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Abstract

We show that the Brauer group BM(k, Hν , Rs,β) of the quasitrian-
gular Hopf algebra (Hν , Rs,β) is a direct product of the additive group
of the field k and the classical Brauer group Bθs(k,Z2ν) associated to
the bicharacter θs on Z2ν defined by θs(x, y) = ωsxy, with ω a 2ν-th
root of unity.

1 Introduction

Let k be a field and H be a Hopf algebra over k with bijective antipode. The

Brauer group of H, denoted by BQ(k,H), was introduced in [4] and later on

∗Corresponding author
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studied in [5], [23], and [25]. This Brauer group is a special case of the Brauer

group of a braided monoidal category introduced in [24]. In fact, BQ(k,H) is

the Brauer group of the category YDH of Yetter-Drinfel’d modules over H. If

(H,R) is a quasitriangular Hopf algebra the category of left H-modules HM
is a braided monoidal subcategory of YDH and Br(HM) is a subgroup of

BQ(k,H), denoted by BM(k,H,R) . Dually, if (H, r) is a coquasitriangular

Hopf algebra, the category MH of right H-comodules is a braided monoidal

subcategory of YDH . The Brauer group Br(MH) is a subgroup of BQ(k,H),

denoted by BC(k,H, r). In this paper we compute BM and BC for all the

quasitriangular structures (and coquasitriangular structures) of the family

of Hopf algebras Hν = 〈g, x : g2ν = 1, x2 = 0, gx + xg = 0〉 with ν an odd

natural number, g a group-like element and x a (gν , 1)-primitive element. The

antipode is defined by S(g) = g−1, S(x) = gνx. This family of Hopf algebras

was introduced by Radford in [20] and they are a generalization of Sweedler

Hopf algebra H4. The Hopf algebras Hν have a family of quasitriangular

structures

Rs,β =
1

2ν

(
2ν−1∑
i,l=0

ω−ilgi ⊗ gsl

)
+

β

2ν

(
2ν−1∑
i,l=0

ω−ilgix⊗ gsl+νx

)
, (1.1)

where β ∈ k and 1 ≤ s ≤ 2ν is odd. The Brauer group of Sweedler Hopf

algebra H4 and the quasitriangular structure R0, in our notation ν = 1, R1,0,

was computed in [24]. It turns out to be a direct sum of the additive group of

the field (k,+) and the classical Brauer-Wall group of k. The Brauer group

corresponding to ν = 1 and t = β is isomorphic to the aforementioned, as it

was shown in [7].

Since Hν is self-dual each quasitriangular structure Rs,β can be seen as

a coquasitriangular structure rs,β and BC(k,Hν , rs,β) ∼= BM(k,Hν , Rs,β). In

order to compute BM(k,Hν , Rs,β) we first prove that BM(k,Hν , Rs,β) and

BM(k,Hν , Rs,0) are isomorphic. This is achieved showing that (Hν , Rs,0) and

(Hν , Rs,β) are twist-equivalent. By general theory, the categories of comod-

ules for both quasitriangular pairs are then equivalent as braided monoidal
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categories. Then the corresponding Brauer groups are isomorphic. Hence

we are reduced to computing the Brauer group BM(k,Hν , Rs,0). The qu-

asitriangular structure Rs,0 is also a quasitriangular structure on kZ2ν and

the inclusion map i : (kZ2ν , Rs,0) → (Hν , Rs,0) is a quasitriangular map. On

the other hand, the projection map p : (Hν , Rs,0) → (kZ2ν , Rs,0) is also a

quasitriangular map. Since Hν is a Radford’s biproduct by kZ2ν , we have

that p ◦ i = idkZ2ν . Thus the maps induced at the Brauer group level

BM(k,Hν , Rs,0)
i∗

�

p∗

-
BM(k, kZ2ν , Rs,0)

satisfy i∗ ◦ p∗ = 1id. We prove that Ker(i∗) is isomorphic to (k,+) and

that BM(k, kZ2ν , Rs,0) commutes with it. Then BM(k,Hν , Rs,0) ∼= (k,+)×
BM(k, kZ2ν , Rs,0). So the computation of BM(k,Hν , Rs,0) reduces to the

computation of BM(k, kZ2ν , Rs,0). The quasitriangular structure Rs,0 on

kZ2ν can be viewed as a bicharacter θs on Z2ν and the Brauer group BM

of kZ2ν with respect to Rs,0 is just the classical Brauer group Bθs(k,Z2ν)

defined in [9],[13], which is a generalization of the Brauer-Wall group, see

[26]. The Brauer group Bθs(k,G) for an abelian group G can be described

by an exact sequence due to Childs, see [8] and the conceptual proof in [2].

2 Preliminaries

From now on k stands for a field of characteristic different from 2 and H is a

finite dimensional Hopf algebra with antipode S.Unless otherwise stated all

tensor products will be over the field k. For general facts on Hopf algebras

we refer the reader to [14] and [18].

The Brauer group, see [4], [5]: In this paragraph we recall the construction

of the Brauer group of a quasitriangular Hopf algebra. Suppose that R =∑
R(1) ⊗ R(2) ∈ H ⊗ H is a quasitriangular structure on H. The category

HM of left H-modules is a braided monoidal category with braiding given
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by

ψMN : M ⊗N → N ⊗M, m⊗ n 7→
∑

(R(2) · n)⊗ (R(1) ·m),

for allm ∈M,n ∈ N.Given twoH-module algebras A,B, the braided product

of A and B, denoted by A#B, is an H-module algebra and it is defined as

follows: as an H-module, A#B = A ⊗ B, while the multiplication is given

by

(a#x)(b#y) = aψBA(x#b)y =
∑

a(R(2) · b)#(R(1) · x)y,

for all a, b ∈ A, x, y ∈ B. The H-opposite algebra of A, denoted by A, is equal

to A as anH-module but with multiplication given by ab =
∑

(R(2)·b)(R(1)·a)
for all a, b ∈ A. For a finite dimensional left H-module M , End(M) is an

H-module algebra with the H-structure defined by

(h · f)(m) =
∑

h(1) · f(S(h(2)) ·m).

Similarly, End(M)op is a left H-module algebra with

(h · f)(m) =
∑

h(2) · f(S−1(h(1)) ·m).

An H-module algebra A is called H-Azumaya if it is finite dimensional and

the following H-module algebra maps are isomorphisms:

F : A#A→ End(A), F (a#b̄)(c) =
∑
a(R(2) · c)(R(1) · b),

G : A#A→ End(A)op, G(ā#b)(c) =
∑

(R(2) · a)(R(1) · c)b.

Let Az(H) denote the set of isomorphism classes of H-Azumaya module

algebras. We say that A,B ∈ Az(H) are Brauer equivalent, denoted by A ∼
B, if there exist finite dimensionalH-modules M,N such that A#End(M) ∼=
B#End(N) as H-module algebras. The relation ∼ is an equivalence relation

and the quotient set BM(k,H,R) = Az(H)/ ∼ is a group. Given [A], [B] ∈
BM(k,H,R), the multiplication is [A][B] = [A#B], the inverse is [A]−1 = [A]

and the neutral element is represented by [End(M)] where M is a finite

dimensional H-module.
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The Brauer group BQ(k,H) of the category of Yetter-Drinfel’d modules

is just the Brauer group BM(k,D(H), R) whereD(H) is the Drinfel’d double

of H and R its canonical quasitriangular structure.

For a coquasitriangular Hopf algebra (H, r) the category MH of right

H-comodules is a braided monoidal category with braiding defined by

M ⊗N → N ⊗M, m⊗ n 7→
∑

n(0) ⊗m(0)r(n(1) ⊗m(1)),

for all m ∈ M,n ∈ N. Since H is finite dimensional, the group BC(k,H, r)

is isomorphic to BM(k,H∗, R) where H∗ is the dual Hopf algebra of H

and R is the quasitriangular structure of H∗ induced by r. When H is

the group algebra of an abelian group G then, identifying kG with (kG)∗ a

dual quasitriangular structure r on (kG)∗ is nothing but a bicharacter r on

G. It turns out that BM(k, kG, r∗) ∼= Bφ(k,G), the Brauer group of graded

Azumaya algebras introduced in [9] and [13]. The group Bφ(k,G) is described

by an exact sequence having the classical Brauer group of the field Br(k) as

a kernel and a group of G × G-graded Galois extensions Galφ(k, G × G) as

a cokernel (see [8]).

An equivalence of categories: Recall that a convolution invertible map

σ : H ⊗H → k is called a 2-cocycle if it satisfies the following equalities:

i) σ(h⊗ 1) = σ(1⊗ h) = ε(h)1,

ii)
∑
σ(g(1) ⊗ h(1))σ(g(2)h(2) ⊗m) =

∑
σ(h(1) ⊗m(1))σ(gh(2)m(2)),

for all g, h,m ∈ H. It is well-known that a new Hopf algebra Hσ, called the

σ-twist of H, can be associated to H. As a coalgebra Hσ = H while the

multiplication is defined by

a · b =
∑

σ(a(1) ⊗ b(1))a(2)b(2)σ
−1(a(3) ⊗ b(3)) (2.1)

for all a, b ∈ H. If (H, r) is coquasitriangular, then (Hσ, rσ) is coquasitri-

angular with rσ = στ ∗ r ∗ σ−1 where τ is the usual flip map and ∗ is the

convolution product. It is also well-known that MH is equivalent to MHσ

as a braided monoidal category. As a consequence, their Brauer groups are

isomorphic, i.e., BC(k,H, r) ∼= BC(k,Hσ, rσ), see [7].
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3 The Hopf algebra Hν

Let ν be an odd number and let k be a field containing a primitive 2ν-th

root of unity ω. Let Hν denote the Hopf algebra over k generated by g and

x such that

g2ν = 1, gx+ xg = 0, x2 = 0

with coproduct

∆(g) = g ⊗ g, ∆(x) = x⊗ gν + 1⊗ x

and antipode

S(g) = g−1, S(x) = gνx.

The Hopf algebras of type Hν are a particular case of the family of pointed

Hopf algebras constructed in [20, Section 5.1]. We use a simpler notation

than Radford’s because we consider only the quasitriangular ones. The Hopf

algebraH1 is just the Sweedler Hopf algebraH4. On the other hand, for every

ν, H4 is a subHopf algebra of Hν . Also H4 may be viewed as a factor of Hν

by the Hopf ideal generated by g− gν . This means that Hν can be expressed

as a Radford’s biproduct where the Hopf algebra factor is isomorphic to H4,

see [22]. We can also consider Hν as a Radford’s biproduct where the Hopf

algebra factor is the group algebra of Z2ν , the cyclic group of order 2ν. Note

that kZ2ν is a subHopf algebra of Hν and a factor Hopf algebra by mapping

x to 0.

In [14, Proposition 8] it is shown that Hν is self-dual with isomorphism

Θ:Hν → H∗
ν , g 7→ G, x 7→ X, (3.1)

where G is the algebra homomorphism defined by G(g) = ω and G(x) = 0

and X is the linear map defined by X(glxm) = δ1,m for all 0 ≤ l < 2ν and

m ∈ {0, 1}.

The quasitriangular structures on Hν are computed in [14, Corollary

3].The quasitriangular structures are parametrized by pairs (s, β) where s is
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an odd positive integer 1 ≤ s < 2ν and β ∈ k. They are given by formula

(1.1). Observe that Rs,0 can be viewed as a quasitriangular structure on kZ2ν

and that the projection of Hν onto kZ2ν maps (Hν , Rs,β) onto (kZ2ν , Rs,0).

The projection of Hν onto H4 mapping gν to the nontrivial grouplike element

c of H4 maps (Hν , Rs,β) onto (H4, Rβ) where

Rβ =
1

2
(1⊗ 1 + c⊗ 1 + 1⊗ c− c⊗ c) +

β

2
(x⊗ x+ x⊗ cx+ cx⊗ cx− cx⊗ x).

It is not difficult to verify that (Hν , Rs,β) is minimal if and only if β 6= 0

and (s, ν) = 1. It is proved in [20, Corollary 3,c] that (Hν , Rs,β) is triangular

if and only if s = ν. Hence Hν does not admit minimal triangular structures

unless ν 6= 1.

Since Hν is self-dual and quasitriangular, it is coquasitriangular, with a

family of coquasitriangular structures parametrized again by the pairs (s, β)

and given by rs,β := (Θ⊗Θ)(Rs,β). By direct computation one gets:

rs,β =
2ν−1∑

n,m=0

ωsnm(gn)∗ ⊗ (gm)∗ + β
2ν−1∑

n,m=0

(−1)mωsnm(gnx)∗ ⊗ (gmx)∗.

Since Hν is self-dual and pointed, Hν has the Chevalley property, see

[1]. In particular this implies that each pair (Hν , Rs,β) is a Drinfel’d twist

of a modified supergroup algebra, that is, we can twist the coproduct of Hν

in such a way that the quasitriangular structure Rν,β gets twisted into the

trivial quasitriangular structure or into a quasitriangular structure of the

form 1
2
(1⊗ 1 + 1⊗ a+ a⊗ a− a⊗ a) for some grouplike a of order 2. As the

Hopf algebra structure on Hν is essentially unique once the algebra structure

is fixed, it is natural to expect that this twist will not effect the coproduct

but only the quasitriangular structure. We compute explicitly this twist in

the dual perspective, using twists coming from cleft extensions. At the same

time, we show that similar results hold for a general s, i.e., (Hν , Rs,β) is

always a twist of (Hν , Rs,0). Besides we will show that (Hν , Rs,β) can not be

a twist of (Hν , Rs′,β) for s 6= s′.
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We choose the dual point of view and we want to twist the product

and the coquasitriangular structure of Hν by means of a 2-cocycle. Such

cocycles correspond to Hν-cleft extensions of k, i.e., convolution invertible

maps φ:Hν → B where B is an Hν-comodule algebra such that k is the set

of coinvariants of B (see [3] and [10]). With the same techniques as in [12]

we can always make sure that φ satisfies:

φ(gj) = φ(g)j, φ(gjx) = φ(g)jφ(x),

even though φ need not be an algebra map. Let us denote φ(g) = u and

φ(x) = v and let ρ denote the Hν-comodule structure map on B. We have:

ρ(v2) = ρ(φ(x)2) = ρ(φ(x))2 = ((φ⊗ id)∆(x))2

= (v ⊗ gν + 1⊗ x)(v ⊗ gν + 1⊗ x)
= v2 ⊗ 1.

Since the space of coinvariants is k, it follows that v2 = µ ∈ k. Similarly,

one shows that there must hold uv + vu = tuν for some t ∈ k and that

u2ν = λ ∈ k with λ invertible.

Therefore we get a family of comodule algebras B(µ, t, λ) parametrized by

µ, t ∈ k and λ ∈ k, λ 6= 0. We can always choose φ such that λ = φ(1) = 1.

Therefore the extensions are given by the algebras B(µ, t, 1), i.e., the algebras

generated by u and v with relations

u2ν = 1, uv + vu = tuν , v2 = µ,

and with comodule structure

ρ(u) = u⊗ g, ρ(v) = v ⊗ gν + 1⊗ x.

Since Hν is pointed and φ(g) is invertible, φ is convolution invertible. The

convolution inverse is given by:

φ−1(gj) = u−j,

φ−1(gjx) =

{
uν−jv − tu−j for j even,
−uν−jv for j odd.
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It can be directly checked that B(µ, t, 1) is indeed a Hν-cleft extension of k,

hence we can construct the corresponding 2-cocycles:

σ(a⊗ b) =
∑

φ(a(1))φ(b(1))φ
−1(a(2)b(2))

for all a, b ∈ Hν . We obtain:

σ(gj ⊗ gm) = 1,

σ(gj ⊗ gmx) = 0,

σ(gjx⊗ gm) =

{
0 for m even,
t for m odd,

σ(gjx⊗ gmx) = (−1)mµ.

The convolution inverse of σ is easily computed:

σ−1(gj ⊗ gm) = 1,

σ−1(gj ⊗ gmx) = 0,

σ−1(gjx⊗ gm) =

{
0 for m even,
−t for m odd,

σ−1(gjx⊗ gmx) = (−1)m+1µ.

The new product in the twisted Hopf algebra is given by formula (2.1)

and it is:

gr · gm = gr+m

x · g = σ(x⊗ g)gν+1σ−1(gν ⊗ g) + σ(1⊗ g)xgσ−1(gν ⊗ g)
+σ(1⊗ g)gσ−1(x⊗ g)

= tgν+1 + xg + tg

g · x = σ(g ⊗ x)gν+1σ−1(g ⊗ gν) + σ(g ⊗ 1)gxσ−1(g ⊗ gν)
+σ(g ⊗ 1)gσ−1(g ⊗ x)

= gx
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x · x = σ(x⊗ x)gν+νσ−1(gν ⊗ gν) + σ(x⊗ 1)gνxσ−1(gν ⊗ gν)
+σ(x⊗ 1)gνσ−1(gν ⊗ x) + σ(1⊗ x)xgνσ−1(gν ⊗ gν)
+σ(1⊗ 1)x2σ−1(gν ⊗ gν) + σ(1⊗ 1)xgσ−1(gν ⊗ x)
+σ(1⊗ x)gνσ−1(x⊗ gν) + σ(1⊗ 1)xσ−1(x⊗ gν)
+σ(1⊗ 1)1σ−1(x⊗ x)

= µ+ 0− tx− µ
= −tx.

When t = 0 the product in Hν remains unchanged by the twist. For the

twists associated to B(µ, 0, 1), the coquasitriangular structure rs,β is twisted

into (στ)∗ rs,β ∗σ−1, which must be of the form rs′,γ for some odd s′ between

1 and 2ν − 1 and some γ ∈ k. Since

ωs′jl = rs′,γ(g
j ⊗ gl) = ((στ) ∗ rs,β ∗ σ−1)(gj ⊗ gl) = rs,β(gj ⊗ gl) = ωsjl

for every j and l, it follows that s′ = s. To find γ we compute

((στ) ∗ rs,β ∗ σ−1)(gjx⊗ glx) = rs,γ(g
jx⊗ glx) = (−1)lωsklγ.

We obtain

((στ) ∗ rs,β ∗ σ−1)(gjx⊗ glx) =
= σ(glx⊗ gjx)rs,β(gj+ν ⊗ gl+ν)σ−1(gj+ν ⊗ gl+ν)

+σ(gl ⊗ gj)rs,β(gj+ν ⊗ glx)σ−1(gj+ν ⊗ gν)
+σ(gl ⊗ gjx)rs,β(gj+ν ⊗ gl)σ−1(gj+ν ⊗ glx)
+σ(glx⊗ gj)rs,β(gjx⊗ gl+ν)σ−1(gν ⊗ gl+ν)
+σ(gl ⊗ gj)rs,β(gjx⊗ glx)σ−1(gν ⊗ gν)
+σ(gl ⊗ gj)rs,β(gjx⊗ gl)σ−1(gν ⊗ glx)
+σ(glx⊗ gj)rs,β(gj ⊗ gl+ν)σ−1(gjx⊗ gl+ν)
+σ(gl ⊗ gj)rs,β(gj ⊗ glx)σ−1(gjx⊗ gν)
+σ(gl ⊗ gj)rs,β(gj ⊗ gl)σ−1(gjx⊗ glx)

= (−1)kµrs,β(gj+ν ⊗ gl+ν)
+rs,β(gjx⊗ glx) + (−1)l+1rs,β(gj ⊗ gl)µ

= (−1)lωsjl(β − 2µ).

Proposition 3.1 The dual quasitriangular Hopf algebras (Hν , rs,β) with β ∈
k are all twist-equivalent to (Hν , rs,0) for every odd s between 1 and 2ν − 1.

There is no 2-cocycle twisting rs,β into rs′,γ.
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Proof: The first statement is obtained taking the cocycle associated to the

Hν-cleft extension B(β
2
, 0). For the second statement, suppose that there is

a 2-cocycle twisting rs,β into rs′,γ for s 6= s′. Then, by composition of twists,

there would be a 2-cocycle σ twisting rs,0 into rs′,0. This would imply that

rs′,0(g
j ⊗ gl) = ωs′jl = (στ ∗ rs,0 ∗ σ−1)(gj ⊗ gl) = σ(gl ⊗ gj)σ(gj ⊗ gl)−1ωsjl.

Since the restriction of a 2-cocycle on Hν to the group algebra of the cyclic

group generated by g is necessarily symmetric, σ(gl ⊗ gj)σ(gj ⊗ gl)−1 = 1

and therefore s = s′.

From Proposition 3.1 the category of right Hν-comodules with braiding

induced by rs,β is tensor equivalent to the category of right Hν-comodules

with braided induced by rs,0. The invariance of the Brauer group under

equivalences implies:

Corollary 3.2 For any β ∈ k and any odd 1 ≤ s ≤ 2ν, BC(k,Hν , rs,β) ∼=
BC(k,Hν , rs,0). Dually, BM(k,Hν , Rs,β) ' BM(k,Hν , Rs,0).

4 The Brauer group of (Hν, Rs,β)

In this section we compute the Brauer group BM(k,Hν , Rs,β) for each s

and β. By Corollary 3.2 we are reduced to computing the Brauer group

BM(k,Hν , Rs,0). Our calculation of this group is based on the ideas used in

[23] where the Brauer group of Sweedler Hopf algebra is computed.

Let i : Z2ν → Hν and p : Hν → Z2ν be the canonical inclusion and pro-

jection respectively. Considering Rs,0 as a quasitriangular structure on kZ2ν ,

these maps are quasitriangular maps. They induces group homomorphism

at the Brauer group level

BM(k,Hν , Rs,0)
i∗

�

p∗

-
BM(k, kZ2ν , Rs,0).
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Note that for any Hν-Azumaya module algebra A, i∗ maps [A] into [A] with

A considered as a Z2ν-Azumaya module algebra. Since p◦ i = id, i∗ ◦p∗ = id,

and thus i∗ is surjective. So we need to compute Ker(i∗).

Let α, β and γ ∈ k. We denote by A(α, β, γ) the generalized quaternion

algebra generated by u and v with relations u2 = α, v2 = β and uv+ vu = γ.

This algebra can be endowed with a natural H4-action, the standard H4-

action, given by

g ⇀ u = −u, g ⇀ v = −v, x ⇀ u = 0, x ⇀ v = 1. (4.1)

If the discriminant d = γ2 − 4αβ 6= 0, the generalized quaternion algebra

is called nonsingular. By [23, Proposition 5], A(α, β, γ) is a H4-Azumaya

algebra if and only if it is nonsingular.

Lemma 4.1 Let A = A(α, β, γ) be an Hν-module algebra for which the ac-

tion of the subHopf algebra generated by gν and x is the standard H4-action.

Then:

i) If α 6= 0 or γ 6= 0 the action of g necessarily coincides with the action

of gν;

ii) If α = γ = 0 also the possibility g ⇀ u = ωtu and g ⇀ v = −v + λu

for λ ∈ k and t odd and different from ν can occur.

Proof: i) Let us write g ⇀ u = x1 + x2v + x3u+ x4uv with x1, . . . , x4 ∈ k.
The condition (gx + xg) ⇀ u = 0 yields x2 = x4 = 0. It is easily computed

that for every m ≥ 1

gm ⇀ u = x1(
m−1∑
l=0

xl
3) + xm

3 u. (4.2)

By assumption gν ⇀ u = −u, hence formula (4.2) for m = ν implies that

x1(
ν−1∑
l=0

xl
3) = 0, xν

3 = −1.
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Since x3 is not a νth-root of unity, (
∑ν−1

l=0 x
l
3) 6= 0 and thus x1 = 0. As

x2ν
3 = 1, there is an odd positive integer t < 2ν such that x3 = ωt, hence

g ⇀ u = ωtu.

Let us set g ⇀ v = y1 + y2v + y3u + y4uv, with y1, . . . , y4 ∈ k. The

condition (gx+xg) ⇀ v = 0 yields y2 = −1 and y4 = 0. An easy computation

shows that

gm ⇀ v =

{
v − y3u(

∑m−1
l=0 (−1)lωlt) if m is even,

y1 − v + y3u(
∑m−1

l=0 (−1)lωlt) if m is odd.
(4.3)

By hypothesis gν ⇀ v = −v, so formula (4.3) for m = ν implies

y1 = 0; y3(
ν−1∑
l=0

(−1)lωlt) = 0. (4.4)

Assume that α 6= 0. From the equality α = g ⇀ u2 = (g ⇀ u)2 = ω2tα, we

conclude that ωt = −1, hence t = ν. Replacing ωt = −1 in (4.4) one gets

that y3ν = 0, so y3 = 0 and therefore g ⇀ v = −v, i.e., if α 6= 0 the action

of g coincides with the action of gν .

Suppose now that α = 0. Then from (4.3) and (4.4) we obtain only

g ⇀ u = ωtu, g ⇀ v = −v + y3u.

Assume that γ 6= 0. From the equality

β = g ⇀ v2 = (g ⇀ v)2 = (y3u− v)(y3u− v) = −y3(uv + vu) + β

we get y3 = 0. But then γ = g ⇀ (uv + vu) = −ωt(uv + vu) = −ωtγ. It

follows that ωt = −1, i.e., that t = ν. So the first statement is proved.

ii) It is easily checked that in case α = γ = 0 also the action defined by

g ⇀ u = ωtu, g ⇀ v = −v + λu, x ⇀ u = 0, x ⇀ v = 1

for λ ∈ k and t < 2ν an odd nonnegative integer different from ν yields an

Hν-module algebra structure on A for which gν ⇀ u = −u and gν ⇀ v = −v.
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Lemma 4.2 Let A and B be two Hν-module algebras. The braided prod-

uct A#B with respect to the quasitriangular structure Rs,0 is the same as

the θs-twisted Z2ν-graded product of Z2ν-graded algebras where θs is the Z2ν-

bicharacter given by θs(x, y) = ωsxy. The Hν-opposite algebra Ā of A is the

same as the Z2ν-graded θs-twisted opposite algebra.

Proof: The braiding in A⊗B is determined by the action of Rs,0 and it is

ψAB(c⊗ b) :=
1

2ν

2ν−1∑
i,l=0

ω−il(gsl ⇀ b)⊗ (gi ⇀ c).

The cyclic group Z2ν =< g > acts on A and B and since g2ν = 1 and ω ∈ k,
the action of g on A and B is diagonalizable. The algebras A and B inherit

a Z2ν-grading from the eigenspace decomposition for the action of g, which

are in fact algebra gradings because A and B are Hν-module algebras. We

denote by Aj the eigenspace corresponding to the eigenvalue ωj and we say

that c ∈ A has degree j if c ∈ Aj. Similarly for B. Then, for c ∈ Am and

b ∈ Bn we have

ψAB(c⊗ b) = 1
2ν

∑2ν−1
i,l=0 ω

−ilωslnωimb⊗ c

= 1
2ν

∑2ν−1
l=0 ωsln

∑2ν−1
i=0 ωi(m−l)b⊗ c

= ωsmnb⊗ c.

Hence the braiding is the θs-twisted Z2ν-graded braiding. Since the braided

product and the braided opposite product are completely determined by the

braiding and the product in the algebras, we have the statement.

Remark 4.3 Observe that the braiding is in fact a Z 2ν
(s,ν)

-braiding because

the effect of the braiding on homogeneous elements depends only on the class

modulo 2ν
(s,ν)

of the degrees. Another way to say this is to define the degrees

as deg′(a) = sh if a is an eigenvector of g of eigenvalue ωh. Then it is clear

that the grading is a Z 2ν
(s,ν)

-grading because a degree appears if and only if it

is a multiple of s in Z2ν . With this new definition of grading we see that the

14



braiding induced by Rs,0 can also be seen as the Z 2ν
(s,ν)

-graded θ1-twisted flip

operator with bicharacter θ1(t⊗ y) = ωty.

As the braiding ψBA induced by the quasitriangular structure Rs,0 is nothing

but a Z2ν-graded and θs-twisted flip operator, we can view the Brauer group

BM(k, kZ2ν , Rs,0) as the Brauer group Bθs(k, Z2ν) which is a generalization

of the Brauer-Wall group for any cyclic group Zn with respect to a bicharacter

on Zn (see [9], [13], [19] and [6, pages 329, 341, 423, 434]). In fact, since

kZ2ν ' (kZ2ν)
∗, the dual quasitriangular structures rs,0 on (kZ2ν)

∗ induce

the bicharacter θs on Z2ν . Then

BM(k, kZ2ν , Rs,0) ' BC(k, (kZ2ν)
∗, rs,0) ' Bθs(k,Z2ν)

where the last isomorphism is explained in [5, Lemma 1.2].

We denote by A(α, β, γ;H4) the generalized quaternion algebra A(α, β, γ)

together with the standard action of H4. If A(α, β, γ) is nonsingular then

this uniquely determines a Hν-module algebra structure on A(α, β, γ), which

we call again standard and denote by A(α, β, γ;Hν). We want to describe

which Hν-module algebras with underlying algebra of type A(α, β, γ) are Hν-

Azumaya algebras.The following lemma shows that A(α, β, γ;H4) with the

action extended to Hν in a nonstandard way is not Hν-Azumaya.

Lemma 4.4 The algebra A = A(0, β, 0) with the action given by g ⇀ u =

ωtu with t odd and t 6= ν, g ⇀ v = −v + λu for λ ∈ k, x ⇀ u = 0 and

x ⇀ v = 1, i.e., with the action of Lemma 4.1 ii), is not a Hν-Azumaya

algebra.

Proof: First we observe that if λ 6= 0 we can replace v by v′ = v − λ
(ωt+1)

u

obtaining

(v′)2 = β, uv′ + v′u = 0, u2 = 0

and

g ⇀ u = ωtu, g ⇀ v′ = −v′, x ⇀ u = 0, x ⇀ v′ = 1.

15



The decomposition of A into eigenspaces with respect to the action of g is

given by A0 = k, Aν = kv′, At = ku and At+ν = kuv′ = kuv. If A were an

Hν-Azumaya algebra then its left Hν-center, i.e., the set

{b ∈ A | by = mAψAA(b⊗ y), ∀y ∈ A}

with mA the product in A, would be trivial. But it is easy to check that

y = µ+ µ′u for µ, µ′ ∈ k belongs to the Hν-center of A because

uy = µu = µu+ 0 = mAψAA(u⊗ (µ+ µ′u)),

v′y = µv′ − µ′uv = µv′ + µ′ωsνtuv = mAψAA(v′ ⊗ (µ+ µ′u)),

uvy = µuv + 0 = mAψAA(uv ⊗ (µ+ µ′u)).

Hence A is not Hν-Azumaya.

The next lemma shows when A(α, β, γ) with the standard Hν-action is

Hν-Azumaya.

Lemma 4.5 The algebra A(α, β, γ;Hν) is Hν-Azumaya if and only if d 6= 0.

Proof: The Hν-action on A(α, β, γ;Hν) is the standard action and it is in

fact an action of the quotient Hν/ < gν−g >' H4. Since the quasitriangular

structure Rs,0 is mapped to the quasitriangular structure R0 of H4 under the

projection, the braiding with respect to any Rs,0 is nothing but the braiding

induced by R0, i.e., the Z2-graded flip operator. The algebra A(α, β, γ;Hν)

is Hν-Azumaya with respect to the quasitriangular structure Rs,0 =
∑
R1

s,0⊗
R2

s,0 if and only if the Hν-module algebra maps

F :A(α, β, γ)#A(α, β, γ) → End(A(α, β, γ)),

F (a#b̄)(c) =
∑
a(R2

s,0 ⇀ c)(R1
s,0 ⇀ b),

and
G:A(α, β, γ)#A(α, β, γ) → End(A(α, β, γ))op,

G(ā#b)(c) =
∑

(R2
s,0 ⇀ a)(R1

s,0 ⇀ c)b,

are isomorphisms. Since the actions of g and of gν coincide, the maps F

and G coincide with the similar maps with respect to H4 and R0. Hence
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they are isomorphisms if and only if A(α, β, γ;H4) is H4-Azumaya. By [23,

Proposition 5], this happens if and only if d 6= 0.

If Hν acts on an Azumaya algebra A which is a Hν-module algebra, then

the action is inner by [16], i.e., there is a convolution invertible element

π ∈ Homk(Hν , A) for which

h ⇀ b =
∑

π(h(1))bπ
−1(h(2))

for every h ∈ Hν and every b ∈ A. In general this action is not strongly

inner, i.e., π is not necessarily an algebra homomorphism.

Let us define the induced subalgebra with respect to the action as the

(uniquely determined) algebra generated by u := π−1(gν) and v := π−1(x).

It turns out that this algebra is of the form A(α, β, γ) with α 6= 0. By [23,

Lemma 1], the action of H4 is strongly inner if and only if d = 0 and α is a

square in k. The action of H4 on A is given by:

gν ⇀ b = u−1bu, x ⇀ b = bv − vu−1bu. (4.5)

Lemma 4.6 Let Hν act on an Azumaya algebra A. If the action of Hν is

not strongly inner but the action of g is strongly inner, then the restriction of

the action to H4 is not strongly inner and the action of gν is strongly inner.

Proof: If Hν acts on an Azumaya algebra A then there is a convolution

invertible element π ∈ Homk(Hν , A) for which

h ⇀ b =
∑

π(h(1))bπ
−1(h(2))

for every h ∈ Hν and every b ∈ A. Since the action of g is strongly inner

there exists π:Hν → A for which the restriction to kZ2ν is an algebra ho-

momorphism. This implies that the action of gν is strongly inner. It suffices

to prove that if π is not an algebra homomorphism then the restriction of

π to H4 cannot be an algebra homomorphism. If π is not an algebra ho-

momorphism it will not preserve at least one of the relations x2 = 0 and
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gx+xg = 0. If π(x)2 6= 0 then π|H4 is not an algebra homomorphism and we

are done. Suppose that π does not preserve gx+xg = 0 and that π preserves

gνx+ xgν = 0. We will get to a contradiction. Since

(gx) ⇀ b = g ⇀ (x ⇀ b), ∀b ∈ A

we get

π(g)bπ−1(gx) + π(gx)bπ−1(gν+1) = π(g)(bπ−1(x) + π(x)bπ−1(gν))π(g)−1

for all b ∈ A. As π restricted to kZ2ν is an algebra homomorphism we have

π−1(x) = −π(x)π(g)−ν , π−1(gx) = −π(g)−1π(gx)π(g)−ν−1.

Hence

π(g)[−bπ(x)+π(x)b]π(g)−ν−1 = π(g)[−bπ(g)−1π(gx)+π(g)−1π(gx)b]π(g)−ν−1

for all b ∈ A. Since π(g) is invertible we get

b[−π(x) + π(g)−1π(gx)] = [−π(x) + π(g)−1π(gx)]b ∀b ∈ A.

Since A is central, there exists t1 ∈ k such that π(g)π(x) = π(gx) + t1π(g).

Similarly using

(xg) ⇀ b = −(gx) ⇀ b = x ⇀ (g ⇀ b), ∀b ∈ A

one shows that there exists t2 ∈ k for which π(g)π(x) = −π(gx) + t2π(g).

Therefore,

π(x)π(g) + π(g)π(x) = (t1 + t2)π(g).

It can be proved by induction on m that

π(g)mπ(x) =

{
π(x)π(g)m for m even,
−π(x)π(g)m + (t1 + t2)π(g)m for m odd.

Hence if π restricted to H4 were an algebra map, this would mean that

(t1 + t2)π(g)ν = 0. Since π(g) is invertible this would imply that t1 + t2 = 0,

i.e., the relation gx+ xg = 0 would be preserved by π, a contradiction.
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Lemma 4.7 Let A be an Hν-module Azumaya algebra such that A is an Azu-

maya algebra. Assume that the action of g is strongly inner but the action of

Hν is not strongly inner. Then there exist a nonsingular generalized quater-

nion algebra A(α, β, γ) ⊂ A and an Azumaya subalgebra B of A commuting

with A(α, β, γ) such that

A ' A(α, β, γ)⊗B

as Hν-module algebras.

The action of gν on A(α, β, γ) coincides with the action of g, the action

of gν and x on B is trivial and the action of g on B is a Zν-action. Hence

the action on A is completely determined by an H4-action on A(α, β, γ) and

by a Zν-action on B.

Proof: By Lemma 4.6, H4 does not act on A in a strongly inner way but

gν does. By [23, Corollary 2], A ' A(α, β, γ) ⊗ B as H4-module algebras

where A(α, β, γ) is the (nonsingular) induced subalgebra and B commutes

with A(α, β, γ). It is Azumaya and the action of H4 on A(α, β, γ) is given by

(4.5) while the action of H4 on B is trivial. We need to show that the induced

subalgebra A(α, β, γ) and the subalgebra B are preserved by the action of g.

Since the action of g is strongly inner and that g is grouplike, there exists an

invertible w = π−1(g) ∈ A for which

wν = π−1(g)ν = π(g)−ν = π(g−ν) = π(gν)−1 = π−1(gν) = u

and g ⇀ b = w−1bw for every b ∈ A. Multiplying the equality

0 = (gx+xg) ⇀ b = w−1bvw−w−1vu−1buw+w−1bwv−vu−1w−1bwu (4.6)

by w on the left and using the fact that u and w commute, we obtain

b(vw + wv) = (vw + wv)w−1u−1bwu.

This formula for b = w yields w2v = vw2, hence w2 commutes with A(α, β, γ).

Therefore w2 belongs either to k or to B.
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• If w2 ∈ k then

u = wν = w1+2 ν−1
2 = tw

for some t ∈ k. Hence w ∈ A(α, β, γ) so A(α, β, γ) is Hν-stable. Be-

sides, for every b ∈ B g ⇀ b = w−1bw = u−1bu = b. Hence g acts

trivially on B.

• If w2 ∈ B then u = wν = wb̄ for b̄ = w2 ν−1
2 ∈ B. Since w is invertible,

b̄ is invertible. The action of g on u is trivial because w commutes with

u and the action of g on v is given by:

g ⇀ v = w−1vw = b̄u−1vub̄−1 = (u−1vu) = gν ⇀ v,

so the action of g on the induced subalgebra coincides with the action

of gν . Hence A(α, β, γ) is Hν-stable. For b ∈ B we have

g ⇀ b = w−1bw = b̄u−1bub̄−1 = b̄(gν ⇀ b)b̄−1 = b̄bb̄−1.

Since b̄νbb̄−ν = gν ⇀ b = b, it follows that b̄ν ∈ k. Hence the action of

g on B is determined by a Zν-action on B.

In particular the action of Hν on an Azumaya algebra is completely deter-

mined by an H4-action on a quaternion algebra and a kZν-action on the

Azumaya subalgebra B.

Remark 4.8 Observe that this proof recovers the result of Lemma 4.1 that if

α 6= 0 then the action of g on a generalized quaternion algebra must coincide

with the action of gν .

Corollary 4.9 Let A(α, β, γ) be a quaternion algebra with d = γ2−4αβ 6= 0,

which is an Hν-module algebra. Then

A(α, β, γ) ' A(d,−αd−1, 0;Hν)

as Hν-module algebras.
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Proof: By [23, Lemma 3], A(α, β, γ) ' A(d,−αd−1, 0;H4) as H4-module

algebras. Since d 6= 0, either α or γ is nonzero. Now Lemma 4.1 applies.

Corollary 4.10 Under the hypothesis of Lemma 4.7 on A, the induced sub-

algebra A(α, β, γ) is always nonsingular and it is always a Hν-Azumaya al-

gebra.

Proof: By the discussion at the end of [23, Lemma 1], A(α, β, γ) is always

nonsingular. By Corollary 4.9, A(α, β, γ) ' A(d,−αd−1, 0;H4) asHν-module

algebras. The discriminant of A(d,−αd−1, 0) is equal to 4α 6= 0 because

α = π−1(gν)2 is invertible. By Lemma 4.5, A(α, β, γ) is Hν-Azumaya.

Lemma 4.11 Let A be an Azumaya algebra satisfying the hypothesis of

Lemma 4.7. With notation as before, A = A(α, β, γ;Hν)#B with respect

to every quasitriangular structure of the form Rs,0 as Hν-module algebras.

Moreover, A is Hν-Azumaya if and only if B is Hν-Azumaya.

Proof: By Lemma 4.7 we know that gν acts trivially on B and that g

acts like gν on A(α, β, γ). Hence the gradings induced by the eigenspaces

decomposition for the action of g are:

B =
ν⊕

l=0

B2l, A(α, β, γ;Hν) = A(α, β, γ;Hν)0 ⊕ A(α, β, γ;Hν)ν ,

i.e., the only eigenvalues for g on B are given by even powers of ω while the

only eigenvalues of g on A(α, β, γ;Hν) are given by ω0 = 1 and ων = −1. By

Lemma 4.2 we know that the braided product A(α, β, γ;Hν)#B with respect

to the quasitriangular structure Rs,0 is the θs-twisted graded flip operator

(a#b)(c#d) = ωs(deg c)(deg b)ac#bd

for homogeneous a and b. Since for these algebras ωs(deg b)(deg c) = 1 for every

homogeneous c and b, the braided product coincides with the ordinary tensor

product independently of s.
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By definition A is Hν-Azumaya with respect to Rs,0 if the Hν-module

algebra maps

FA:A#Ā→ End(A), FA(a#b̄)(c) = ωs deg(b) deg(c)acb

for b and c homogeneous and

GA: Ā#A→ End(A)op, GA(ā#b)(c) = ωs deg(a) deg(c)acb

for a and c homogeneous are isomorphisms. By [4, Proposition 2.4.2(c)], as

Hν-module algebras

Ā ' A(α, β, γ)⊗B ' B#A(α, β, γ) ' B ⊗ A(α, β, γ),

where the second isomorphism χ is given on homogeneous elements by

χ(a#b) = ω−s(deg a)(deg b)b̄#ā = b̄#ā,

and the third isomorphism follows by the fact that the braiding between

A(α, β, γ) and B is again trivial. Moreover, if an algebra A is Z2ν-graded,

then also End(A) will be Z2ν-graded: here f ∈ Endk(A) has degree d if for ev-

ery homogeneous element a ∈ A, f(a) is homogeneous of degree d+deg a. By

[4, Proposition 4.3], there is an isomorphism ξ between End(A(α, β, γ)#B)

and End(A(α, β, γ))#End(B) given, on homogeneous elements, by

ξ(f#f ′)(a#b) = ω−s(deg a)(deg f ′)f(a)#f ′(b) = f(a)#f ′(b)

because the grading on End(B) will only have even degrees. If A is Hν-

Azumaya, then

ξ ◦ FA ◦ (idA ⊗ χ−1):A#B#A(α, β, γ) → End(A(α, β, γ))#End(B)

and

GA ◦ (χ−1 ⊗ idA):B#A(α, β, γ)#A→ End(A)op
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are isomorphisms. On homogeneous elements a, c, e ∈ A(α, β, γ), (i.e., of

degree 0 or ν) b, d, f ∈ B (i.e., of even degree) one has

FA ◦ (idA ⊗ χ−1)((a#b)#(d̄#c̄))(e#f) =

= FA((a#b)#(c#d))(e#f)

= ωs(deg(c#d))(deg(e#f))(a#b)(e#f)(c#d)

= ωs(deg(c)+deg(d))(deg(e)+deg(f))(aec#bfd)
= ωs deg(c) deg(e)(aec#bfd)

= ωs deg(c) deg(e)aec#ωsdeg(d) deg(f)bfd

= FA(α,β,γ)(a#c̄)(e)#FB(b#d̄)(f)

where the third equality follows from the first part of the lemma, the fifth

follows from the fact that B has only even degrees and A(α, β, γ) has only

degrees that are multiples of ν. Similarly one proves that

ξ ◦GA ◦ (χ−1#id)((b̄#ā)#(c#d))(e#f) = GA(α,β,γ)(ā#c)(e)#GB(b̄#d)(f).

So, since A(α, β, γ) is Hν-Azumaya by Lemma 4.5 and since we are dealing

with tensor products over the field k, FA and GA are isomorphisms if and

only if FB and GB are so.

Theorem 4.12 The Brauer group BM(k,Hν , Rs,0) is isomorphic to the di-

rect sum of (k,+) and Bθs(k,Z2ν) where θs:Z2ν ×Z2ν → k is the bicharacter

induced on Z2ν by Rs,0.

Proof: We first show that there is a split exact sequence of groups

1 −→ (k,+) −→ BM(k,Hν , Rs,0) −→ Bθs(k,Z2ν) −→ 1. (4.7)

Then we will show that the subgroups on the right and on the left com-

mute. We define a map Φ: (k,+) → BM(k,Hν , Rs,0) by Φ(0) = [M2], the

class of the algebra M2 of 2 × 2 matrices with trivial action, and Φ(α) =

[A(α−1,−α−1, 0;Hν)] for α 6= 0. If α + β = σ 6= 0, then by [23, Proposition
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7] and by Lemma 4.7, A(α−1,−α−1, 0;Hν)#A(β−1,−β−1, 0;Hν) is isomor-

phic to A(σ−1,−σ−1, 0;Hν) ⊗ M2 with trivial H4-action on M2 and with

g-action on M2 given by conjugation by an invertible element b ∈ M2 for

which bν ∈ k. By Cayley-Hamilton Theorem we know that b2 ∈ kb + k,

hence b ∈ k because ν is odd, so the action of Hν on M2 is trivial. Hence

[M2] = [End(P )] = 1 for some Hν-module P with trivial action. Therefore,

for α+ β 6= 0

Φ(α)#Φ(β) =
[
A(σ−1,−σ−1, 0;Hν)

]
= Φ(α+ β).

If α = −β, again by [23, Proposition 7], the H4-action on

A(α−1,−α−1, 0;Hν)#A(−α−1, α−1, 0;Hν)

is strongly inner and the above algebra is a 4 × 4 matrix algebra isomor-

phic, as an H4-module algebra, to End(P ) for some H4-module P . The

action on the vector space P is given by gν .p = up = u−1p and x.p =

−vup for the induced elements u and v identified with the matrices. The

action of g on A(α−1,−α−1, 0;Hν) and on A(−α−1, α−1, 0;Hν) coincides

with the action of gν in view of Lemma 4.1. Then the action of g on

their product coincides with the action of gν so that the action of Hν on

A(α−1,−α−1, 0;Hν)#A(−α−1, α−1, 0;Hν) is also strongly inner. The action

of the matrices u and −vu on P equips P with a Hν-module structure so

that [
A(α−1,−α−1, 0;Hν)#A(−α−1, α−1, 0;Hν)

]
= [End(P )] = 1.

Hence Φ is a group homomorphism. It is injective because if we had

Φ(α) = [A(α−1,−α−1, 0;Hν)] = [1] = [End(X)]

for some Hν-module X, then the action of H4 would be strongly inner, which

is impossible because d 6= 0.
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Let Ψ:BM(k,Hν , Rs,0) → Bθs(k,Z2ν) be the homomorphism given by

forgetting the action of x using the identifications

BM(k, kZ2ν , Rs,0) ' BC(k, k(Z2ν)
∗, rs,0) ' Bθs(k,Z2ν)

where the second is [5, Lemma 1.2]. The homomorphism Ψ is surjective

because a Z2ν-Azumaya algebra becomes a Hν-Azumaya algebra by taking

the action of x to be zero and the braidings induced by Rs,0 and by θs are

the same.

Hence we only need to prove that Φ(k,+) = Ker(Ψ). The kernel of Ψ

consists of matrix algebras on which the action of g is strongly inner. We

check that Φ(k,+) ⊆ Ker(Ψ). We know from Corollary 4.9 that

A(α−1,−α−1, 0;Hν) ' A(4α−2,−4−1α, 0;Hν).

Since 4α−2 is a square the action of gν is strongly inner. By Lemma 4.1, the

action of g and of gν coincide, hence the action of g is strongly inner. The

quaternion algebra is a matrix algebra because 4α−2 is a square.

Now suppose that A is an Hν-Azumaya algebra such that Ψ([A]) = 1 and

[A] 6= 1 in BM(k,Hν , Rs,0). We know that the action of g is strongly inner

because A ' End(X), a matrix algebra, for some X and the action of g on

A is given by conjugation by the matrix representing the action of g on X.

HenceA is Azumaya, andHν acts in a non-strongly inner way onA (otherwise

[A] would be 1 in BM(k,Hν , Rs,0)). By Lemma 4.7, A ' A(α, β, γ)#B.

Since gν acts in a strongly inner way, we can make sure that α = 1 6= 0 is a

square, so the induced subalgebra is a matrix algebra. This implies that B is

a matrix algebra too. The action of g on B is strongly inner and the action

of x is trivial, hence B = End(Y ). By Lemma 4.11 and Corollary 4.10 both

A(1, β, γ) and B are both Hν-Azumaya so that

[A] = [A(1, β, γ)#B] = [A(1, β, γ)][End(Y ] = [A(1, β, γ)]

and A(1, β, γ) is nonsingular.

By Corollary 4.9, [A(1, β, γ)] = [A(d,−d−1, 0;Hν)], i.e., the class of A coin-
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cides with the class of the nonsingular generalized quaternion algebra gen-

erated by u and v with relations uv + vu = 0, u2 = d and v2 = −d−1 and

standard action. If we replace u by u′ = d−1u then the action on the new

basis is still standard and we have

A(d,−d−1, 0;Hν) ' A(d−1,−d−1, 0;Hν).

Hence [A] = [A(d−1,−d−1, 0;Hν)] = Φ(d) so the sequence is exact. The

sequence is split exact because the map

Ψ′:Bθs(k,Z2ν) ' BM(k, kZ2ν , Rs,0) → BM(k,Hν , Rs,0)

obtained by extending the action of kZ2ν to Hν by letting x act as 0 is a

section for Ψ.

Let now A be a representative of a class in (k,+) andB be a representative

of a class in Bθs(k,Z2ν). We want to show that the corresponding classes

commute in the Brauer group. By Lemma 4.2 we know that the braiding

between the two algebras is the same as the θs-twisted Z2ν-graded product

where the grading on A and B is the eigenspace decomposition for the action

of g. Besides we know that the only possible degrees in A are 0 and ν. Hence

the braided product in A#B is given by

(a#b)(c#d) = ωs deg(b) deg(c)ac#bd = ωsν deg(b) deg(c)ac#bd

= (−1)deg(b) deg(c)ac#bd

because ν and s are odd. Therefore

A#B ' A⊗2 B ' B ⊗2 A ' B#A

where ⊗2 denotes the Z2-graded tensor product and the second isomorphism

holds because the Z2-graded flip is an algebra isomorphism (the category of

Z2-graded modules with Z2-graded tensor product is symmetric). Hence the

proof.
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Corollary 4.13 Let ν be a product of r distinct primes p1, . . . , pr and let k

be algebraically closed. Then

BM(k,Hν , Rs,0) ' Z2 × ...× Z2︸ ︷︷ ︸
r+1 times

×(k,+).

Proof: Following the idea of the proof of [15, Theorem 2.7] one checks that

Bθs(k,Z2ν) ' BW (k)×Bθs1
(k,Zp1)× ...×Bθsr

(k,Zpr)

where BW denotes the Brauer-Wall group of Z2-graded algebras and where

sj = 2sν/pj mod. pj for j = 1, . . . , r. By [13, Corollary 3.2], BW (k) ' Z2

and each Bθsj
(k,Zpj

) ' Z2.
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