal.

Proposition 1.22 i) If e is a central idempotent for a coalgebra C, then eCe
is a subcoalgebra of C.

ii) Let {ei}i∈I be a family of orthogonal idempotents for C such that C =
⊕i∈ICei. Then ε =

∑
i∈I ei.

iii) Let {Ci} be a family of subcoalgebras of C such that C = ⊕i∈ICi. Then
there is a family of orthogonal central idempotents {ei}i∈I for C such that ε =∑

i∈I ei and Ci = eiCei.

Proof: i) Suppose that e is central, and let c∗ ∈ C∗. Then, 〈c∗, ece〉 =
〈ec∗e, c〉 = 〈ec∗, c〉 = 〈c∗e, c〉. The set (eCe)⊥(C∗) = {c∗ ∈ C∗ : 〈c∗, ece〉 =
0, ∀c ∈ C} = {c∗ ∈ C∗ : ec∗e = ec∗ = c∗e = 0} is a two-sided ideal of C∗.
Hence eCe is a subcoalgebra of C.

ii) Given c ∈ C, c =
∑n

j=1 cjeij =
∑n

j=1

∑
(cj)〈eij , cj(1)〉cj(2) for some i1, ..., in ∈

I and cj ∈ Cij for all j = 1, .., n. If l 6= i1, ..., in, then el(c) =
∑n

j=1

∑
(cj)〈eij , cj(1)〉

〈el, cj(2)〉 = 0. Now, ε(c) =
∑n

j=1〈eij , cj〉 = 〈∑n
j=1 eij , c〉 = 〈∑i∈I ei, c〉.

iii) For every i ∈ I, let εi be the counit of each Ci. The family {εi}i∈I verifies
the required condition.

Remark 1.23 As a consequence of the proposition 1.22, we give an alterna-
tive proof of the following fact: If C is a cocommutative coalgebra, then C is
indecomposable (as coalgebra) implies that C is irreducible. A proof appears
in [17, Remark 2.3].

Assume that C is indecomposable. In view of Proposition 1.22 iii), ε is
the unique central idempotent in C∗. Since C is cocommutative, the lifting of
idempotents property forces ε |C0 is the unique idempotent in C∗

0 . Then C0 is
simple and thus C is irreducible.

Remark 1.24 The theory of idempotents just expounded allows to obtain eas-
ily Green’s block decomposition for coalgebras [12].
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2 Strong equivalences

A right comodule M over a coalgebra C is said to be an ingenerator if it is
a finitely cogenerated injective cogenerator. The coalgebra C is said [9] to be
strongly equivalent to D if MC is equivalent to MD via inverse equivalences
f : MC →MD and g : MD →MC such that f(C) is an ingenerator in MD

and g(D) is an ingenerator in MC . In [9] it was proved that MC is strongly
equivalent to MD if and only if C∗M is Morita equivalent to D∗M via functors
F : C∗M → D∗M and G : D∗M → C∗M satisfying F (MC) ⊆ MD and
G(MD) ⊆MC .

An example of this kind of equivalences is that between a coalgebra C and
any matrix coalgebra of order n over C, M c(C, n). We recall the definition of
the matrix coalgebra. Let M c(k, n) be the vector space generated by the set of
symbols {xij : 1 ≤ i, j ≤ n}. The maps

∆(xij) =
n∑

l=1

xil ⊗ xlj, ε(xij) = δij,

endow to M c(k, n) with a coalgebra structure. The dual of this coalgebra is the
matrix algebra of order n. Let sij be the matrix with 1 in the position (i, j)
and zero elsewhere. Then sij(xlm) = δilδjm.

For a coalgebra C, the matrix coalgebra of order n over C, denoted by
M c(C, n) is defined as C⊗M c(k, n). The dual of M c(C, n) is the matrix algebra
Mn(C∗). For a vector space W of dimension n, it was proved in [3] that,
e−C(C ⊗W ) ∼= M c(C, n).

Proposition 2.1 Let M ∈MC be quasi-finite, and D = e−C(M).

i) If d is an idempotent for D, then e−C(Md) ∼= dDd.

ii) If M is finitely cogenerated and injective, then there is a positive integer
n and an idempotent e ∈Mn(C∗) such that D ∼= eM c(C, n)e.

Proof: i) In order to prove i), we first recall the following result which may be
found in [15, Proposition 5.9]. Let R be a ring, M a left R-module and e an
idempotent in S = EndR(M). The map Ψ : eSe→ EndR(Me), ese 7→ ψ(ese) :
xe 7→ xese is a ring isomorphism.

We know that Md is a (dDd,C)-bicomodule where the left structure is
given by the map ρ− : Md → dDd ⊗Md,md 7→ ∑

(m) dm(−1)d ⊗ m(0)d. By
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the universal property of e−C(Md) (see [1, 1.18]), there is a coalgebra map
λ : e−C(Md) → dDd such that (λ ⊗ 1)ρ− = θMd. We identify (dDd)∗ ∼= dD∗d
and e−C(Md)∗ ∼= EndC∗(Md) via Φ−1 as in Lemma 1.11. Let ϕ ∈ D∗, then,

〈Φ−1(λ∗(dϕd)),md〉 = 〈(λ∗(dϕd)⊗ 1)θMd,md〉
= 〈((dϕd)⊗ 1)(λ⊗ 1)θMd,md〉
= 〈((dϕd)⊗ 1)ρ−,md〉
= (md)(dϕd).

Hence λ∗ is an isomorphism, and thus, λ is an isomorphism.

ii) Since M is finitely cogenerated and injective, there is a vector space W
of dimension n such that M is a direct summand of C ⊗W . There exists an
idempotent e ∈Mn(C∗) such that M ∼= (C ⊗W )e. From the isomorphism that
e−C(C ⊗W ) ∼= M c(C, n) and i), it follows that e−C(M) ∼= eM c(C, n)e.

Example 2.2 Write eij = ε ⊗ si,j in Mn(C∗). The (C,M c(C, n))-bicomodule
M c(C, n)e11 may be identified with C ⊗W , where W = k{x11, ..., x1n}. Sim-
ilarly, e11M

c(C, n) is identified with C ⊗ V for V = k{x11, ..., xn1}. Let e
be an idempotent for M c(C, n), and consider M = eM c(C, n)e11 and N =
e11M

c(C, n)e which are (C, eM c(C, n)e) and (eM c(C, n)e, C)-bicomodules re-
spectively via the maps:

ρ+
M(e(c⊗ x1i)) =

∑
(c) c(1) ⊗ e(c(2) ⊗ x1i)

ρ−M(e(c⊗ x1i)) =
∑

(c)

∑n
l=1 e(c(1) ⊗ x1k)⊗ e(c(2) ⊗ xli)e

ρ+
N((c⊗ xi1)e) =

∑
(c)(c(1) ⊗ xi1)e⊗ c(2)

ρ−N((c⊗ xi1)e) =
∑

(c)

∑n
l=1 e(c(1) ⊗ xil)e⊗ (c(2) ⊗ xl1)e

We define

f : C →M2eMc(C,n)eN, c 7→ ∑
(c)

∑n
i=1 e(c(1) ⊗ x1i)⊗ (c(2) ⊗ xi1)e

g : eM c(C, n)e→ N2CM, e(c⊗ xij)e 7→
∑

(c)(c(1) ⊗ xi1)e⊗ e(c(2) ⊗ x1j)

One may check that (C, eM c(C, n)e,M,N, f, g) is a Morita-Takeuchi context.

Proposition 2.3 The foregoing Morita-Takeuchi context is strict if and only
if Mn(C∗)eMn(C∗) = Mn(C∗).
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Proof: ⇐) Let c ∈ C such that

f(c) =
n∑

i=1

∑
(c)

e(c(1) ⊗ x1i)⊗ (c(2) ⊗ xi1)e = 0.

Let α ∈ Mn(C∗) be arbitrary. By hypothesis, there are φ, ψ ∈ Mn(C∗) such
that α = φeψ. Applying φ⊗ ψ to the foregoing equality yields:

0 =
∑n

i=1

∑
(c)〈φ, e(c(1) ⊗ x1i)〉〈ψ, (c(2) ⊗ xi1)e〉

=
∑n

i=1〈φe, c(1) ⊗ x1i〉〈eψ, c(2) ⊗ xi1〉
= 〈φeψ, c⊗ x11〉
= 〈α, c⊗ x11〉.

Then c⊗ x11 = 0, and thus, c = 0. Hence f is injective.

We prove now that g is injective. In fact, we are going to prove that g
is always injective, without further hypothesis. Let x = e(

∑
i,j cij ⊗ xij)e ∈

eM c(C, n)e verifying

g(x) =
∑

(cij(1) ⊗ xi1)e⊗ e(cij(2) ⊗ x1j) = 0.

Let c∗ ∈ C∗ and u, v ∈ {1, ..., n} be arbitrary. Then,

〈e(c∗ ⊗ suv)e, x〉 = 〈e(c∗ ⊗ suv)e,
∑

i,j cij ⊗ xij〉
= 〈e(c∗ ⊗ su1)e1ve,

∑
i,j cij ⊗ xij〉

= 〈e(c∗ ⊗ su1)e11e11e1ve,
∑

i,j cij ⊗ xij〉
=

∑〈e(c∗ ⊗ su1)e11, cij(1) ⊗ xil〉〈e11e1ve, cij(2) ⊗ xlj〉
=

∑〈c∗ ⊗ su1, e11(cij(1) ⊗ xil)e〉〈e1v, e(cij(2) ⊗ xlj)e11〉
=

∑〈c∗ ⊗ su1, (cij(1) ⊗ xi1)e〉〈e1v, e(cij(2) ⊗ x1j)〉
= 0.

Hence x = 0, and thus g is injective.

⇒) Suppose that the Morita-Takeuchi context is strict. By [1, Theorem
2.5], M is an injective cogenerator for MC . Since M is finitely cogenerated,
we get that M is an ingenerator for MC . Similarly, N is an ingenerator as
eM c(C, n)e-comodule. Hence C is strongly equivalent to eM c(C, n)e. By [9,
Theorem 5], C∗ is Morita equivalent to eMn(C∗)e via the functors

M∗ ⊗C∗ − : C∗M→ eMn(C∗)eM, N∗ ⊗eMn(C∗)e − : eMn(C∗)eM→ C∗M.
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We may identify M∗ (resp. N∗) with eMn(C∗)e11 (resp. e11Mn(C∗)e), and C∗

with e11Mn(C∗)e11. Since both are generators, by [18, 5.3, page 81],

e11Mn(C∗)e11 = C∗ = (e11Mn(C∗)e)(eMn(C∗)e11).

Mn(C∗)eMn(C∗) is a two-sided ideal ofMn(C∗) containing to e11. ThenMn(C∗)e
Mn(C∗) = Mn(C∗).

Theorem 2.4 Two coalgebras C and D are strongly equivalent if and only if
there is n ∈ IN and an idempotent e ∈ Mn(C∗) such that D ∼= eM c(C, n)e and
Mn(C∗)eMn(C∗) = Mn(C∗).

Proof: ⇐) By Proposition 2.3, the context of Example 2.2 is strict and M,N
are ingenerators. Then C is strongly equivalent to D.

⇒) Let DMC and CND be the comodules giving the equivalence. By hy-
photesis, MC , ND are finitely cogenerated injective. [1, Theorem 3.5] combined
with Proposition 2.1 yields D ∼= e−C(M) ∼= eM c(C, n)e for some n ∈ IN and
an idempotent e ∈ Mn(C∗). We may identify M (resp. N) with e11M

c(C, n)e
(resp. eM c(C, n)e11). An argument as in the last part of the proof of Proposi-
tion 2.3 gives that Mn(C∗)eMn(C∗) = Mn(C∗).

Remark 2.5 If C and D have finite dimensional coradical, then any equiva-
lence is a strong equivalence, see [9, page 322]. Therefore, Theorem 2.4 applies.

3 Basic coalgebras

The basic coalgebra of a coalgebra C is defined in [6] as the coendomorphisms
coalgebra of a minimal injective cogenerator for MC . In this section, we offer
an easier description in terms of idempotents.

Definition 3.1 i) A family {Mi}i∈I in MC is called a basic set if it is a full
set of indecomposable injective objects in MC.

ii) A family {ei}i∈I consisting of orthogonal primitive idempotents of C∗ is
said to be basic if the set {Cei}i∈I is a basic set in MC.

iii) An idempotent e for C is said to be basic if there exists a basic set of
idempotents {ei}i∈I such that e =

∑
i∈I ei.
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Proposition 3.2 Every coalgebra has a basic idempotent.

Proof: Let {Iα}α∈Γ be a basic set in MC . Since ⊕α∈ΓIα is a direct summand
of C, by Proposition 1.12 and Remark 1.14, there exists a family {ei}i∈I of
primitive orthogonal idempotents such that Iα ∼= Ceα for all α ∈ Γ. The
element e =

∑
α∈Γ eα is a basic idempotent.

Proposition 3.3 For a coalgebra C the following assertions are equivalent:

i) {ei}i∈I is a basic set of idempotents for C.

ii) {ēi}i∈I is a basic set of idempotents for C0.

Proof: i)⇒ ii) By hypothesis, {Cei}i∈I is a basic set of right C-comodules. But
an indecomposable injective comodule is the injective hull of a simple comodule.
Hence the family {soc(Cei)}i∈I is a full set of simple comodules. By Lemma 1.9
ii), soc(Cei) ∼= C0ēi for any i ∈ I. By Proposition 1.17, every ēi is primitive.
Hence {ēi}i∈I is a basic set of idempotents for C0.

ii) ⇒ i) If {C0ēi} is a full set of simple comodules in MC , then {E(C0ēi)} is
a basic set in MC . But E(C0ēi) ∼= Cei by Lemma 1.9 i). Every ei is primitive
by Proposition 1.17.

Definition 3.4 A coalgebra D is said to be a basic coalgebra for C if there
exists a basic idempotent e for C such that D ∼= eCe as coalgebras.

Proposition 3.5 Any coalgebra has a basic coalgebra which is unique up to
isomorphisms.

Proof: The existence is deduced from Proposition 3.2. Suppose now that C is
a coalgebra and there are basic idempotents e, e′. Let e =

∑
i∈I ei, e

′ =
∑

i∈I e
′
i

where {ei}i∈I , {e′i}i∈I are basic sets of idempotents. Then, Ce = ⊕i∈ICei
∼= ⊕i∈ICe

′
i = Ce′. Using Corollary 1.4, eCe ∼= e−C(Ce) ∼= e−C(Ce′) ∼= e′Ce′.

Proposition 3.6 Any coalgebra is Morita-Takeuchi equivalent to its basic coal-
gebra. Moreover, two coalgebras are Morita-Takeuchi equivalent if and only if
their basic coalgebras are isomorphic.
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Proof: Let e be a basic idempotent for C and {ei}i∈I be a basic set of idem-
potents such that e =

∑
i∈I ei. Since Ce = ⊕i∈ICei and {Cei}i∈I is basic set in

MC , Ce is a cogenerator. By Corollary 1.8, C is Morita-Takeuchi equivalent to
eCe.

We prove the second claim. Let F : MC → MD be an equivalence,
and M ∈ MC be quasi-finite. The functors h−C(M,−) : MC → Mk and
h−D(F (M), F (−)) : MC → Mk are naturally equivalent. From this, it is de-
duced that e−C(M) ∼= e−D(F (M)).

The family {F (Cei)}i∈I is basic set in MD. Let {di}i∈I be a basic set of
idempotents such that F (Cei) ∼= Ddi for all i ∈ I, and consider the basic
idempotent d =

∑
i∈I di. Then, eCe ∼= e−C(Ce) ∼= e−D(F (Ce)) ∼= e−D(Dd) ∼=

dDd. The other part is clear.

Corollary 3.7 If C is Morita-Takeuchi equivalent to D, then C0 is Morita-
Takeuchi equivalent to D0.

Proof: Let e, d be basic idempotents for C and D respectively and consider
its basic coalgebras eCe, dDd. From Proposition 3.3, d̄, ē are basic idempotents
for D0 and C0 respectively. Then d̄Dd̄, ēCē are basic coalgebras for D0 and
C0 respectively. If C is Morita-Takeuchi equivalent to D, by Proposition 3.6
dDd ∼= eCe. Then d̄Dd̄ = (dDd)0

∼= (eCe)0 = ēCē. Proposition 3.6 yields that
C0 is Morita-Takeuchi equivalent to D0.

Definition 3.8 A coalgebra is said to be basic if the counit is a basic idempotent
for it.

Proposition 3.9 The basic coalgebra of any coalgebra is basic.

Proof: Let e =
∑

i∈I ei be a basic idempotent for C where {ei}i∈I is a basic set
of idempotents. Then the functor h−C(Ce,−) : MC →MeCe is an equivalence.
Since the family {Cei} is a basic set in MC , the family {h−C(Ce,Cei)}i∈I is a
basic set in MeCe. But, by Corollary 1.6 ii), h−C(Ce,Cei) ∼= eCei = (eCe)ei.
Note that ei is an idempotent in eCe since eeie = ei. For c ∈ C,

〈e2i , ece〉 =
∑

(c)〈ei, ec(1)e〉〈ei, ec(2)e〉 =
∑

(c)〈eeie, c(1)〉〈eeie, c(2)〉
=

∑
(c)〈ei, c(1)〉〈ei, c(2)〉 = 〈ei, c〉 = 〈eeie, c〉 = 〈ei, ece〉.
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We recall from [6] that a coalgebra is said to be basic if the dual of any
simple subcoalgebra is a division algebra. We see that our definition of basic
coalgebra agrees with that.

Theorem 3.10 A coalgebra C is basic if and only if the dual of any simple
subcoalgebra of C is a division algebra.

Proof: Suppose that ε =
∑

i∈I ei where {ei}i∈I is a basic set of idempotents
for C. Then C = ⊕i∈ICei. From Proposition 3.3, {ēi}i∈I is a basic set of
idempotents for C0. Since ε̄ =

∑
i∈I ēi, C0 = ⊕i∈IC0ēi. Each C0ēi is a simple

comodule, and its isotypic component consists only of itself because {ēi}i∈I is
a basic set. Hence C0ēi is a simple subcoalgebra for every i ∈ I. Any simple
subcoalgebra is also of this form because C0 = ⊕i∈IC0ēi. Then any simple
subcoalgebra is simple (indecomposable) as comodule. Corollary 1.21 yields
that it is isomorphic to a division algebra.

Conversely, suppose now that the dual of any simple subcoalgebra is a divi-
sion algebra. Then every simple subcoalgebra is simple as comodule by Corol-
lary 1.21, and they represent all the simples of MC . We may find a basic set
{e′i}i∈I of idempotents for C0 such that C0 = ⊕i∈IC0e

′
i. By Lemma 1.22 i),

ε̄ =
∑

i∈I e
′
i. From Proposition 3.3, we may find a basic set {ei}i∈I of idempo-

tents for C such that ε =
∑

i∈I ei and ēi = e′i for all i ∈ I. Therefore ε is a basic
idempotent.

It is well-known that any coalgebra decomposes as direct sum of indecom-
posable subcoalgebras. In the following result we see that the associated basic
coalgebra may be recovered from the basic coalgebra of each indecomposable
one. Let C = ⊕i∈ICi and D = ⊕i∈IDi be coalgebra decompositions of two
coalgebras C and D. If Ci is Morita-Takeuchi equivalent to Di for every i ∈ I,
then C is Morita-Takeuchi equivalent to D (see [20]).

Remark 3.11 The preceding result may be understaken in a categorical frame.
An equivalence between the categories of right comodules over C and D induces
an equivalence between the full subcategories of semisimple objects of these
categories. But these categories may be identified to the categories of right
comodules over the coradicals C0 and D0, see [19, Proposition 2.5.3, Example
3.1.2].
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Corollary 3.12 Let C be a coalgebra and B its basic coalgebra. Let {Ci}i∈I be
a family of indecomposable subcoalgebras of C such that C = ⊕i∈ICi. For every
i ∈ I, let Bi be the basic coalgebra of Ci. Then B ∼= ⊕i∈IBi.

Proof: Let D = ⊕i∈IBi. It is deduced that D is basic from Theorem 3.10. By
Proposition 3.6, each Ci is Morita-Takeuchi equivalent to Bi. Therefore C is
Morita-Takeuchi equivalent to D. Proposition 3.6 yields that B ∼= D.

Corollary 3.13 Let C be a coalgebra and B its basic coalgebra. Suppose that
C0

∼= ⊕i∈IM
c(Di, ni) where the D′

is are division algebras and the n′is ∈ IN .
Then B0

∼= ⊕i∈IDi.

Proof: As in the proof of Corollary 3.7, B0 is the basic coalgebra for C0. In
light of the foregoing corollary, D = ⊕i∈IDi is a basic colgebra for C0. Then
B0

∼= ⊕i∈IDi.
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