
PICARD GROUPS FOR GRADED
COALGEBRAS
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1 Introduction

In the theory of coalgebras, many examples of graded coalgebras appear (dual
of group algebras, symmetric algebras, path coalgebras, etc). Graded coalge-
bras were formally introduced in [NT1] and these have also been studied in
[NT1], [NT2], [DNRV] and [DNR]. The aim of this paper is to introduce some
group invariants for a graded coalgebra. Thus, we study the group of equi-
valences of the category of graded comodules. If C = ⊕g∈GCg is a G-graded
coalgebra, the category of graded comodules grC is isomorphic to the category
of comodules over the smash coproduct C >/ kG (see [DNRV, Th.1.6]). Using
the theory of the Picard group of coalgebras developed in [TZ] the group of
equivalences is described by Pic(C >/ kG).

Moreover, in this note we introduce the notion of graded equivalence in grC

and we describe this kind of equivalences by a graded Picard group grP ic(C).
In order to do this, Morita-Takeuchi theory of equivalences of comodules is
performed to the graded case. As application of this graded theory we are able
to compute new examples of the usual Picard group of a coalgebra.

The paper is organized as follows: in Section 2 we fix notation and give some
preliminaries. In Section 3 we construct a graded co-HOM functor. Section 4
contains the graded version of the Morita-Takeuchi theorem which describes
graded equivalences and in Section 5 we introduce and study the Picard groups
for graded coalgebras.
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2 Preliminaries

Throughout k is a fixed ground field and G is a group with identity element
e. Mk denotes the category of k-vector spaces. All coalgebras, vector spaces
and unadorned ⊗, Hom, etc, are over k.

For a coalgebra C, ∆ and ε denote the comultiplication and the counit,
respectively. The category of right C-comodules is denoted by MC ; for X
in MC we denote the comodule structure by ρX or ωX . For X, Y ∈ MC ,
Com−C(X, Y ) denotes the space of right C-comodule maps from X to Y .
Similarly, CM denotes the category of left C-comodules. For X ∈ CM and
Y ∈ MC , X2CY denotes the cotensor product of X and Y (see [D], [T]).
If D is also a coalgebra, then X is a (D,C)-bicomodule if X ∈ MC via ρX ,
X ∈ DM via Xρ and (1⊗ ρX) Xρ = ( Xρ⊗ 1)ρX (see [D],[T]).

Graded vector spaces: Let grk be the category of graded k-vector spaces,
i.e., the objects are vector spaces V which admit a decomposition as a direct
sum of k-spaces V = ⊕g∈GVg. For V,W ∈ grk a morphism from V to W is
a k-linear map such that f(Vg) ⊆ Wg for all g ∈ G. These maps are called
graded linear maps and the set of graded linear maps from V to W is denoted
by Homgr(V,W ). If V = ⊕g∈GVg ∈ grk and g ∈ G, we can define another
graded vector spaces V (g): as vector space V (g) coincides with V but the
grading of V (g) is V (g)h = Vgh for all h ∈ G. Let Uk : grk → Mk be the
forgetful functor, Uk is an exact functor and it has a right adjoint functor
Fk : Mk → grk. For W ∈ Mk, Fk(W ) = ⊕g∈GW

g with W g = W for all
g ∈ G. If the group G is finite, then Fk is also a left adjoint of Uk. Moreover,
for V ∈ grk, we have FkUk(V ) ∼= ⊕g∈GV (g). It is known that FkUk(k) is a
generator and a cogenerator in grk.

For V,W ∈ grk the graded tensor is given by V⊗grW = ⊕g∈G(V⊗grW )g

where (V⊗grW )g = ⊕ab=gVa ⊗Wb for all g ∈ G and

HOM(V,W ) = ⊕g∈GHomgr(V,W (g)).

Graded coalgebras (See [NT1], [DNRV]): A coalgebra C is called G-graded
coalgebra if C ∈ grk, that is, C = ⊕σ∈GCσ and verifies:

i) ∆(Cσ) ⊆ ∑
λµ=σ Cλ ⊗ Cµ for any σ ∈ G;

ii) ε(Cσ) = 0 for any σ 6= e.
If M is a right C-comodule then M is called a G-graded comodule over C

if M ∈ grk, M = ⊕σ∈GMσ, and ρM(Mσ) ⊆ ∑
λµ=σ Mλ ⊗ Cµ for any σ ∈ G.
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For any element m ∈M we have the decomposition m =
∑

σ∈Gmσ, mσ ∈Mσ

(the sum has only a finite number of nonzero elements). The nonzero elements
mσ, σ ∈ G, are called the homogeneous components of m; mσ is called the
homogeneous component of degree σ and we write deg(mσ) = σ.

Let grC be the category of right graded C-comodules. For M,N ∈ grC

a morphism f : M → N is a graded linear map which is a morphism of
C-comodules. This map is called graded C-colinear map and the set of these
maps is denoted by Comgr−C(M,N). It is easy to verify that grC is an abelian
category. (In fact grC is also a Grothendieck category). Analogously, we can
define Cgr, the category of all left G-graded C-comodules.

Let M = ⊕σ∈GMσ be an object in grC and σ ∈ G. Then, the σ-suspension
of M , M(σ), is again an object in grC . The map M 7→ M(σ) defines an
isomorphism of categories from grC to grC .

For M,N ∈ grC , COM(M,N) = ⊕g∈GComgr−C(M,N(g)). When M is
finite dimensional, COM(M,N) ∼= Com−C(U(M), U(N)).

We write U : grC → MC as the forgetful functor. U is an exact functor
and it has an exact right adjoint functor F : MC → grC . Moreover, if the
group G is finite, then F is also a left adjoint of U . In fact, these functors are
the restriction of Uk and Fk considering grC as a subcategory of grk.

If M = ⊕σ∈GMσ is a graded right C-comodule, for any σ ∈ G we write
πM

σ : M →Mσ as the canonical projection. We have that:

1) If σ, τ ∈ G there exists a unique k-linear map uM
σ,τ : Mστ → Mσ ⊗ Cτ

such that: uM
σ,τπ

M
στ = (πM

σ ⊗ πC
τ )ρM .

2) For any σ, τ, λ ∈ G: (uM
σ,τ ⊗ 1)uM

στ,λ = (1⊗ uC
τ,λ)u

M
σ,τλ.

3) If σ ∈ G, (1⊗ ε)uM
σ,e = 1.

If we write ∆e = uC
e,e : Ce → Ce ⊗ Ce, then (Ce,∆e, ε) is a coalgebra

and πe : C → Ce is a morphism of coalgebras. C = ⊕σ∈GCσ is called a
strongly graded coalgebra if the canonical morphisms uC

σ,τ : Cστ → Cσ⊗Cτ are
monomorphism. C is a strongly graded coalgebra if and only if the coinduced
functor is an equivalence of categories.

Every graded coalgebra C has associated other coalgebra C >/ kG , called
smash coproduct, constructed in the following way: as vector space C >/ kG =
C ⊗ kG, for any homogeneus element c ∈ C and g ∈ G the comultiplication is
∆(c >/ g) =

∑
(c)(c(1) >/ deg(c(2))g) ⊗ (c(2) >/ g) and the counit ε(c >/ g) =

ε(c).

For M ∈ grC we make M into a right C >/ kG-comodule via ρ : M →M⊗
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C >/ kG, m 7→ ∑
(m)m(0) ⊗m(1) >/ deg(m)−1 for homogeneous m ∈ M . Any

morphism f : M → N of graded comodules is also a morphism of C >/ kG-
comodules. Thus, we have defined a functor A : grC → MC>/kG and this
functor verifies that A(⊕g∈GC(g)) ∼= C >/ kG as right C >/ kG-comodules.
In [DNRV, Th. 1.6], it was proved that A defines an isomorphism between
the categories grC and MC>/kG. Hence, the category grC is a locally finite
category (see [T, Def. 4.1]).

Clifford Theory for Graded Coalgebras (See [NT2]): X ∈ grC is called gr-
injective if X is an injective object in the category grC . X ∈ grC is gr-injective
if and only if U(X) is injective in MC . S ∈ grC is called gr-simple if it has no
proper graded subcomodules. Every gr-simple comodule is of finite dimension.

Since the category grC is locally finite, then it is locally noetherian and it
is well-known that an injective object X ∈ grC has a unique decomposition
X = ⊕i∈IXi with every Xi injective indecomposable object. If Q ∈ grC is
injective indecomposable, then Q = Egr(S) where Egr(S) denotes the injective
envelope of S and S is a gr-simple subcomodule of Q. S always exists because
grC is locally finite. Hence every gr-injective comodule X is of the form X =
⊕i∈IE

gr(Si) with Si gr-simple for all i ∈ I.
For every simple right comodule S ∈ MC , there is a gr-simple comodule

S ′ ∈ grC such that S is isomorphic to a C-submodule of S ′.

Co-hom functor (See [T]): Let C,D be coalgebras, a comodule XC is quasi-
finite if Com−C(Y,X) is finite dimensional for all finite dimensional comodules
YC . Let CXD be a bicomodule, then XD is quasi-finite if and only if the functor
−2CX : MC → MD has a left adjoint functor, denoted by h−D(X,−). That
is, for comodules YD and WC ,

Com−C(h−D(X, Y ),W ) ∼= Com−D(Y,W2CX). (1)

Where, h−D(X, Y ) = lim−→
µ
Com−D(Yµ, X)∗ is a right C-comodule, {Yµ} is a

directed family of any finite dimensional subcomodules of YD. Let θ denote
the canonical D-colinear map Y → h−D(X, Y )2CX which corresponds to the
identity map h−D(X, Y ) → h−D(X, Y ) in (1). Similarly, there is a left version
of the above lemma for a quasi-finite comodule CX.

Assume that XD is a quasi-finite comodule. The e−D(X) = h−D(X,X) is a
coalgebra, called the co-endomorphism coalgebra of X. The comultiplication
of e−D(X) corresponds to (1⊗ θ)θ : X → e−D(X)⊗ e−D(X)⊗X in (1) when
C = k, and the counit of e−D(X) corresponds to the identity map 1X . X is

4



a left (e−D(X) −D)-bicomodule with the left comodule structure map θ, the
canonical map X → h−D(X,X)⊗X.

Let CXD be a bicomodule such that XD is quasi-finite. Then there ex-
ists a coalgebra map λ : e−D(X) → C such that the left C-comodule struc-
ture equals (λ ⊗ 1)θ. Conversely, a coalgebra λ : e−D(X) → C makes X
into a (C −D)-bicomodule. Moreover, the (C − C)-bicomodule structures of
e−D(X) through λ coincides with the induced (C − C)-bicomodule structures
of h−D(CXD,C XD).

Morita-Takeuchi (M-T) context (See [T]): A M-T context (C,D, CPD,DQC ,
f, g) consists of coalgebras C,D, bicomodules CPD,DQC , and bicolinear maps
f : C → P2DQ and g : D → Q2CP satisfying the following commutative
diagrams:

P
ρD

> P2DD

Cρ

∨ ∨

12g

C2CP
f21

> P2DQ2CP

Q
ρC

> Q2C

Dρ

∨ ∨

12f

D2Q
g21

> Q2CP2DQ

The context is said to be strict if both f and g are injective (equivalently,
isomorphism). In this case we say that C is M-T equivalent to D, denoted
by C ∼ D. Let PD be a quasi-finite comodule and C = e−D(P ). CPD is
a bicomodule. Set DQC = h−D(P,D), g = θ : D → Q2CP , and f : C ∼=
h−D(P, P2DD) → P2Dh−D(P,D) = P2DQ. Then (C,D, CPD,DQC , f, g) is
a M-T context, where f is injective if and only if PD is injective, and g is
injective if and only if PD is a cogenerator in MD.

The cocenter (See [TVZ]): Let D be a coalgebra and De its enveloping
coalgebra, that is, De = D⊗Dop. View D as a right De-comodule in the usual
way. Then DDe is quasi-finite and the co-endomorphism coalgebra e−De(D)
satisfies the following universal properties:

1.- e−De(D) is a cocommutative coalgebra with a surjective coalgebra map
η : D → e−De(D) which cocommutes with 1D, i.e,

∑
η(d(1)) ⊗ d(2) =

∑
d(2) ⊗

η(d(1)), d ∈ D.
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2.- For any coalgebra E and any coalgebra map f : D → E which co-
commutes with the identity map 1D, there exists a unique coalgebra map
g : e−De(D) → E such that f = gη.

Let (Z(D), εD) denote (e−De(D), ε), called the cocenter of D. From the
above universal property, the cocenter of a coalgebra is unique up to isomor-
phism. A coalgebra map f : D → E is said to be cocentral if f cocommutes
with the identity map 1D, i.e,

∑
f(d(1)) ⊗ d(2) =

∑
f(d(2)) ⊗ d(1), d ∈ D. Let

C be a cocommutative coalgebra, D is said to be a C-coalgebra if there is a
cocentral coalgebra map ε : D → C. If D is cocommutative, then Z(D) ∼= D.

Picard group (See [TZ]): Let C,D be coalgebras. A (C − D)-bicomodule
M is said to be invertible if the functor −2C : MC → MD defines a Morita-
Takeuchi equivalence between MC and MD. The Picard group of C, denoted
by Pick(C) is the multiplicative group consisting of all bicomodule isomor-
phism classes [M ] of invertible comodules CMC . When C is cocommutative,
Pic(C) ∼= Aut(C), the set of automorphism of the coalgebra C.

3 The co-HOM functor

For the rest of the section, C,D,E,Γ are graded coalgebras.

Definition 3.1 Let X ∈ grC.

i) X is said to be quasi-finite in grC if Comgr−C(Y,X) is finite dimensional
for all Y ∈ grC of finite dimension.

ii) X is called gr-quasi-finite if COM(Y,X) is finite dimensional for all
Y ∈ grC of finite dimension.

iii) We say that X is quasi-finite if U(X) is quasi-finite in MC.

The relations among these concepts are the following:
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Proposition 3.2 Let X ∈ grC.

i) If X is gr-quasi-finite then X is quasi-finite in grC. If G is finite, then
the converse is true.

ii) If U(X) is quasi-finite, then X is gr-quasi-finite.

iii) If X is quasi-finite in grC and G is finite, then U(X) is quasi-finite.

Proof: Let Y ∈ grC of finite dimension.
i) The first claim is deduced from Comgr−C(Y,X) ⊆ COM(Y,X). For

the converse, as X is quasi-finite in grC , then Comgr−C(Y (g−1), X) is finite
dimensional for every g ∈ G. Now, since G is finite and COM(Y,X) =
⊕g∈GComgr−C(Y (g−1), X) we deduce that X is gr-quasi-finite.

ii) It is deduced from the fact that COM(Y,X) = Com−C(U(Y ), U(X)),
cf. [NT1, page 478].

iii) IfG is finite then U has a left adjoint functor F , that is, Comgr−C(F (M),
N) ∼= Com−C(M,U(N)) for M ∈ MC and N ∈ grC . Let Y ∈ MC finite di-
mensional. Since G is finite, F (Y ) is finite dimensional and by hypothesis
Comgr−C(F (Y ), X) is finite dimensional. Thus Com−C(Y, U(X)) is finite di-
mensional.

EXAMPLES:

1.- Let G be an infinite group and we write M = ⊕g∈GC(g), next we prove
that M is quasi-finite in grC and however U(M) is not quasi-finite in MC : let
Y be in grC of finite dimension, then

Comgr−C(Y,⊕g∈GC(g)) ∼= Comgr−C(Y, FU(C)) ∼= Com−C(U(Y ), U(C))

Since U(C) is quasi-finite then Comgr−C(Y,⊕g∈GC(g)) is finite dimensional,
that is, M is quasi-finite in grC . However,

Com−C(U(Y ), U(M)) ∼= Com−C(U(Y ),⊕g∈GU(C))
∼= ⊕g∈GCom−C(U(Y ), U(C))

Because G is infinite we have that Com−C(U(Y ), U(M)) is not finite dimen-
sional.

2.- Let G be a torsionfree group and X ∈ grC gr-quasi-finite, then U(X) is
quasi-finite in MC : let S be in MC a simple comodule, since G is a torsionfree
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group, by [NT2, Cor. 4.6, ii)] there is graded simple comodule S ′ ∈ grC such
that U(S ′) = S. Then,

ComC(S, U(X)) ∼= Com−C(U(S ′), U(X)) ∼= Comgr−C(S ′,⊕g∈GX(g))
∼= ⊕g∈GComgr−C(S ′, X(g)) = COM(S ′, X),

where, in the second isomorphism, we have used the right adjoint of U and, in
the third one, that every gr-simple comodule is finite dimensional. COM(S ′, X)
is finite dimensional because X is gr-quasi-finite and thus Com−C(S, U(X)) is
of finite dimension. By [T, Prop. 4.5] U(X) is quasi-finite.

3.- Let X be in grC and we suposse that X is gr-injective. Then, X is
gr-quasi-finite if and only if U(X) is quasi-finite. Let S be in MC a simple
comodule, from [NT2, Cor. 4.6 i)] there is a graded simple comodule S ′ and
an injective C-comodule map f : S → U(S ′). As X is gr-injective, from
[NT2, Cor. 3.4] U(X) is injective and hence the functor Com−C(−, U(X))
is exact. Thus we have a surjective linear map f∗ : Com−C(U(S ′), U(X)) →
Com−C(S, U(X)). Also, Com−C(U(S ′), U(X)) ∼= COM(S ′, X) because S ′

is finite dimensional. Since X is gr-quasi-finite, then COM(S ′, X) is finite
dimensional and hence Com−C(S, U(X)) is finite dimensional. By [T, Prop.
4.5] U(X) is quasi-finite in MC .

Proposition 3.3 Let X ∈ grC, the following assertions are equivalent:

i) X is gr-quasi-finite.

ii) For all gr-simple S ∈ grC, COM(S,X) is finite dimensional.

iii) U(X) is quasi-finite in MC.

Proof: i) ⇒ ii) It is clear because every gr-simple comodule is finite
dimensional.

ii) ⇒ iii) First, we prove that given X ∈ grC such that socgr(X) verifies
ii), then X verifies ii). Let S ∈ grC gr-simple, then COM(S, socgr(X)) ↪→
COM(S,X). COM(S, socgr(X)) = ⊕g∈GComgr−C(S(g−1), socgr(X)) and

COM(S,X) = ⊕g∈GComgr−C(S(g−1), X).
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Since socgr(X) is quasi-finite, there is a finite number of g ∈ G such that
Comgr−C(S(g−1), socgr(X)) 6= {0} and these are finite dimensional. But

Comgr−C(S(g−1), socgr(X)) = Comgr−C(S(g−1), X)

since S(g−1) is simple. Hence COM(S,X) is finite dimensional.
Suppose thatX verifies ii) and we take the injective envelopeX ↪→ Egr(X).

Since X verifies ii) then socgr(X)∼=grsocgr(Egr(X)) verifies ii) and so Egr(X)
satisfies ii). As Egr(X) is injective and satisfies ii), Example 3 yields that
U(Egr(X)) is quasi-finite and injective. Let S ∈ MC be simple and let S ′ ∈ grC

gr-simple such that S ↪→ U(S ′), then the induced map

COM(S ′, Egr(X)) ∼= Com−C(U(S ′), U(Egr(X))) → Com−C(S, U(Egr(X)))

is surjective. Hence Com−C(S, U(Egr(X))) is finite dimensional. Now, since
Com−C(S, U(X)) ↪→ Com−C(S, U(Egr(X))), we obtain that U(X) is quasi-
finite.

iii) ⇒ i) It is ii) of the above proposition.

Lemma 3.4 Let W ∈ grk,X, Y ∈ grC. Then:

i) If Y is finite dimensional, W⊗grCOM(Y,X)∼=grCOM(Y,W ⊗X).

ii) If COM(Y,X) is finite dimensional, then

W⊗grCOM(Y,X)∼=grHOM(COM(Y,X)∗,W ).

iii) With the hypothesis of the above items we have

Comgr−C(Y,W⊗grX) ∼= Homgr(COM(Y,X)∗,W ).

Proof: i) For w ∈ W , f ∈ COM(Y,X) and y ∈ Y , the isomorphism φ is
given by φ(w ⊗ f)(y) = w ⊗ f(y).

ii) For the same preceding elments and h ∈ COM(Y,X)∗ this isomorphism
ϕ is given by ϕ(w ⊗ f)(h) = wh(f).

iii) It follows by the composite of the two above isomorphisms for the
component of degree e.

Proposition 3.5 Let X in grC, the following assertions are equivalents:
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i) X is quasi-finite in grC.

ii) The functor Mk → grC, W → W ⊗X (where the grading in W ⊗X is
(W ⊗X)g = W ⊗Xg for all g ∈ G) has a left adjoint functor.

Proof: This proof is similar to the proof of [T, Proposition 1.3].

Definition 3.6 Let X be in grC quasi-finite in grC, the left adjoint functor
of W → W ⊗X is denoted by Y → hgr−C(X, Y ) and it is called graded co-hom
functor. We have that Comgr−C(Y,W ⊗X) ∼= Homk(hgr−C(X, Y ),W )

Proposition 3.7 Let X be in grC, the following assertions are equivalent:

i) X is gr-quasi-finite.

ii) The functor Mk → grC given by the composite W → W⊗X → FU(W⊗
X) = ⊕g∈G(W ⊗ X)(g) (where the grading in W ⊗ X is the same that
in the above proposition) has a left adjoint functor.

Proof: i) ⇒ ii) For a graded comodule of finite dimension Y note that:

COM(Y,X) ∼= Com−C(U(Y ), U(X))
∼= Comgr−C(Y, FU(X)) ∼= Comgr−C(Y,⊕g∈GX(g))

Taking in acount this fact, the proof is anologous to the proof of [T, Prop.
1.3]. The adjoint is given by lim−→

λ
COM(Yλ, X)∗ where {Yλ}λ∈Λ is a family

of finite dimensional graded subcomodules of Y such that Y = lim−→
λ
Yλ.

Proposition 3.8 For X ∈ grC, the following assertions are equivalent:

i) X is gr-quasi-finite.

ii) The functor grk → grC, W → W ⊗gr X (where the grading in W ⊗gr X
is (W ⊗gr X)g = ⊕ab=gWa⊗Xb for all g ∈ G) has a left adjoint functor.

Proof: i) ⇒ ii) If Y ∈ grC is of finite dimension and W ∈ grk, we know
from Lemma 3.4 that Comgr−C(Y,W ⊗grX) ∼= Homgr(COM(Y,X)∗,W ). Let
Y be in grC and let {Yλ} be a family of finite dimensional graded subcomodules
of Y such that Y = lim−→

λ
Yλ, then we have:
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Comgr−C(Y,W ⊗gr X) ∼= lim←−
λ
Comgr−C(Yλ,W ⊗gr X)

∼= lim←−
λ
Homgr(COM(Yλ, X)∗,W ) ∼= Homgr(lim−→

λ
COM(Yλ, X)∗,W )

ii) ⇒ i) For W ∈ grk, we have that Fk(W )⊗gr X ∼= ⊕g∈G(W ⊗X)(g). We
suppose that the functor grk → grC , W → W ⊗gr X has a left adjoint functor
which is denoted by H−C(X,−), then we prove that the functor Mk → grC ,
W → ⊕g∈G(W ⊗X)(g) has a left adjoint. Let Y ∈ grC and W ∈ Mk, then

Comgr−C(Y,⊕g∈G(W ⊗X)(g)) ∼= Comgr−C(Y, Fk(W )⊗gr X)
∼= Homgr(H−C(X, Y ), Fk(W )) ∼= Homk(Uk(H−C(X, Y )),W )

From the above proposition, we obtain that X is gr-quasi-finite.

Definition 3.9 For a gr-quasi-finite graded comodule X, the functor
H−C(X,−) : grC → grk is called co-HOM functor.

Next, we study some properties of the co-HOM functor H−C(X,−) for a
gr-quasi-finite graded comodule X:

P1. H−C(X, Y ) = ⊕g∈Ghgr−C(X(g), Y ).
P2. (Universal Property): We denote by θ : Y → H−C(X, Y ) ⊗gr X the

graded C-colinear map associated to the identity in H−C(X, Y ). This map
verifies the following: for every W ∈ grk and every graded C-colinear map
f : Y → W ⊗gr X there is a unique graded linear map s : H−C(X, Y ) → W
such that f = (s⊗ 1)θ.

P3. IfX ∈ grC and U(X) is quasi-finite, then Uk(H−C(X, Y )) ∼= h−C(U(X)
, U(Y )) for all Y ∈ grC . Moreover, the following square is commutative:

Comgr−C(Y,W ⊗gr X) ∼= Homgr(H−C(X, Y ),W )

UC

?

Uk

?

Com−C(U(Y ), Uk(W )⊗ U(X))∼=Homk(h−C(U(X), U(Y )), Uk(W ))

The C-colinear map associated to the identity in h−C(U(X), U(Y )) is U(θ)
and with f as in P2, Uk(s) is the unique linear map such that U(f) = (Uk(s)⊗
1)U(θ).
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P4. Let f : X ′ → X and g : Y → Y ′ be graded C-colinear maps where X
and X ′ are gr-quasi-finite. The composite

Y
g

- Y ′ θ - H−C(X ′, Y ′)⊗gr X ′ 1⊗ f
- H−C(X ′, Y ′)⊗gr X

is graded and there exists a unique graded linear map H(f, g) : H−C(X, Y ) →
H−C(X ′, Y ′) such that the above composite is of the form (H(f, g)⊗ 1)θ.

P5. For a gr-quasi-finite graded comoduleX ∈ grC , the functorH−C(X,−)
is right exact and preserves direct sums because it has a right adjoint functor.

P6. A graded (C,D) -bicomodule Y is a (C,D)-bicomodule which is graded
as C-comodule and the structure map Dω : Y → D⊗grY is a graded C-colinear
map. The composite (1 ⊗ θ)Dω is graded C-colinear and by the universal
property of P2 there is a unique graded linear map Dρ : H−C(X, Y ) → D ⊗
H−C(X, Y ) such that (1⊗θ)Dω = (Dρ⊗1)θ. H−C(X,Y ) becomes a left graded
D-comodule with the map Dρ.

If X is a graded (E,C)-bicomodule such that X as graded C-comodule is
gr-quasi-finite and Y is a right graded C-comodule, then there is a unique
graded linear map ρE : H−C(X, Y ) → H−C(X, Y )⊗E such that (1⊗E ω

X)θ =
(ρE ⊗ 1)θ. H−C(X, Y ) becomes a right graded D-comodule with the map ρE.
Moreover, if Y is a graded (D,C)-bicomodule, then H−C(X, Y ) is a graded
(D,E)-bicomodule with the maps ρE and Dρ.

P7 (Graded cotensor): Let X be in grC and Y in Cgr, for g ∈ G we define
(X2

gr
C Y )g = (⊕ab=gXa ⊗ Yb) ∩ (X2CY ) and X2

gr
C Y = ⊕g∈G(X2

gr
C Y )g. The

graded cotensor verifies the following:

1. X2
gr
C C

∼= X as graded C-comodules. The graded isomorphism is in-
duced by the map 1⊗ ε : X ⊗ C → X. Similarly, C2

gr
C X

∼= X for X ∈ Cgr.

2. If f : X → X ′ and g : Y → Y ′ are graded C-colinear maps, then
the graded map f⊗grg : X⊗grY → X ′⊗grY ′ induces a graded linear map
f2

gr
C g : X2

gr
C Y → X ′2

gr
C Y

′.

3. −2
gr
C X : Cgr → grk is a left exact functor.

4. −2
gr
C X commutes with direct sums.

5. If X and Y are graded (E,C) and (C,D)-bicomodules respectively, then
X2

gr
C Y is a graded (E,D)-bicomodule with the maps Eω

X ⊗ 1 and 1⊗ ωY
D.

6. U(X2
gr
C Y ) = U(X)2CU(Y ).

12



P8. In P6 we saw that if X is a graded (E,C)-bicomodule such that X
is gr-quasi-finite as graded C-comodule and Y is a right graded C-comodule,
H−C(X, Y ) is a left graded C-comodule with the only map Dρ : H−C(X, Y ) →
D ⊗ H−C(X, Y ) which verifies (1 ⊗D ωY )θ = (Dρ ⊗ 1)θ. This means that
Im(θ) ⊆ H−C(X, Y )2gr

C X.
If EXC and DYC are graded bicomodules where XC is gr-quasi- finite, then

H−C(X, Y ) is a graded (D,E)-bicomodule and θ : Y → H−C(X, Y )2gr
E X is

graded (D,C)-bicolinear.

Proposition 3.10 For a graded bicomodule DXC, the following assertions are
equivalents:

i) XC is gr-quasi-finite.

ii) The functor MD → MC, Z 7→ Z2
gr
DX has left adjoint functor.

Proof: Using the above properties and Proposition 3.8, this proof is ana-
logous to the proof of [T, Prop. 1.10].

P9. If EXC , DYC and DZE are graded bicomodules where XC is gr-quasi-
finite and f : Y → Z2

gr
DX is a graded (D,C)-bicolinear map, then the graded

associated map u : H−C(X, Y ) → Z is (D,E)-bicolinear.

P10. Suppose that X ∈ grC is gr-quasi-finite and gr-injective, then by
[NT2, Cor. 3.4] U(X) is injective and hence the functor Com−C(−, U(X))
is exact. Since U : grC → MC is exact, the functor Com−C(U(−), U(X)) :
grC → Mk is exact. From the isomorphism

H−C(X, Y )∗ = Homk(lim−→
λ
COM(Yλ, X)∗, k)

∼= lim←−
λ
Homk(COM(Yλ, X)∗, k)

∼= lim←−
λ
COM(Yλ, X)∗∗ ∼= lim←−

λ
COM(Yλ, X)

∼= lim←−
λ
Com−C(U(Yλ), U(X)) ∼= Com−C(U(Y ), U(X))

we obtain that H−C(X,−) is exact when X is gr-injective and gr-quasi-finite.

P11. For graded comodulesXC , ZD and a graded bicomodule DYC withXC

gr-quasi-finite, there exists a unique graded linear map δ : H−C(X,Z2
gr
DY ) →

Z2
gr
DH−C(X, Y ) making the below triangle commutative:

13



Z2
gr
DY

12grθ - Z2
gr
DH−C(X, Y )⊗X

@
@

@

θ @
@

@R �
�

� δ ⊗ 1
�

�
��

H−C(X,Z2
gr
DY )⊗X

If we suppose that U(X) is quasi-finite and XC is gr-inyective and hence
U(X) is injective, then δ is an isomorphism because the above triangle induces
another commutative triangle by forgeting the maps and the objects:

Z2DY
12U(θ)

- Z2Dh−C(X, Y )⊗X
@

@
@

U(θ) @
@

@R �
�

� U(δ)⊗ 1
�

�
��

h−C(X,Z2DY )⊗X

From [T, Prop. 1.14], U(δ) is an isomorphism and therefore δ is a graded
isomorphism. Moreover, ifX,Z are in addition graded bicomodules EXC , ΓZD,
then the map δ is graded (Γ, E)-bicolinear.

P12. LetXC ,WΓ, ΓZD and DYC graded comodules and bicomodules where
U(X) is quasi-finite, then the above map δ verifies the following diagram is
commmutative:

W2
gr
Γ H−C(X,Z2

gr
DY )

12grδ- W2
gr
Γ Z2

gr
DH−C(X, Y )

6 6

δ δ

H−C(X,W2
gr
Γ (Z2

gr
DY ) ∼= H−C(X, (W2

gr
Γ Z)2gr

DY )

P13. (Graded Co-endomorphism coalgebra): Let X in grC gr-quasi-
finite and we write E−C(X) = H−C(X,X). The map (1 ⊗ θ)θ : X →
E−C(X)⊗grE−C(X)⊗grX is graded and there is a unique graded linear map
∆ : E−C(X) → E−C(X)⊗grE−C(X) such that (1⊗ θ)θ = (∆⊗ 1)θ. ∆ verifies
that (∆⊗ 1)∆ = (1⊗∆)∆.
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Viewing k trivially graded (i.e. ke = k and kg = 0 for all g 6= e) we
can identify X∼=grk⊗grX, then the identity map 1X : X → X∼=grk⊗grX is
of the form (ε ⊗ 1)θ for a unique graded linear map ε : E−C(X) → k. Thus
ε(E−C(X)g) = 0 for all g 6= e. The map ε satisfies that (1⊗ ε)∆ = (ε⊗ 1)∆ =
1E−C(X) and so E−C(X) becomes a graded coalgebra with ∆ and ε.

Moreover, if X is a graded (D,C)-bicomodule, for the structure map Dω :
X → D ⊗X there is a unique graded linear map u : E−C(X) → D verifying

Dω = (u⊗ 1)θ. This map is a graded coalgebra map. If we suppose that U(X)
is quasi-finite, then Uk(E−C(X)) ∼= e−C(U(X)).

P14. Similarly, for a left graded gr-quasi-finite comodule we can define
HC−(X,−) : Cgr → grk and EC−(X).

4 Graded Equivalences for Coalgebras

Definition 4.1 Let C,D be graded coalgebras. A linear functor V : grC →
grD is said to be graded if V commutes with the shift, that is, V (X(g))
∼=grV (X)(g) for all g ∈ G.

Proposition 4.2 Let DXC be a graded bicomodule.

i) The graded cotensor functor −2
gr
DX : grD → grC is a graded functor

and U(−2
gr
DX) ∼= U(−)2DU(X).

ii) If U(X)C is quasi-finite the co-HOM functor H−C(X,−) : grC → grD is
a graded functor and U ◦H−C(X,−) ∼= h−C(U(X),−) ◦ U .

Proof: We only have to show that both functors commute with the g-shift
because the other claims are known. Let g ∈ G,

i) If h ∈ G,

(Y (g)2gr
DX)h = (

∑
ab=h Y (g)a ⊗Xb) ∩ (Y2CX)

= (
∑

ab=h Yga ⊗Xb) ∩ (Y2CX)
=

∑
αβ=gh Yα ⊗Xβ ∩ (Y2CX) = (Y2

gr
DX)gh = (Y2

gr
DX)(g)h.

ii)
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hgr−C(X, Y (g)) = lim−→
λ
Comgr−C(Y (g)λ, X)∗ ∼= lim−→

λ
Comgr−C(Yλ(g), X)∗

∼= lim−→
λ
Comgr−C(Yλ, X(g−1))∗ ∼= hgr−C(X(g−1), Y ),

(where in the second isomorphism we have used that the shift Y 7→ Y (g) is an
isomorphism of the category grC). From this, we obtain:

H−C(X, Y (g)) ∼= ⊕h∈G hgr−C(X(h−1), Y (g)) ∼= ⊕h∈G hgr−C(X(h−1)(g−1), Y )
∼= ⊕h∈G hgr−C(X((gh)−1), Y ) ∼= ⊕h∈G H−C(X, Y )gh

∼= H−C(X, Y )(g)

Definition 4.3

i) We say that a graded functor V : grC → grD defines a graded equivalence
if there exists a graded functor V ′ : grD → grC such that V ′V∼=gr1grC

and V V ′∼=gr1grD ; in this case we say that the graded coalgebras are graded
equivalent.

ii) An equivalence L : MC → MD is called a graded equivalence if there is
a graded functor V : grC → grD such that L ◦ U ∼= U ◦ V . In this case,
we say that V is an associated graded functor of L.

Proposition 4.4 Let V : grC → grD be a graded functor. If V is left exact
and commutes with direct sums, then there is a graded bicomodule CPD such
that V (−) ∼= −2

gr
C P .

Proof: We consider k trivially graded, then k⊗grX∼=grX and k(g)⊗grX∼=gr

X(g). Since V is a graded functor which commutes with direct sums and the
above fact we have:

V (⊕g∈Gk(g)⊗grX) ∼= V (⊕g∈GX(g))
∼= ⊕g∈GV (X)(g) ∼= ⊕g∈Gk(g)⊗grV (X)

Let W ∈ grk, since ⊕g∈Gk(g) is a cogenerator of grk there is an exact sequence

0 - W - (⊕g∈Gk(g))
(J) - (⊕g∈Gk(g))

(I).

By tensoring with X and V (X) and applying the above isomorphism we obtain
the below diagram with exact rows and commutative squares:
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0 -V (W⊗grX) -V ( ⊕
g∈G

X(g))
(J) -V ( ⊕

g∈G
X(g))

(I)

? ?

∼=

?

∼=

0 -W⊗grV (X) - ⊕
g∈G

V (X)(g)
(J) - ⊕

g∈G
V (X)(g)

(I)

This diagram yields that V (W⊗grX)∼=grW⊗grV (X).
Let Z ∈ grC , since V is left exact the exact sequence

0 - Z
ρ

- Z⊗grC
ρ⊗1−1⊗∆

- Z⊗grC⊗grC

yields another exact sequence

0 - V (Z)
V (ρ)

- Z⊗grV (C)
ρ⊗1−1⊗V (∆)

- Z⊗grC⊗grV (C)

If we set P = V (C), this means that P is a graded (C,D)-bicomodule with
structure map V (∆) : P → C⊗grP . Since ρ : Z → Z2

gr
C C is an isomorphism

for any Z ∈ grC , then V (Z) ∼= Z2
gr
C V (C) = Z2

gr
C P .

Definition 4.5 A graded Morita-Takeuchi context (C,D, CPD, DQC , f, g)
consists of graded coalgebras C,D, graded bicomodules CPD, DQC, and graded
bicolinear maps f : C → P2

gr
DQ, g : D → Q2

gr
C P satisfying the following

commutative diagrams:

P
ωC

> P2
gr
C C

Dω

∨ ∨

12grg

D2
gr
DP

f2gr1
> P2

gr
C Q2

gr
DP

Q
ωD

> Q2
gr
DD

Cω

∨ ∨

12grf

C2
gr
C Q

g2gr1
> Q2

gr
DP2

gr
C Q

The context is said to be strict if f and g are graded bicolinear isomorphisms.

Remark: If (C,D, P,Q, f, g) is a graded Morita-Takeuchi context, then
the forgotten context (U(C), U(D), U(P ), U(Q), U(f), U(g)) is a Morita-Takeu-
chi context and any of them is strict if and only if the other one is so.
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Theorem 4.6 Let (C,D, P,Q, f, g) be a graded Morita-Takeuchi context and
suppose that f : C → P2

gr
DQ is a monomorphism. Then:

i) f is a graded isomorphism.

ii) The comodules U(P )D and DU(Q) are quasi-finite injective.

iii) The comodules CU(P ) and U(Q)C are cogenerators.

iv) g induces isomorphisms of graded bicomodules

H−D(P,D)∼=grQ HD−(Q,D)∼=grP

v) The structure maps of the graded bicomodules CPD and DQC induces
graded coalgebra isomorphisms,

E−D(P )∼=grC ED−(Q)∼=grC.

Proof: i) The forgotten context verifies that U(f) is injective, and by
[T,Th. 2.5] it follows that U(f) is an isomorphism. Hence f is a graded
isomorphism.

ii) and iii) They follow by [T,Th. 2.5] applied to the forgotten context.

iv) The map g : D → Q2
gr
C P induces a graded (D,C)-bicomodule map

v : H−D(P,D) → Q. Also, the map induced by U(g) : D → Q2CP is u(v) :
h−D(U(P ), U(D)) → U(Q) which is an isomorphism by [T,Th 2.5] (note that
since U(P ) is quasi-finite by ii) , then U(H−D(P,D)) ∼= h−D(U(P ), U(D))).
Thus, we obtain that v is a graded isomorphism. By simmetry,HD−(Q,D)∼=grP
as graded bicomodules.

v) We know from P13 that there is a graded coalgebra map a : E−D(P ) → C
induced by the C-comodule structure map of P . The forgotten map U(a) :
e−D(U(P )) → U(C) is an isomorphism of coalgebras by [T,Th. 2.5] (again, we
have used that U(E

D
(P )) ∼= e−D(U(P )) because U(P ) is quasi-finite). Thus,

a is a graded coalgebra isomorphism.

Remark: Analogously, this theorem has a simmetric version for g.

Lemma 4.7 Let (C,D, P,Q, f, g) be a strict graded Morita-Takeuchi context.
Then, C and D are graded equivalent.
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Proof: Since the forgotten context is a strict Morita-Takeuchi context the
functors

−2CU(P ) : MC → MD h−D(U(P ),−) : MD → MC

are inverse equivalences. We are going to show that the functors associated to
the above ones

−2
gr
C P : grC → grD H−D(P,−) : grD → grC ,

are graded equivalences. Let Z ∈ grC and we consider the following composi-
tion map:

H−D(P,Z2
gr
C P )

δ- Z2
gr
C H−D(P, P )

12gr
C a- Z2

gr
C C

1⊗ ε
- Z

where a : H−D(P, P ) → C is the graded coalgebra map induced by the C-
comodule structure of CPD. From the above theorem, we know that a is an
isomorphism of graded coalgebras and that U(P )D is quasi-finite injective. By
P11 δ is a graded isomorphism and thus the above composition is a graded
isomorphism. Given Z ∈ grD, we have:

H−D(P,Z) ∼= H−D(P,Z2
gr
DD)

δ- Z2
gr
DH−D(P,D) ∼= Z2

gr
DQ

The last isomorphism is given by the preceding theorem and also δ is a graded
isomorphism because U(P ) is quasi-finite injective. Thus,

H−D(P,Z)2gr
C P

∼= Z2
gr
DQ2

gr
C P

12grg
- Z2

gr
DD

∼= Z

Since the context is strict, g is a graded isomorphism. Hence, the func-
tors −2

gr
C P and H−D(P,−) are inverse equivalences and as both functors are

graded, they are graded equivalences.

Let P ∈ grD such that P is gr-quasi-finite and we set C = E−D(P ), P
becomes a graded (C,D)-bicomodule. We write Q = H−D(P,D) and

g = θ : D → Q2
gr
C P

f : C = H−D(P, P ) = H−D(P, P2
gr
DD)

δ- P2
gr
DH−D(P,D) = P2

gr
DQ
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Proposition 4.8 (C,D, P,Q, f, g) is a graded Morita-Takeuchi context.

Proof: f and g are graded bicolinear maps by P11 and P8, f2gr1 = 12grg
by definition of δ and 12grf = g2gr1 by P12. .

The Morita-Takeuchi context constructed above from a gr-quasifinite co-
module P , is called the Morita-Takeuchi context associated to P .

Proposition 4.9 Let P ∈ grD be a gr-quasifinite comodule, and (C,D, P,Q,
f, g) the Morita-Takeuchi context associated to P. Then the context is strict if
and only if U(P ) is an injective cogenerator.

Proof: Since the forgotten context is strict then by [T, Prop. 3.2, 3.3],
U(P ) is an injective cogenerator. Conversely, if U(P ) is an injective cogener-
ator, then by [T, Prop. 3.2, 3.3], U(f) and U(g) are isomorphism, so that f
and g are graded isomorphisms.

Now, we are able to characterize when two graded coalgebras are graded
equivalent.

Theorem 4.10 Let C and D be graded coalgebras by a group G. The following
assertions are equivalent:

i) C and D are graded equivalent.

ii) There exists a graded equivalence L : MC → MD.

iii) There is a graded comodule P ∈ grD such that U(P ) is a quasi-finite
injective cogenerator and E−D(P ) ∼= C as graded coalgebras.

iv) There is a strict graded Morita-Takeuchi context (C,D, P,Q, f, g).

Proof:
i) ⇒ iii) Suppose that V : grC → grD and V ′ : grD → grC are inverse

graded equivalences. From Proposition 4.4, we know that V (−) ∼= −2
gr
C V (C)

and V ′(−) ∼= −2
gr
DV

′(D) and since they are inverse equivalences we have that
V ′ is a left adjoint functor of V and thus V (C) is injective. Moreover, as
−2

gr
C V (C) has a left adjoint, from Proposition 3.10 we conclude that V (C)

is gr-quasi-finite. We set P = V (C). P is an injective gr-quasi-finite graded
D-comodule, from Example 3, U(P ) is a quasi-finite injective D-comodule.
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Since⊕g∈GC(g) is a cogenerator in grC , then V (⊕g∈GC(g)) = ⊕g∈GV (C)(g)
is a cogenerator in grD. Hence D ↪→ ⊕g∈GP (g)(J) and so U(D) ↪→ U(P )(I),
that is, U(P ) is a cogenerator in MD.

Next, we show that E−D(P ) ∼= C as graded coalgebras. For W ∈ grk and
X, Y ∈ grC , with X gr-quasi-finite we have a diagram:

Comgr−C(Y,W⊗grX) ∼= Homgr(H−C(X, Y ),W ) (1)

6

V

?

V −1

Comgr−D(V (Y ),W⊗grV (X))∼=Homgr(H−D(V (X), V (Y )),W ) (2)

Remember that since V is graded, then V (W⊗grX) ∼= W⊗grV (X) and V (C)
is a left graded C-comodule with structure map V (∆) : V (C) → C ⊗ V (C).

We denote by θC : C → H−C(C,C)⊗grC the image of 1H−C(C,C) in (1) and
by θV (C) : V (C) → H−D(V (C), V (C))⊗grV (C) the image of 1H−D(V (C),V (C)) in
(2). By the universal property of the adjoints, there are graded linear maps,
a : H−D(V (C), V (C)) → H−C(C,C) and b : H−C(C,C) → H−D(V (C), V (C))
such that V (θC) = (a⊗ 1)θV (C) and V ′(θV (C)) = (b⊗ 1)θC . It is easy to check
that a and b are inverse to each other and hence they are isomorphism.

The maps ∆ : C → C⊗grC and V (∆) : V (C) → C⊗grV (C) induce
graded coalgebra maps d : H−C(C,C) → C (this is an isomorphism) and
e : H−D(V (C), V (C)) → C such that ∆ = (d⊗ 1)θC and V (∆) = (e⊗ 1)θV (C).
By applying V to ∆ = (d⊗ 1)θC , we have that:

V (∆) = V (d⊗ 1)V (θC) = (d⊗ 1)V (θC)
= (d⊗ 1)(a⊗ 1)θV (C) = (da⊗ 1)θV (C).

The uniqueness of e yields e = da and so e is an isomorphism because d and a
are so. Hence E−D(P ) ∼= C as graded coalgebras.

iii) ⇒ iv) It follows from Proposition 4.9.

iv) ⇒ i) This is Lemma 4.7

iii) ⇒ ii) Since E−D(P )∼=grC as graded coalgebras and U(P ) is quasi-finite
then e−D(U(P )) ∼= C. Thus, U(P ) is a quasi-finite injective cogenerator and
e−D(U(P )) ∼= C. By [T, Th. 3.5] the functor −2CU(P ) : MC → MD is an
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equivalence and this equivalence is graded because it has the associated graded
functor −2

gr
C P .

ii) ⇒ iv) Let L : MC → MD be a graded equivalence with associated
graded functor V : grC → grD. From [T, Prop. 2.1] and Proposition 4.4 we
obtain that L(−) ∼= −2CL(C) and V (−) ∼= 2

gr
C V (C). Since LU(C) is a quasi-

finite injective cogenerator, then UV (C) = LU(C) is a quasi-finite injective
cogenerator. Now we only need to apply Proposition 4.9.

Remark. Theorem 4.10 establishes that two graded coalgebras C and D are
graded equivalent if and only if there is a graded equivalence between MC and
MD. It is natural to ask which is the relationship between C and D graded
equivalent and C and D equivalent. Examples of graded coalgebras C, D such
that C and D are equivalent but not graded equivalent can be constructed
following the same ideas of the examples given in [GG] and [RI], since these
are of finite dimension.

We remember that M ∈ MC is said to be gradable if there is M ′ ∈ grC

such that U(M ′) = M . We denote by G the full subcategory of gradable
C-comodules. We have the following corollaries:

Corollary 4.11 Let C and D be graded coalgebras and V : MC → MD a
graded equivalence, then V (G) is the full subcategory of gradable D-comodules.

Corollary 4.12 Suppose that every quasi-finite injective C-comodule is gra-
dable and C is Morita-Takeuchi equivalent to a coalgebra D. Then, there is a
graded structure on D and C is graded equivalent to D.

5 Picard Groups for Graded Coalgebras

Definition 5.1 Let C be a cocommutative coalgebra.

i) A graded C-coalgebra is a graded coalgebra D = ⊕g∈GDg which is in
addition a C-coalgebra, i.e, there is a cocentral coalgebra map ε : D → C.

ii) Let D,E be graded C-coalgebras, a graded (D,E)-bicomodule over C is a
(D,E)-bicomodule DME over C which is graded, i.e, M = ⊕g∈GMg and
the following square is commutative:
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M ρE-M ⊗ E 1⊗ε-M ⊗ C

?

Dρ

?

=

D ⊗M ε⊗1-C ⊗M τ-M ⊗ C

where τ is the twist map.

iii) A graded (D,E)-bicomodule M over C is called invertible if the functor
−2

gr
DM : grD → grE is a graded equivalence. From Theorem 4.10,

equivalently, there exists a graded (E,D)-bicomodule over C, END, and
graded bicomodule maps f : D → M2

gr
E N and g : E → N2

gr
DM such

that (D,E, DME, END, f, g) is a strict graded Morita-Takeuchi context.
Then, END

∼=grH−E(M,E).

Definition 5.2 Let D be a graded C-coalgebra and E a graded coalgebra.

i) We define grP icC(D) as the set of all graded bicomodule isomorphism
classes [M ] of invertible graded bicomodules DMD over C. This set be-
comes a group with the multiplication induced by the graded cotensor
product,i.e, [M ][N ] = [M2

gr
DN ]. The identity element is [D] and for

[M ] ∈ grP icC(D) the inverse [M ]−1 = H−D(M,D).

ii) grP icent(D) is defined to be grP icZ(D)(D).

iii) We define Picgr(E) = Pick(E >/ kG). (We know that grE ∼= ME>/kG).

Proposition 5.3 Let D be a graded coalgebra, grP ick(D) is a subgroup of
Picgr(D).

Proof: We can identify grP ick(D) with the isomorphism classes of graded
self-equivalences of grD and Picgr(D) with the isomorphism classes of self-
equivalences of grD. Hence grP ic(D) is a subgroup of Picgr(D).

Remark: The theory of Picard group for graded rings presents some addi-
tional dificulties when the group is infinite. Rings with local units and unital
modules over them appear in this setting and they are a fundamental tool
for the computation of some graded Picard groups (see [Be], [BeR1], [BeR2],
[HR] for more information on this topic). The coalgebra case is easier that
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the algebra case because, when the group G is infinite, C >/ kG is a perfectly
well behaved coalgebra with counit. Thus the Picard group theory developed
in [TZ] may be applied to C >/ kG.

Proposition 5.4 Let D,E be graded C-coalgebras and Γ,Λ graded coalgebras.

i) There exist group morphisms φ : grP icC(D) → PicC(D) and
ψ : grP icent(D) → Picent(D).

ii) Suppose that D,E are graded equivalent over C, then grP icC(D) ∼=
grP icC(E), grP icent(D) ∼= grP icent(E).

iii) If Γ, Λ are graded equivalent, then Picgr(Γ) ∼= Picgr(Λ).

iv) If Γ is strongly graded, then Picgr(Γ) ∼= Pic(Γe).

Proof: i) If DMD induces a graded equivalence from grD to grD, then
by Theorem 4.9. U(M) induces an equivalence from MD to MD. Thus,
the map from grP icC(D) to PicC(D), [M ] 7→ [U(M)] is a group morphism.
Analogously, for grP icent(D).

ii) It follows by the same ideas of [TZ, Th. 2.5].

iii) If Γ,Λ are graded equivalent then we have that MΓ>/kG ∼= grΓ ' grΛ ∼=
MΛ>/kG. Thus, Γ >/ kG and Λ >/ kG are Morita-Takeuchi equivalent and
from [TZ, Th. 2.5], Picgr(Γ) ∼= Picgr(Λ).

iv) If Γ is strongly graded, from [NT, Th. 5.4] there is an equivalence of
categories grΓ ' MΓe . Then, we have that MΓ>/kG ∼= grΓ ' MΓe and thus
Γ >/ kG and Γe are Morita-Takeuchi equivalent coalgebras. From [TZ, Th.
2.5], Picgr(Γ) ∼= Pic(Γe).

Let grAutC(D) denote the group of graded C-automorphisms of the graded
C-coalgebra D. An C-automorphism f ∈ grAutC(D) is said to be gr-inner if
there is an unity in D∗

e such that f(d) = (u⊗1⊗u−1)(∆⊗1)∆(d) for all d ∈ D.
We denote by grInnC(D) the group of inner C-automorphisms of D. It is easy
to check that grInnC(D) is a normal subgroup of grAutC(D). The factor group
grAutC(D)/grInnC(D) is called the group of outer C-automorphisms and it
is denoted by grOutC(D).

Let DMD be a graded bicomodule over C and f, g ∈ grAutC(D), we denote
by fMg the bicomodule constructed in the following way: as vector space

fMg = M and the structure maps are defined by:
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Dρ(m) =
∑

(m) f(m(−1))⊗m(0) ρD(m) =
∑

(m)m(0) ⊗ g(m(1))

for all m ∈ M . We have the following fact, f ′(fMg)g′ =f ′f Mgg′ . Analogously
to the non graded case, cf. [TZ, Lem. 2.6], we can prove the following lemma:

Lemma 5.5 Let D be a graded C-coalgebra, f, g, h ∈ grAutC(D) and we con-
sider the (D,D)-bicomodule fDg. Then we have the following isomorphisms
as graded (D,D)-bicomodules:

i) fDg
∼=gr

fhDgh

ii) fD12
gr
D gD1

∼=gr
fgD1

iii) fD1
∼=gr

1D1 ⇔ f ∈ grInnC(D).

Theorem 5.6 Let D be a graded C-coalgebra and E a graded coalgebra. We
consider the smash coproduct associated to E, E >/ kG and we set Inngr(E) =
Inn(E >/ kG), Autgr(E) = Aut(E >/ kG) and Outgr(E) = Autgr(E)/Inngr(E),
then we have exact sequences:

1 -grInnC(D) -grAutC(D) α-grP icC(D)

1 -Inngr(E) -Autgr(E) β -Picgr(E)

where α(f) = [ fD1] for all f ∈ grAutC(D) and β(g) = [ gE >/ kG1] for
all g ∈ Autgr(E). grOutC(D) and Outgr(E) are subgroups of grP icC(D) and
Picgr(E), respectively.

Proof: i),ii) of the above lemma give that α is a well-defined group mor-
phism and iii) gives the exactness of the first sequence. The second sequence
is just [TZ, Th. 2.7] applied to E >/ kG.

Corollary 5.7 Let [M ], [N ] ∈ grP icC(D) and [P ], [Q] ∈ Picgr(E).

i) MD
∼=grND if and only if [N ] ∈ [M ]Im(α), that is, N∼=gr

fM1 as graded
bicomodules for some f ∈ grAut(D).
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ii) PE>/kG
∼= QE>/kG if and only if there is g ∈ Autgr(D) such that Q ∼= gP1

as E >/ kG-bicomodules.

Proof: The first item is analogous to [TZ, Cor. 2.8] and the second is [TZ,
Cor. 2.8] applied to E >/ kG.

Next, we are able to interpret grP icC(D) in terms of graded C-automor-
phisms of D and grP icentD(D) when D is cocommutative and the group G is
abelian.

Let D be a cocommutative C-coalgebra graded by an abelian group G, if M
is a right graded D-comodule with structure map ρD and τ : M⊗D → D⊗M
is the twist map, M becomes a graded left D-comodule with the structure
map Dρ = τρD (Note that if G is not abelian, then Dρ is not graded). Also,
every graded left D-comodule may be viewed as a graded right D-comodule
in the same form. Similar facts happen for the map of graded right and left
D-comodules.

Let DMD be an invertible graded (D,D)-bicomodule over C. The structure
maps ρD : M →M ⊗D and Dρ : M → D⊗M induce isomorphisms of graded
C-coalgebras a and b such that the following triangles are commutative:

M
D
ρ
- D ⊗M

θ

? �
�

� a⊗ 1
�

�
��

E−D(M)⊗M

M
ρ

D- M ⊗D

θ′

? �
�

� 1⊗ b
�

�
��

M ⊗ ED−(M)

We can identify (E−D(M), θ) ∼= (D,
D
ρ) and (ED−(M), θ′) ∼= (D, ρ

D
). We

consider the map τρ
D

: M → D ⊗M which is a left graded D-colinear map,
then there is a unique graded C-coalgebra map u : D → D such that τρ

D
=

(u⊗ 1)
D
ρ. Analogously, for τ

D
ρ : M → M ⊗D there exists a unique graded

C-coalgebra map v : D → D such that τ
D
ρ = (1⊗ v)ρ

D
. We have:

ρ
D

= (1⊗ u)τ
D
ρ = (1⊗ u)(1⊗ v)ρ

D
= (1⊗ uv)ρ

D

D
ρ = (v ⊗ 1)τρ

D
= (v ⊗ 1)(u⊗ 1)

D
ρ = (vu⊗ 1)

D
ρ.

Hence uv = 1
D

and vu = 1
D

and thus u is a graded C-automorphism of D.
So, given [M ] ∈ grP icC(D) there is a unique u

M
∈ grAutC(D) such that

26



τρ
D

= (u
M
⊗ 1)

D
ρ. Thus we can define a map φ : grP icC(D) → grAutC(D)

by φ([M ]) = u
M

.

Theorem 5.8 Let D be a cocommutative C-coalgebra graded by an abelian
group G. Then, there is a splitting exact sequence of groups:

1 -grP icent(D) -grP icC(D) φ-grAutC(D) - 1

Hence grP icC(D) ∼= grP icent(D) .< grAutC(D), where .< denotes the semidi-
rect product of groups.

Proof: First, we see that φ is a group morphism. u
M

is the unique map
which verifies

∑
(m)m(0) ⊗m(1) =

∑
(m)m(0) ⊗ u

M
(m(−1)) for all m ∈ M . Let

[M ], [N ] ∈ grP icC(D) and we consider M2
gr
DN and z = x ⊗ y ∈ M2

gr
DN .

Then, we have:∑
(z) z(0) ⊗ u

M2
gr
D

N
(z(−1)) =

∑
(z) z(0) ⊗ z(1) =

∑
(y) x⊗ y(0) ⊗ y(1)

=
∑

(y) x⊗ y(0) ⊗ u
N
(y(−1)) =

∑
(x) x(0) ⊗ y ⊗ u

N
(x(1))

=
∑

(x) x(0) ⊗ y ⊗ u
N
u

M
(x(−1)) =

∑
(z) z(0) ⊗ u

N
u

M
(z(−1))

where in the fourth equality we have used that z ∈ M2
gr
DN . Therefore

u
M2

gr
D

N
= u

N
u

M
.

Now, we show that Ker(φ) = grP icent(D). If [M ] ∈ grP icent(D), then
the structure maps of M verifies ρ

D
= τ

D
ρ. Thus, τρ

D
=

D
ρ = (1

D
⊗1)

D
ρ and

so u
M

= 1D, that is, [M ] ∈ Ker(φ). Conversely, if u
M

= 1
D
, then τρ

D
=

D
ρ

and [M ] ∈ grP icent(D).

Let α : grAutC(D) → PicC(D) be as in Theorem 5.6 and let σ ∈ grAutC(D).
We set M = σ−1D1. uM

is the unique map which verifies τρ
D

= (u
M
⊗ 1)

D
ρ

with ρ
D

= ∆ and
D
ρ = (σ−1 ⊗ 1)∆. Therefore, u

M
= σ.

Next, we apply our results in the study of graded Picard groups of gr-
irreducible coalgebras. First, we need some definitions:

Definition 5.9 Let D be a graded coalgebra and X ∈ grD.

i) A graded subcoalgebra E ⊆ D is called gr-simple if it has no proper graded
subcoalgebras.
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ii) D is said to be gr-irreducible if it has a unique graded gr-simple subcoal-
gebra.

iii) X is called gr-free if X∼=gr ⊕g∈G C(g)(Ig) for some indexed sets Ig for all
g ∈ G.

Lemma 5.10 Let D be a coconmutative gr-irreducible graded coalgebra. Then
every gr-injective D-comodule is gr-free.

Proof: Let X ∈ grD gr-injective. We know that X = ⊕i∈IE
gr(Si) with

Si ∈ grD gr-simple for all i ∈ I. Since D is gr-irreducible then it has a unique
gr-simple subcoalgebra S and the only gr-simple comodules are of the form
S(g) with g ∈ G. Thus, we can set X = ⊕g∈GE

gr(S(g))(Ig). But Egr(S(g)) =
D(g) for all g ∈ G. Hence X = ⊕g∈GD(g)(Ig) and so X is gr-free.

Corollary 5.11 Let D be a cocommutative gr-irreducible coalgebra graded by
an abelian group G. Let S be the unique gr-simple subcoalgebra in D. Suppose
that S(g) is not isomorphic to S as graded comodules for any g ∈ G. Then,
grP ic(D) ∼= G .< grAut(D)

Proof: We are going to prove that grP icent(D) ∼= G and we apply Theo-
rem 5.8. For every g ∈ G the graded bicomodule (the left structure is induced
by the right structure) D(g) is invertible with inverse D(g−1) and if D(g)∼=grD
then S(g) ∼= soc(D(g)) ∼= soc(D) ∼= S which is a contradiction with the
hypothesis. Hence g = e and G ↪→ grP icent(D). Also, if M is a graded
invertible comodule, then M is gr-injective and by the above lemma M is gr-
free. Set M = ⊕g∈GD(g)(Ig). Since M is invertible there is N ∈ grD such that
M2

gr
DN = ⊕g∈GN(g)(Ig)∼=grD and hence

socgr(⊕g∈GN(g)(Ig))∼=gr ⊕g∈G soc
gr(N(g))(Ig)∼=grsocgr(D)∼=grS

So, we conclude that M∼=grD(g) for some g ∈ G.

Theorem 5.12 Let C be a cocommutative gr-irreducible graded coalgebra. Then
Picgr(C) ∼= Outgr(C).

Proof: Denote by A : grC → MC>/kG and B : MC>/kG → grC the
isomorphisms between both categories. Suppose that [M ] ∈ Picgr(C), then
M is a quasi-finite injective cogenerator C >/ kG-bicomodule. Hence B(M)
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is a quasi-finite injective cogenerator as graded right C-comodule. Since C is
gr-irreducible, by the above lemma B(M) is gr-free, that is, B(M)∼=gr ⊕g∈G

C(g)(Ig). From [T, Prop. 4.5], Ig is a finite index set and |Ig| ≥ 1 for all
g ∈ G because B(M) is a quasi-finite injective cogenerator. We can write
B(M)∼=gr⊕g∈GC(g)⊕V with V ∈ grC , then M ∼= AB(M) ∼= A(⊕g∈GC(g))⊕
A(V ). But A(⊕g∈GC(g)) ∼= C >/ kG as right C >/ kG-comodules. Thus
M ∼= C >/ kG⊕W with W = A(V ) as right C >/ kG-comodules.

On the other hand, since M is invertible, there is an invertible C >/ kG-
comodule N such that M2C>/kGN ∼= C >/ kG as right C >/ kG-comodules.
Then, (C >/ kG2C>/kGN)⊕(W2C>/kGN) ∼= C >/ kG. Setting Z = W2C>/kG

N we have that N ⊕ Z ∼= C >/ kG, and thus soc(N) ⊕ soc(Z) ∼= soc(C >/
kG). The argument of the above paragraph applied to N gives that N ∼=
C >/ kG ⊕ W ′ and then soc(N) ∼= soc(C >/ kG) ⊕ soc(W ′). Combining
this with the fact that N is a quasi-finite injective cogenerator and C >/ kG
contains all simples of the category, from [T, Prop. 4.5], we deduce that
soc(Z) = {0} and therefore Z = {0}. Using that −2C>/kGN is an equivalence,
Z = W2C>/kGN = {0} implies W = {0}. So that, M ∼= C >/ kG as
right C >/ kG-comodules. Finally, from Corollary 5.7 ii), it follows that
[M ] ∈ Im(β) and thus Outgr(C) ∼= Picgr(C).

EXAMPLES:

1.- We consider the coalgebra generated by two elements c0, c1 with comul-
tiplication and counit given by:

∆(c0) = c0 ⊗ c0, ∆(c1) = c0 ⊗ c1 + c1 ⊗ c0 ε(c0) = 1, ε(c1) = 0

We see C graded by ZZ2 with C0 = kc0 and C1 = kc1. Consider the
associated smash coproduct C >/ kZZ2. It is easy to check that the only
automorphisms of C >/ kZZ2 are given by:

c0 >/ 0 7→ c0 >/ 0 c0 >/ 0 7→ c0 >/ 1
c0 >/ 1 7→ c0 >/ 1 c0 >/ 1 7→ c0 >/ 0
c1 >/ 0 7→ ac1 >/ 0 c1 >/ 0 7→ bc1 >/ 1
c1 >/ 1 7→ ac1 >/ 1 c1 >/ 1 7→ bc1 >/ 0

where a, b ∈ k∗. Then, Autgr(C) ∼= k∗ × ZZ2. The group of units of (C >/
kZZ2)

∗ ∼= C∗#(kZZ2)
∗ (see [DNRV, Remark 1.7]) is k∗ and Inngr(C) = {1}.
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So that Outgr(C) = Autgr(C)/Inngr(C) ∼= k∗ × ZZ2. From Theorem 5.12,
Picgr(C) ∼= Outgr(C) ∼= k∗×ZZ2. On the other hand, grAut(C) ∼= k∗ and from
Theorem 5.11, grP ic(C) ∼= ZZ2×k∗. By [TZ, Th. 2.7] Pic(C) ∼= Aut(C) ∼= k∗.

2.- Let C be the trigonometric coalgebra, that is, the coalgebra generated
by two elements c, s with comultiplication and counit given by:

∆(c) = c⊗ c− s⊗ s, ∆(s) = c⊗ s+ s⊗ c ε(c) = 1, ε(s) = 0

C becomes a ZZ2-graded coalgebra by setting C0 = kc and C1 = ks. In fact,
C is strongly graded. By Proposition 5.4 vi), Picgr(C) ∼= Pic(C0) ∼= Pic(k)
since C0 is isomorphic to k as coalgebra.

Before we give the last example, we note the following fact: if C = ⊕g∈GCg

is a graded coalgebra and C >/ kG is its associated smash coproduct, then
grAut(C)×G ⊆ Autgr(C). Given (f, h) ∈ grAut(C)×G we define fh(c >/ g) =
f(c) >/ gh for every homogeneous c ∈ Ck and g ∈ G. fh is an automorphism
of C >/ kG:

∆fh(c >/ g) = ∆(f(c) >/ gh)
=

∑
f(c) f(c)(1) >/ deg(f(c)(2))gh⊗ f(c)(2) >/ gh

=
∑

(c) f(c(1)) >/ deg(c(2))gh⊗ f(c(2)) >/ gh
= (fh ⊗ fh)∆(c >/ g)

ε(fh(c >/ g)) = ε(f(c) >/ g) = ε(f(c)) = ε(c)

3.- Let C be the power divided coalgebra C = {c0, c1, c2, ...} with ∆(ci) =∑i
j=1 cj⊗ci−j and ε(ci) = δ0,i for all i ≥ 0. C is graded by ZZ if we set Ci = kci

for all i ≥ 0 and Ci = {0} for all i < 0.
It is easy to check that every gr-automorphism of C is of the form ci 7→ aici

with a ∈ k∗. Hence grAut(C) ∼= k∗. From Corollary 5.11, grP ic(C) ∼= ZZ×k∗.
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