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1 Introduction

In the theory of coalgebras, many examples of graded coalgebras appear (dual
of group algebras, symmetric algebras, path coalgebras, etc). Graded coalge-
bras were formally introduced in [NT1] and these have also been studied in
INT1], [NT2], [DNRV] and [DNR]. The aim of this paper is to introduce some
group invariants for a graded coalgebra. Thus, we study the group of equi-
valences of the category of graded comodules. If C' = @©4cqCy is a G-graded
coalgebra, the category of graded comodules gr® is isomorphic to the category
of comodules over the smash coproduct C' >1 kG (see [DNRV, Th.1.6]). Using
the theory of the Picard group of coalgebras developed in [TZ] the group of
equivalences is described by Pic(C' > kG).

Moreover, in this note we introduce the notion of graded equivalence in gr¢
and we describe this kind of equivalences by a graded Picard group grPic(C).
In order to do this, Morita-Takeuchi theory of equivalences of comodules is
performed to the graded case. As application of this graded theory we are able
to compute new examples of the usual Picard group of a coalgebra.

The paper is organized as follows: in Section 2 we fix notation and give some
preliminaries. In Section 3 we construct a graded co-HOM functor. Section 4
contains the graded version of the Morita-Takeuchi theorem which describes
graded equivalences and in Section 5 we introduce and study the Picard groups
for graded coalgebras.



2 Preliminaries

Throughout k is a fixed ground field and G is a group with identity element
e. M} denotes the category of k-vector spaces. All coalgebras, vector spaces
and unadorned ®, Hom, etc, are over k.

For a coalgebra C', A and e denote the comultiplication and the counit,
respectively. The category of right C-comodules is denoted by MY; for X
in M® we denote the comodule structure by px or wy. For X,Y € M,
Com_c(X,Y) denotes the space of right C-comodule maps from X to Y.
Similarly, “M denotes the category of left C-comodules. For X € M and
Y € MY, X0O¢Y denotes the cotensor product of X and Y (see [D], [T]).
If D is also a coalgebra, then X is a (D, C)-bicomodule if X € M via py,
X € PM via yp and (1 ® px) xp=( xp® 1)px (see [D],[T]).

Graded vector spaces: Let gr;, be the category of graded k-vector spaces,
i.e., the objects are vector spaces V' which admit a decomposition as a direct
sum of k-spaces V = @yecV,. For VW € gr, a morphism from V' to W is
a k-linear map such that f(V,) € W, for all g € G. These maps are called
graded linear maps and the set of graded linear maps from V' to W is denoted
by Homg, (V,W). f V = @46V, € gr, and g € G, we can define another
graded vector spaces V(g): as vector space V(g) coincides with V' but the
grading of V(g) is V(g)n = V, for all h € G. Let Uy : gr, — My, be the
forgetful functor, U, is an exact functor and it has a right adjoint functor
Fr, : My — gr,. For W € My, F,(W) = @yecW?9 with W9 = W for all
g € G. If the group G is finite, then Fj is also a left adjoint of Uy. Moreover,
for V € gr;, we have FLU,(V) = @4V (g9). It is known that FU(k) is a
generator and a cogenerator in gr.

For VW € gr, the graded tensor is given by V@I W = @yea(VRIW),
where (V@I W), = Bap=gVa @ W, for all g € G and

HOM(V, W) = @geGHomgr(‘/a W(Q))

Graded coalgebras (See [NT1], [DNRV]): A coalgebra C' is called G-graded
coalgebra if C' € gr,, that is, C' = ®,ccC, and verifies:

i) A(Cy) € Yopuzo Ca ® C,, for any o € G;

ii) e(C,) = 0 for any o # e.

If M is a right C-comodule then M is called a G-graded comodule over C
if M € gry,, M = @seaM,, and py(My) C Yy ,—p My ® C, for any o € G.
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For any element m € M we have the decomposition m = 3 ,cq ms, My € M,
(the sum has only a finite number of nonzero elements). The nonzero elements
mey, 0 € G, are called the homogeneous components of m; m, is called the
homogeneous component of degree o and we write deg(m,) = o.

Let gr® be the category of right graded C-comodules. For M, N € gr®
a morphism f : M — N is a graded linear map which is a morphism of
C-comodules. This map is called graded C-colinear map and the set of these
maps is denoted by Com,,_c(M, N). It is easy to verify that gr is an abelian
category. (In fact gr® is also a Grothendieck category). Analogously, we can
define “gr, the category of all left G-graded C-comodules.

Let M = ®,ceM, be an object in gr® and o € G. Then, the o-suspension
of M, M(c), is again an object in gr®. The map M ~ M(o) defines an
isomorphism of categories from gr® to gr®.

For M,N € gr® COM(M,N) = ®yecComgy._c(M,N(g)). When M is
finite dimensional, COM (M, N) = Com_c(U(M),U(N)).

We write U : gr® — MY as the forgetful functor. U is an exact functor
and it has an exact right adjoint functor F : M¢ — gr®. Moreover, if the
group G is finite, then F is also a left adjoint of U. In fact, these functors are
the restriction of U, and Fj considering gr® as a subcategory of gr,.

If M = ®,caM, is a graded right C-comodule, for any ¢ € G we write
7M. M — M, as the canonical projection. We have that:

1) If 0,7 € G there exists a unique k-linear map ugﬁ My, — M, ® C-
such that: u), 7)1 = (7} @ 78)pu.

2) For any o, 7, A € G: (u}f. @ Dull, = (1@ ul,)u)l,.

) IfoeCG, (1®eul =1.

If we write A, = uge : Ce — C, ® C,, then (C., A, €) is a coalgebra
and 7w, : ' — C, is a morphism of coalgebras. C = @®,ccC, is called a
strongly graded coalgebra if the canonical morphisms ugT 1 Cyr — Oy ®C; are
monomorphism. C'is a strongly graded coalgebra if and only if the coinduced

functor is an equivalence of categories.

Every graded coalgebra C' has associated other coalgebra C' > kG , called
smash coproduct, constructed in the following way: as vector space C' > kG =
C ® kG, for any homogeneus element ¢ € C and g € G the comultiplication is
A((; > g) = X (cay > deg(c))g) @ (cy > g) and the counit e(c > g) =
e(c).

For M € gr® we make M into a right C' > kG-comodule via p : M — M ®



C > kG, m — 3 ;) M) @ my > deg(m)~" for homogeneous m € M. Any
morphism f : M — N of graded comodules is also a morphism of C' > kG-
comodules. Thus, we have defined a functor A : gr¢ — M>%*C and this
functor verifies that A(®,ecC(g)) = C > kG as right C' > kG-comodules.
In [DNRV, Th. 1.6], it was proved that A defines an isomorphism between
the categories gr® and M®>*¢_ Hence, the category gr® is a locally finite
category (see [T, Def. 4.1]).

Clifford Theory for Graded Coalgebras (See [NT2]): X € gr® is called gr-
injective if X is an injective object in the category gr®. X € gr¢ is gr-injective
if and only if U(X) is injective in M“. S € gr® is called gr-simple if it has no
proper graded subcomodules. Every gr-simple comodule is of finite dimension.

Since the category gr® is locally finite, then it is locally noetherian and it
is well-known that an injective object X € gr® has a unique decomposition
X = @ierX; with every X; injective indecomposable object. If Q € gr® is
injective indecomposable, then Q) = E97(S) where E97(S) denotes the injective
envelope of S and S is a gr-simple subcomodule of (). S always exists because
gr® is locally finite. Hence every gr-injective comodule X is of the form X =
Dicr £97(S;) with S; gr-simple for all i € I.

For every simple right comodule S € MY, there is a gr-simple comodule
S" € gr® such that S is isomorphic to a C-submodule of S’

Co-hom functor (See [T]): Let C, D be coalgebras, a comodule X¢ is quasi-
finite if Com_¢(Y, X) is finite dimensional for all finite dimensional comodules
Yo. Let ¢ Xp be a bicomodule, then Xp is quasi-finite if and only if the functor
—OcX : MY — MP has a left adjoint functor, denoted by h_p(X, —). That

is, for comodules Yp and W,
Com_c(h_D(X, Y),W) = COm_D(Y,Wch). (1)

Where, h_p(X,Y) = lim— Com_p(Y,,X)* is a right C-comodule, {Y,} is a
directed family of any finite dimensional subcomodules of Yp. Let 6 denote
the canonical D-colinear map Y — h_p(X,Y)OcX which corresponds to the
identity map h_p(X,Y) — h_p(X,Y) in (1). Similarly, there is a left version
of the above lemma for a quasi-finite comodule ¢ X.

Assume that Xp is a quasi-finite comodule. The e_p(X) = h_p(X, X) isa
coalgebra, called the co-endomorphism coalgebra of X. The comultiplication
of e_p(X) corresponds to (1®60)0: X — e p(X)®e_p(X)® X in (1) when
C' = k, and the counit of e_p(X) corresponds to the identity map 1y. X is
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a left (e_p(X) — D)-bicomodule with the left comodule structure map 6, the
canonical map X — h_p(X, X) ® X.

Let ¢« Xp be a bicomodule such that Xp is quasi-finite. Then there ex-
ists a coalgebra map A : e_p(X) — C such that the left C-comodule struc-
ture equals (A ® 1)0. Conversely, a coalgebra A : e_p(X) — C makes X
into a (C' — D)-bicomodule. Moreover, the (C' — C')-bicomodule structures of
e_p(X) through A coincides with the induced (C' — C)-bicomodule structures
of h—D(CXD7C XD)

Morita-Takeuchi (M-T) context (See [T]): A M-T context (C, D, ¢ Pp, pQc,
f,g) consists of coalgebras C, D, bicomodules ¢ Pp, pQ¢, and bicolinear maps
f:C — POpQ@ and g : D — @QO¢P satisfying the following commutative
diagrams:

PD [ Ze}

p—"" - po,D Q—"— = Qoc
cp 10g Dp 1af
COc¢P —— POpQROCP DOQ —— QUOcPOpQ

fo1 gO1

The context is said to be strict if both f and g are injective (equivalently,
isomorphism). In this case we say that C' is M-T equivalent to D, denoted
by C ~ D. Let Pp be a quasi-finite comodule and C = e_p(P). ¢Pp is
a bicomodule. Set pQc = h_p(P,D), g =6 : D — QU¢P, and f : C =
h_p(P,POpD) — POph_p(P,D) = POpQ. Then (C,D,cPp, pQc, f,q) is
a M-T context, where f is injective if and only if Pp is injective, and g is
injective if and only if Pp is a cogenerator in MP.

The cocenter (See [TVZ]): Let D be a coalgebra and D¢ its enveloping
coalgebra, that is, D* = D® D. View D as a right D®-comodule in the usual
way. Then Dpe is quasi-finite and the co-endomorphism coalgebra e_pe(D)
satisfies the following universal properties:

1.- e_pe(D) is a cocommutative coalgebra with a surjective coalgebra map
n: D — e_pe(D) which cocommutes with 1p, i.e, > n(dn)) ® dy = X d2) ®
n(dw)), d € D.



2.- For any coalgebra FE and any coalgebra map f : D — FE which co-
commutes with the identity map 1p, there exists a unique coalgebra map
g:e_pe(D) — E such that f = gn.

Let (Z(D),ep) denote (e_pe(D),¢€), called the cocenter of D. From the
above universal property, the cocenter of a coalgebra is unique up to isomor-
phism. A coalgebra map f : D — FE is said to be cocentral if f cocommutes
with the identity map 1p, i.e, 3> f(dn)) ® dy = X f(d2)) ® dpy, d € D. Let
C be a cocommutative coalgebra, D is said to be a C-coalgebra if there is a
cocentral coalgebra map e : D — C. If D is cocommutative, then Z(D) = D.

Picard group (See [TZ]): Let C, D be coalgebras. A (C' — D)-bicomodule
M is said to be invertible if the functor —Og : M¢ — MP defines a Morita-
Takeuchi equivalence between MY and MP”. The Picard group of C, denoted
by Pici(C) is the multiplicative group consisting of all bicomodule isomor-
phism classes [M] of invertible comodules ¢Mc. When C' is cocommutative,
Pic(C) = Aut(C), the set of automorphism of the coalgebra C.

3 The co-HOM functor

For the rest of the section, C, D, E,I" are graded coalgebras.
Definition 3.1 Let X € gr®.

i) X is said to be quasi-finite in gr® if Comy,_c(Y, X) is finite dimensional
for allY € gr® of finite dimension.

ii) X is called gr-quasi-finite if COM(Y, X) is finite dimensional for all
Y € gr¢ of finite dimension.

iii) We say that X is quasi-finite if U(X) is quasi-finite in MC.

The relations among these concepts are the following:



Proposition 3.2 Let X € gr®.

i) If X is gr-quasi-finite then X is quasi-finite in gr®. If G is finite, then
the converse is true.

it) If U(X) is quasi-finite, then X is gr-quasi-finite.
i) If X is quasi-finite in gr® and G is finite, then U(X) is quasi-finite.

Proof: Let Y € gr® of finite dimension.

i) The first claim is deduced from Comg,_c(Y,X) C COM(Y,X). For
the converse, as X is quasi-finite in gr®, then Comg,_c(Y (g7!), X) is finite
dimensional for every g € G. Now, since G is finite and COM (Y, X) =
BgecComg,—c(Y(g71), X) we deduce that X is gr-quasi-finite.

i) It is deduced from the fact that COM(Y, X) = Com_c(U(Y),U(X)),
cf. [NT1, page 478].

iii) If G is finite then U has a left adjoint functor F, that is, Comg,_c(F (M),
N) = Com_c(M,U(N)) for M € M and N € gr®. Let Y € MY finite di-
mensional. Since G is finite, F'(Y) is finite dimensional and by hypothesis
Comg,_c(F(Y), X) is finite dimensional. Thus Com_q(Y,U(X)) is finite di-
mensional. |1

EXAMPLES:

1.- Let G be an infinite group and we write M = ®,c¢C(g), next we prove
that M is quasi-finite in gr® and however U(M) is not quasi-finite in M¢: let
Y be in gr® of finite dimension, then

Comgr—c(Y, ®4ecC(9)) = Comg,—c(Y, FU(C)) = Com_c(U(Y),U(C))

Since U(C) is quasi-finite then Comg,_c(Y, ByecC(g)) is finite dimensional,
that is, M is quasi-finite in gr®. However,

Com_c(U(Y),UM)) =Com_c(UY),®4ecU(C))
= BecCom_c(U(Y),U(C))

Because G is infinite we have that Com_c(U(Y),U(M)) is not finite dimen-
sional.

2.- Let G be a torsionfree group and X € gr® gr-quasi-finite, then U(X) is
quasi-finite in M¢: let S be in M® a simple comodule, since G is a torsionfree
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group, by [NT2, Cor. 4.6, ii)] there is graded simple comodule S’ € gr® such
that U(S’) = S. Then,

Come(S,U(X)) = Com_c(U(S"),U(X)) = Comg—c(S', BgeaX(9))
= BoeaComg_c(S', X (g)) = COM (S, X),

where, in the second isomorphism, we have used the right adjoint of U and, in
the third one, that every gr-simple comodule is finite dimensional. COM (S, X)
is finite dimensional because X is gr-quasi-finite and thus Com_q (S, U(X)) is
of finite dimension. By [T, Prop. 4.5] U(X) is quasi-finite.

3.- Let X be in gr® and we suposse that X is gr-injective. Then, X is
gr-quasi-finite if and only if U(X) is quasi-finite. Let S be in M a simple
comodule, from [NT2, Cor. 4.6 i)] there is a graded simple comodule S" and
an injective C-comodule map f : S — U(S’). As X is gr-injective, from
INT2, Cor. 3.4] U(X) is injective and hence the functor Com_¢o(—,U(X))
is exact. Thus we have a surjective linear map f. : Com_c(U(S"),U(X)) —
Com_c(S,U(X)). Also, Com_c(U(S"),U(X)) = COM(S',X) because S’
is finite dimensional. Since X is gr-quasi-finite, then COM(S’, X) is finite
dimensional and hence Com_¢(S,U(X)) is finite dimensional. By [T, Prop.
4.5] U(X) is quasi-finite in M.

Proposition 3.3 Let X € gr®, the following assertions are equivalent:
i) X is gr-quasi-finite.
i) For all gr-simple S € gr®, COM (S, X) is finite dimensional.
iii) U(X) is quasi-finite in MC.

Proof: i) = i) It is clear because every gr-simple comodule is finite
dimensional.

i1) = iii) First, we prove that given X € gr® such that soc/"(X) verifies
i), then X verifies ii). Let S € gr® gr-simple, then COM (S, soc?" (X)) —
COM (S, X). COM(S, soc?" (X)) = ®gecComg,—c(S(g™1), soc? (X)) and

OOM(S, X) = @geGoomgr—C(S(g_l)a X)



Since soc9"(X) is quasi-finite, there is a finite number of ¢ € G such that
Comgr—c(S(g71), soc?" (X)) # {0} and these are finite dimensional. But

Comg,_c(S(g™"), s0c?" (X)) = Comgr_c(S(g7"), X)

since S(g~!') is simple. Hence COM (S, X) is finite dimensional.

Suppose that X verifies ii) and we take the injective envelope X — E9"(X).
Since X verifies ii) then socd” (X)=9"soc?" (E9" (X)) verifies ii) and so E9"(X)
satisfies ii). As F97(X) is injective and satisfies ii), Example 3 yields that
U(E9 (X)) is quasi-finite and injective. Let S € MY be simple and let S’ € gr®
gr-simple such that S < U(S’), then the induced map

COM(S', B9 (X)) = Com_c(U(S"), U(E (X)) — Com_c(S, U(EY (X))

is surjective. Hence Com_qc(S,U(E"(X))) is finite dimensional. Now, since
Com_c(S,U(X)) — Com_¢(S,U(E(X))), we obtain that U(X) is quasi-
finite.
i11) = 1) It is ii) of the above proposition. 1§
Lemma 3.4 Let W € gr,, X,Y € gr®. Then:
i) If Y is finite dimensional, W@ COM (Y, X)=9"COM(Y,W ® X).
i) If COM(Y, X) is finite dimensional, then
W& COM(Y, X)=" HOM(COM(Y, X)*, W).
ii1) With the hypothesis of the above items we have
Comg_c(Y, W9 X) = Hom,,(COM(Y, X)*, ).

Proof: i) Forw e W, f € COM(Y,X) and y € Y, the isomorphism ¢ is
given by ¢(w @ f)(y) = w @ f(y).

i) For the same preceding elments and h € COM (Y, X)* this isomorphism
@ is given by p(w ® f)(h) = wh(f).

iii) It follows by the composite of the two above isomorphisms for the
component of degree e.

Proposition 3.5 Let X in gr®, the following assertions are equivalents:



i) X is quasi-finite in gr®.

i) The functor My — gr®, W — W @ X (where the grading in W @ X is
(WeX),=W® X, forall g € G) has a left adjoint functor.

Proof: This proof is similar to the proof of [T, Proposition 1.3]. 1

Definition 3.6 Let X be in gr® quasi-finite in gr®, the left adjoint functor
of W = W®X is denoted by Y — hy,_c(X,Y) and it is called graded co-hom
functor. We have that Comg,_c(Y,W @ X) = Homy(hgy—c(X,Y), W)

Proposition 3.7 Let X be in gr®, the following assertions are equivalent:
i) X is gr-quasi-finite.

ii) The functor My, — gr® given by the composite W — WX — FU(W®
X) = ®ec(W @ X)(g) (where the grading in W & X is the same that
in the above proposition) has a left adjoint functor.

Proof: i) = i) For a graded comodule of finite dimension Y note that:

COM(Y,X) = Com_c(U(Y),U(X))
= Comyg,—c(Y, FU(X)) = Comg,—c (Y, ©gecX (9))

Taking in acount this fact, the proof is anologous to the proof of [T, Prop.
1.3]. The adjoint is given by limT COM Yy, X)* where {Y)}ea is a family
of finite dimensional graded subcomodules of Y such that Y = lim—; Y,.. 1

Proposition 3.8 For X € gr®, the following assertions are equivalent:
i) X is gr-quasi-finite.

i) The functor gr, — gr¢, W — W @9 X (where the grading in W @9 X
is (W @9 X)y = BapegW,® Xy for all g € G) has a left adjoint functor.

Proof: i) = ii) If Y € gr¢ is of finite dimension and W € gr,,, we know
from Lemma 3.4 that Comg,_c(Y, W ®9" X) = Hom,, (COM (Y, X)*,W). Let
Y bein gr® and let {Y)} be a family of finite dimensional graded subcomodules
of Y such that Y = limT Y, then we have:
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Comg,_c(Y,W @9 X) = limT Comg,_c(Yr, W @9 X)
= limT Homgy, (COM (Y, X)*,\ W) = Homgr(limT COM(Y,, X)*, W)

ii) = 1) For W € gr,, we have that F,(W) ®9" X = @yea(W @ X)(g). We
suppose that the functor gr, — gr®, W — W ®9" X has a left adjoint functor
which is denoted by H_¢(X, —), then we prove that the functor M, — gr¢,
W — @yea(W ® X)(g) has a left adjoint. Let Y € gr® and W € My, then

Comgr—c(Y, Bgec(W ® X)(g9)) = Comg,—c(Y, Fi,(W) @ X)
>~ Homg (H_c(X,Y), Fy(W)) = Homy(Up(H-c(X,Y)), W)

From the above proposition, we obtain that X is gr-quasi-finite. 1

Definition 3.9 For a gr-quasi-finite graded comodule X, the functor
H_o(X,—):gr’ — gr, is called co-HOM functor.

Next, we study some properties of the co-HOM functor H (X, —) for a
gr-quasi-finite graded comodule X:

P1. H—C(X7 Y) = EBgGthT—C(X(g)a Y)

P2. (Universal Property): We denote by 6 : Y — H_¢(X,Y) ®9" X the
graded C-colinear map associated to the identity in H_o(X,Y). This map
verifies the following: for every W € gr, and every graded C-colinear map
f:Y - W ®9 X there is a unique graded linear map s : H ¢(X,Y) — W
such that f = (s ® 1)6.

P3. If X € gr® and U(X) is quasi-finite, then Uy(H_¢(X,Y)) 2 h_o(U(X)
,U(Y)) for all Y € gr®. Moreover, the following square is commutative:

Comg_c(Y,W @7 X) = Homg,(H_c(X,Y),W)
UC Uk

Com_c(U(Y), U(W) @ U(X))=Homy(h_c(U(X), U(Y)), Us(W))

The C-colinear map associated to the identity in h_(U(X),U(Y)) is U(0)
and with f as in P2, Ug(s) is the unique linear map such that U(f) = (Ux(s) ®
U (0).
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P4. Let f: X' — X and g : Y — Y’ be graded C-colinear maps where X
and X' are gr-quasi-finite. The composite

1®
Y g Y/ 8 Hﬁc(X/,YI) ®gr X/ —f"H,C<X/,YI) ®gr X

is graded and there exists a unique graded linear map H(f,g) : H_¢(X,Y) —
H_o(X',Y’") such that the above composite is of the form (H(f,g) ® 1)0.

P5. For a gr-quasi-finite graded comodule X € gr®, the functor H_q(X, —)
is right exact and preserves direct sums because it has a right adjoint functor.

P6. A graded (C, D) -bicomodule Y is a (C, D)-bicomodule which is graded
as C'-comodule and the structure map pw : Y — D®I"Y is a graded C-colinear
map. The composite (1 ® 0)pw is graded C-colinear and by the universal
property of P2 there is a unique graded linear map pp : H ¢(X,Y) - D ®
H _¢(X,Y) such that (1®60)pw = (pp®1)0. H_(X,Y) becomes a left graded
D-comodule with the map pp.

If X is a graded (E,C)-bicomodule such that X as graded C-comodule is
gr-quasi-finite and Y is a right graded C-comodule, then there is a unique
graded linear map pp : H_o(X,Y) — H_o(X,Y)® E such that (1@pw™)0 =
(pp®1)0. H_o(X,Y) becomes a right graded D-comodule with the map pg.
Moreover, if Y is a graded (D,C)-bicomodule, then H_o(X,Y) is a graded
(D,E)-bicomodule with the maps pg and pp.

P7 (Graded cotensor): Let X be in gr® and Y in “gr, for g € G we define
(XOZY )y = (Bab=gXa ® Yp) N (XOcY) and XOLY = Pyea(XOLY),. The
graded cotensor verifies the following:

1. XO¥C = X as graded C-comodules. The graded isomorphism is in-
duced by the map 1®¢: X ® C — X. Similarly, CO% X = X for X € “gr.

2. If f: X - X' and g : Y — Y’ are graded C-colinear maps, then
the graded map f®9¢g : X®IY — X'®9Y’ induces a graded linear map
fofg: X0y — X'0%7Y".

3. —O0%X : “gr — gr, is a left exact functor.

4. —0O%' X commutes with direct sums.

5. If X and Y are graded (E,C) and (C,D)-bicomodules respectively, then
XO%Y is a graded (E,D)-bicomodule with the maps pw® ®@ 1 and 1 ® wh.

6. UXDZY) =U(X)OcU(Y).
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P8. In P6 we saw that if X is a graded (E,C)-bicomodule such that X
is gr-quasi-finite as graded C-comodule and Y is a right graded C'-comodule,
H_o(X,Y) is a left graded C-comodule with the only map pp: H_¢(X,Y) —
D ® H_¢(X,Y) which verifies (1 ®p w¥)f = (pp ® 1)f. This means that
Im(@) - H,C(X, Y)D‘CgX

If g X¢ and pYe are graded bicomodules where X is gr-quasi- finite, then
H ¢(X,Y) is a graded (D,E)-bicomodule and 6 : Y — H_o(X,Y)0% X is
graded (D,C)-bicolinear.

Proposition 3.10 For a graded bicomodule p X, the following assertions are
equivalents:

i) X¢ is gr-quasi-finite.

i) The functor MP — MY, Z +— ZO% X has left adjoint functor.

Proof: Using the above properties and Proposition 3.8, this proof is ana-
logous to the proof of [T, Prop. 1.10]. 1

P9. If g X, pYe and pZg are graded bicomodules where X is gr-quasi-
finite and f : Y — ZO% X is a graded (D, C)-bicolinear map, then the graded
associated map u: H_¢(X,Y) — Z is (D, E)-bicolinear.

P10. Suppose that X € gr® is gr-quasi-finite and gr-injective, then by
INT2, Cor. 3.4] U(X) is injective and hence the functor Com_c(—,U(X))
is exact. Since U : gr® — MY is exact, the functor Com_¢(U(=),U(X)) :
gr® — M, is exact. From the isomorphism

H_o(X,Y)" = Homy(lm— COM(Y;, X)", k)
= lim-— Homi(COM(Yy, X)*, k)
= Jim— COM(Y;, X)** = lim— COM(Y;, X)
= lim-— Com_c(U(Yy),U(X)) = Com_c(U(Y),U(X))

we obtain that H_o (X, —) is exact when X is gr-injective and gr-quasi-finite.

P11. For graded comodules X¢, Zp and a graded bicomodule pYeo with X
gr-quasi-finite, there exists a unique graded linear map 0 : H_¢(X, Z0%Y) —
ZOP'H_(X,Y) making the below triangle commutative:
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O9r
Z0O%Y 1076 ZOPH o )® X

N, e

c(X, Z0%Y)® X

If we suppose that U (X ) is quasi-finite and X is gr-inyective and hence
U(X) is injective, then § is an isomorphism because the above triangle induces
another commutative triangle by forgeting the maps and the objects:

1au(e
ZOpY ZOph_o

\

c(X,ZOpY)® X

From [T, Prop. 1.14], U (6) is an isomorphism and therefore ¢ is a graded
isomorphism. Moreover, if X, Z are in addition graded bicomodules g X¢, rZp,
then the map 9§ is graded (I', E')-bicolinear.

P12. Let X¢, Wr, rZp and pYe graded comodules and bicomodules where
U(X) is quasi-finite, then the above map § verifies the following diagram is
commmutative:

10979

WO{'H «(X,Z0O%Y) Wol'ZOPH «(X,Y)

H—C(XJWD%T(ZD%Y) = H—C(Xv (WD%TZ)D%TY)

P13. (Graded Co-endomorphism coalgebra): Let X in gr® gr-quasi-
finite and we write E_o(X) = H_¢(X,X). The map (1 ®6)§ : X —
E c(X)®E_o(X)®9 X is graded and there is a unique graded linear map
A:E o(X)—= E ¢(X)®9E_¢(X) such that (1®60)0 = (A® 1)f. A verifies
that (A ®@ 1)A = (1 ®@ A)A.
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Viewing k trivially graded (i.e. k. = k and k, = 0 for all g # e) we
can identify X=9"k®9" X, then the identity map 1y : X — X=9"k®RI"X is
of the form (¢ ® 1)0 for a unique graded linear map € : E_¢(X) — k. Thus
e(E_c(X)y) =0 for all g # e. The map ¢ satisfies that (1®@¢)A = (e ®1)A =
1 o(x) and so E_¢(X) becomes a graded coalgebra with A and e.

Moreover, if X is a graded (D, C')-bicomodule, for the structure map pw :
X — D ® X there is a unique graded linear map u : F_¢(X) — D verifying
pw = (u® 1)f. This map is a graded coalgebra map. If we suppose that U(X)
is quasi-finite, then Uy(E_c(X)) = e_c(U(X)).

P14. Similarly, for a left graded gr-quasi-finite comodule we can define
He (X,—):%gr — gr, and Ec_(X).

4 Graded Equivalences for Coalgebras

Definition 4.1 Let C, D be graded coalgebras. A linear functor V : gr¢ —
gr? is said to be graded if V. commutes with the shift, that is, V(X(g))
=9V (X)(g) for all g € G.

Proposition 4.2 Let pX¢ be a graded bicomodule.

i) The graded cotensor functor —0O% X : gr? — gr® is a graded functor
and U(—O09X) 2 U(—)OpU(X).

i) If U(X)c is quasi-finite the co-HOM functor H_o(X, —) : gr® — gr? is
a graded functor and U o H_o(X,—) 2 h_c(U(X),—) o U.

Proof: We only have to show that both functors commute with the g-shift
because the other claims are known. Let g € G,

i)If h €@,

Y (9)O5X ) = (Cw=nY(9)a ® Xp) N (YOcX)
= (Xap=n Yga @ Xp) N (YO X)
= Yapegh Yo ® XN (YOcX) = (YORX)gn = (YO, X)(9)n-

ii)

15



hg—c(X,Y(9)) = limT Comg,_c(Y(g)r, X)* = limT Comg—c(Ya(g), X)*
= limT Comg,—c(Yo, X(g7H))* = hyr—c(X(g71),Y),

(where in the second isomorphism we have used that the shift Y +— Y'(g) is an
isomorphism of the category gr®). From this, we obtain:

Y

H_o(X,Y(g9)) = ®nea hgr- C(X(gL 1, Y(9)) = ©ne hgr—o(X(h1)(g™ >I

b,
= ®hea hgr—c(X((gh)™),Y) = @rea H-o(X,Y )gn = H_o(X,Y)(g)
Definition 4.3

i) We say that a graded functor V : gr® — gr? defines a graded equivalence
if there exists a graded functor V' : gr®? — gr® such that V'V=9"1 .0
and VV'=9"1,.0; in this case we say that the graded coalgebras are graded

equivalent.

ii) An equivalence L : M — MDP is called a graded equivalence if there is
a graded functor V : gr® — gr? such that LoU = U o V. In this case,
we say that V' is an associated graded functor of L.

Proposition 4.4 Let V : gr® — gr” be a graded functor. If V is left exact
and commutes with direct sums, then there is a graded bicomodule ¢ Pp such

that V(~) = —O%P.

Proof: We consider k trivially graded, then k®9" X=9" X and k(g)®9" X =9"
X(g). Since V is a graded functor which commutes with direct sums and the
above fact we have:

V(®geah(9)@”X) =V (®geaX(9))
= BV (X)(9) = Bgeak(9)@7V(X)

Let W € gr,, since @geck(g) is a cogenerator of gr;, there is an exact sequence

! w (Bgeck()” —= (@geck()”

By tensoring with X and V(X)) and applying the above isomorphism we obtain
the below diagram with exact rows and commutative squares:
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0 VIWesr X)—V (&, X(g)" V(2 X(g)"
0 WerV(X)— 2 V(X)(g)" —,2 V(X)(g)"

This diagram yields that V(W @9 X)=9" W&V (X).
Let Z € gr®, since V is left exact the exact sequence

p PR1I—1RA
0 Z AU ZRI7CRIC
yields another exact sequence
V(p) pRL-10V(A)
0 V(Z) ——Zx7V(C) ZRICIV(C)

If we set P = V/(C), this means that P is a graded (C, D)-bicomodule with
structure map V(A) : P — C®9 P. Since p : Z — ZO¥ C' is an isomorphism
for any Z € gr®, then V(2) = Z0OLV(C) = ZOkP. 1

Definition 4.5 A graded Morita-Takeuchi context (C,D, «Pp, pQc,f,9)
consists of graded coalgebras C, D, graded bicomodules ¢« Pp, pQc, and graded
bicolinear maps f : C — POYQ, g : D — QUL P satisfying the following
commutative diagrams:

we . Wp -

P ——— POLC Q ———> QUED
DW 109"¢g ow 1097 f
DO P —— POZ QUL P CoLQ —— QUL POE

foorl g1

The context is said to be strict if f and g are graded bicolinear isomorphisms.

Remark: If (C,D,P,Q, f,g) is a graded Morita-Takeuchi context, then
the forgotten context (U(C),U(D),U(P),U(Q),U(f),U(g)) is a Morita-Takeu-
chi context and any of them is strict if and only if the other one is so.
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Theorem 4.6 Let (C,D,P,Q, f,g) be a graded Morita-Takeuchi context and
suppose that f : C' — PO%YQ is a monomorphism. Then:

i) f is a graded isomorphism.
ii) The comodules U(P)p and pU(Q) are quasi-finite injective.
iii) The comodules cU(P) and U(Q)c are cogenerators.

iv) g induces isomorphisms of graded bicomodules

H_p(P,D)="Q Hp_(Q,D)=P

v) The structure maps of the graded bicomodules ¢Pp and pQc induces
graded coalgebra isomorphisms,

E_p(P)=C Ep_(Q)="C.

Proof: i) The forgotten context verifies that U(f) is injective, and by
[T, Th. 2.5] it follows that U(f) is an isomorphism. Hence f is a graded
isomorphism.

it) and i) They follow by [T, Th. 2.5] applied to the forgotten context.

iv) The map ¢g : D — QO¥ P induces a graded (D, C)-bicomodule map
v:H_p(P,D) — Q. Also, the map induced by U(g) : D — QO¢cP is u(v) :
h_p(U(P),U(D)) — U(Q) which is an isomorphism by [T,Th 2.5] (note that
since U(P) is quasi-finite by ii) , then U(H_p(P,D)) = h_p(U(P),U(D))).
Thus, we obtain that v is a graded isomorphism. By simmetry, Hp_(Q, D)=9" P
as graded bicomodules.

v) We know from P13 that there is a graded coalgebramap a : E_p(P) — C
induced by the C-comodule structure map of P. The forgotten map U(a) :
e_p(U(P)) — U(C) is an isomorphism of coalgebras by [T,Th. 2.5] (again, we
have used that U(E_(P)) = e_p(U(P)) because U(P) is quasi-finite). Thus,
a is a graded coalgebra isomorphism. 1

Remark: Analogously, this theorem has a simmetric version for g.

Lemma 4.7 Let (C, D, P,Q, f,g) be a strict graded Morita-Takeuchi context.
Then, C' and D are graded equivalent.
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Proof: Since the forgotten context is a strict Morita-Takeuchi context the
functors

—0cU(P): MY = MP  h_p(U(P),—): MP — M¢

are inverse equivalences. We are going to show that the functors associated to
the above ones

—O%P: gr¢ — gr? H_p(P,—):gr? — gr¢,

are graded equivalences. Let Z € gr® and we consider the following composi-
tion map:

) 10¢a 1®¢

ZO%H_p(P, P) Z0%C Z

H_p(P,Z0% P)

where a : H_p(P,P) — C is the graded coalgebra map induced by the C-
comodule structure of o Pp. From the above theorem, we know that a is an
isomorphism of graded coalgebras and that U(P)p is quasi-finite injective. By
P11 ¢ is a graded isomorphism and thus the above composition is a graded
isomorphism. Given Z € gr”, we have:

H p(P,Z)= H p(P,Z0% D) i» ZOYH _p(P,D) = Z0O9Q
The last isomorphism is given by the preceding theorem and also § is a graded
isomorphism because U(P) is quasi-finite injective. Thus,

1097¢g
H p(P,Z)0f P~ ZOYQOE P ZO¥D = Z
Since the context is strict, ¢ is a graded isomorphism. Hence, the func-

tors —O% P and H_p(P, —) are inverse equivalences and as both functors are
graded, they are graded equivalences. 1

Let P € gr” such that P is gr-quasi-finite and we set C' = E_p(P), P
becomes a graded (C, D)-bicomodule. We write Q = H_p(P, D) and

g=0:D—QO¥P

f:C=H_p(P,P)=H_p(P,POY D) POYH_p(P,D) = POYQ
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Proposition 4.8 (C, D, P,Q, f,g) is a graded Morita-Takeuchi context.

Proof: f and g are graded bicolinear maps by P11 and P8, f09"1 = 109"¢g
by definition of § and 109" f = ¢0O9"1 by P12. L

The Morita-Takeuchi context constructed above from a gr-quasifinite co-
module P, is called the Morita-Takeuchi context associated to P.

Proposition 4.9 Let P € gr? be a gr-quasifinite comodule, and (C, D, P, Q,
f,9) the Morita-Takeuchi context associated to P. Then the context is strict if
and only if U(P) is an injective cogenerator.

Proof: Since the forgotten context is strict then by [T, Prop. 3.2, 3.3],
U(P) is an injective cogenerator. Conversely, if U(P) is an injective cogener-
ator, then by [T, Prop. 3.2, 3.3], U(f) and U(g) are isomorphism, so that f
and g are graded isomorphisms. 1

Now, we are able to characterize when two graded coalgebras are graded
equivalent.

Theorem 4.10 Let C and D be graded coalgebras by a group G. The following
assertions are equivalent:

i) C and D are graded equivalent.
ii) There exists a graded equivalence L : MY — MP,

i) There is a graded comodule P € grP such that U(P) is a quasi-finite
injective cogenerator and E_p(P) = C as graded coalgebras.

iv) There is a strict graded Morita-Takeuchi context (C, D, P,Q, f,g).

Proof:

i) = iii) Suppose that V : gr® — gr? and V' : gr” — gr® are inverse
graded equivalences. From Proposition 4.4, we know that V(—) = —0O%V(C)
and V'(—) = —0O9 V(D) and since they are inverse equivalences we have that
V' is a left adjoint functor of V' and thus V(C) is injective. Moreover, as
—0ZV(C) has a left adjoint, from Proposition 3.10 we conclude that V(C)
is gr-quasi-finite. We set P = V(C). P is an injective gr-quasi-finite graded
D-comodule, from Example 3, U(P) is a quasi-finite injective D-comodule.
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Since ®,c¢C(g) is a cogenerator in gr¢, then V(@gegC( ) = ByecV(C)(9)
is a cogenerator in gr”. Hence D — @QGGP( ) and so U(D) — U(P)D,
that is, U(P) is a cogenerator in M”

Next, we show that E_p(P) = C as graded coalgebras. For W € gr; and
X,Y € gr, with X gr-quasi-finite we have a diagram:

Comg_c(Y,W&"X) =  Homg(H.c(X,Y),W) (1)
v v

Comg,p(V(Y), We"V(X))=Homg(H_p(V(X),V(Y)), W) (2)

Remember that since V' is graded, then V(W ®9" X) = WV (X) and V(C)
is a left graded C-comodule with structure map V(A): V(C) — C @ V(C).

We denote by 0¢ : C — H_¢(C,C)®9"C' the image of 15 ) in (1) and
by Qv(c) . V(C) — H_D(V(C), V(C))@gTV(C) the image of 1H,D(V(C),V(C)) in
(2). By the universal property of the adjoints, there are graded linear maps,
a: H p(V(C),V(C)) - H.c(C,C) and b: H_«(C,C) — H_p(V(C),V(C))
such that V(0c) = (a ® 1)8y ) and V' (0y(c)) = (b® 1)0c. It is easy to check
that a and b are inverse to each other and hence they are isomorphism.

The maps A : C — C®9C and V(A) : V(C) — C7V(C) induce
graded coalgebra maps d : H_¢(C,C) — C (this is an isomorphism) and
e: H_p(V(C),V(C)) — C such that A = (d®1)0c and V(A) = (e®1)0y (¢
By applying V to A = (d ® 1)0c, we have that:

V(A) =V(d®)V(le) = (do 1)V (0e)
= (d@1)(a® 1)fy(c) = (da®@1)fv(o)

The uniqueness of e yields e = da and so e is an isomorphism because d and a

are so. Hence E_p(P) = C as graded coalgebras.
iii) = ) It follows from Proposition 4.9.
iv) = i) This is Lemma 4.7

ii1) = 11) Since E_p(P)=9"C as graded coalgebras and U(P) is quasi-finite
then e_p(U(P)) = C. Thus, U(P) is a quasi-finite injective cogenerator and
e_p(U(P)) = C. By [T, Th. 3.5] the functor —OsU(P) : M® — MP is an
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equivalence and this equivalence is graded because it has the associated graded
functor —0O% P.

i) = ) Let L : MY — MP be a graded equivalence with associated
graded functor V : gr® — gr?. From [T, Prop. 2.1] and Proposition 4.4 we
obtain that L(—) & —O¢L(C) and V(=) =2 OL'V(C). Since LU(C) is a quasi-
finite injective cogenerator, then UV (C) = LU(C) is a quasi-finite injective
cogenerator. Now we only need to apply Proposition 4.9. 1§

Remark. Theorem 4.10 establishes that two graded coalgebras C' and D are
graded equivalent if and only if there is a graded equivalence between M¢ and
MP. 1t is natural to ask which is the relationship between C' and D graded
equivalent and C' and D equivalent. Examples of graded coalgebras C', D such
that C' and D are equivalent but not graded equivalent can be constructed
following the same ideas of the examples given in [GG] and [RI], since these
are of finite dimension.

We remember that M € M is said to be gradable if there is M’ € gr®
such that U(M') = M. We denote by G the full subcategory of gradable
C-comodules. We have the following corollaries:

Corollary 4.11 Let C and D be graded coalgebras and V : MY — MP q
graded equivalence, then V(G) is the full subcategory of gradable D-comodules.

Corollary 4.12 Suppose that every quasi-finite injective C'-comodule is gra-
dable and C' is Morita-Takeuchi equivalent to a coalgebra D. Then, there is a
graded structure on D and C' s graded equivalent to D.

5 Picard Groups for Graded Coalgebras
Definition 5.1 Let C' be a cocommutative coalgebra.

i) A graded C-coalgebra is a graded coalgebra D = @geqD, which is in
addition a C'-coalgebra, i.e, there is a cocentral coalgebra map € : D — C.

ii) Let D, E be graded C-coalgebras, a graded (D, E)-bicomodule over C is a
(D, E)-bicomodule p Mg over C which is graded, i.e, M = @gecM, and
the following square is commutative:
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M —LEM® E2MeC
Dp =

D@ M-ELCQM-—T+MxC

where T 1s the twist map.

iii) A graded (D, E)-bicomodule M over C' is called invertible if the functor
—O9M : gr? — grf is a graded equivalence. From Theorem 4.10,
equivalently, there exists a graded (E, D)-bicomodule over C, gNp, and
graded bicomodule maps f : D — MOYN and g : E — NOY M such
that (D, E, pMg, gNp, f,g) is a strict graded Morita-Takeuchi context.
Then, ENDgng_E(M, E)

Definition 5.2 Let D be a graded C-coalgebra and E a graded coalgebra.

i) We define grPicc(D) as the set of all graded bicomodule isomorphism
classes [M] of invertible graded bicomodules pMp over C. This set be-
comes a group with the multiplication induced by the graded cotensor
product,i.e, [M][N] = [MO} N]. The identity element is [D] and for
[M] € grPicc(D) the inverse [M]™' = H_p(M, D).

i) grPicent(D) is defined to be grPiczpy(D).
i) We define Pic"(E) = Picy(E > kG). (We know that gr¥ = MF>*G ),

Proposition 5.3 Let D be a graded coalgebra, grPicy(D) is a subgroup of
Pic9"(D).

Proof: We can identify grPic(D) with the isomorphism classes of graded
self-equivalences of gr” and Pic?"(D) with the isomorphism classes of self-
equivalences of gr”. Hence grPic(D) is a subgroup of Pic?"(D). 1

Remark: The theory of Picard group for graded rings presents some addi-
tional dificulties when the group is infinite. Rings with local units and unital
modules over them appear in this setting and they are a fundamental tool
for the computation of some graded Picard groups (see [Be|, [BeR1], [BeR2],
[HR] for more information on this topic). The coalgebra case is easier that
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the algebra case because, when the group G is infinite, C' > kG is a perfectly
well behaved coalgebra with counit. Thus the Picard group theory developed
in [TZ] may be applied to C' > kG.

Proposition 5.4 Let D, FE be graded C'-coalgebras and T, A graded coalgebras.

i) There exist group morphisms ¢ : grPicc(D) — Pico(D) and
Y : grPicent(D) — Picent(D).

ii) Suppose that D, E are graded equivalent over C, then grPicc(D) =
grPicc(E), grPicent(D) = grPicent(E).

iii) If T', A are graded equivalent, then Pic9"(I") = Pic9"(A).
w) If T is strongly graded, then Pic9"(I') = Pic(T,.).

Proof: i) If pMp induces a graded equivalence from gr” to gr”, then
by Theorem 4.9. U(M) induces an equivalence from MP” to MP. Thus,
the map from grPicc(D) to Pico(D), [M] — [U(M)] is a group morphism.
Analogously, for grPicent(D).

ii) It follows by the same ideas of [TZ, Th. 2.5].

i) If T', A are graded equivalent then we have that M>%*¢ = gpl’ ~ gph o
MA>*KG - Thus, I' > kG and A > kG are Morita-Takeuchi equivalent and
from [TZ, Th. 2.5], Pic?"(T") = Pic9"(A).

iv) If T is strongly graded, from [NT, Th. 5.4] there is an equivalence of
categories gr'’ ~ M'¢. Then, we have that M!>%*¢ =~ grl' ~ MU' and thus
I' >1 kG and T'. are Morita-Takeuchi equivalent coalgebras. From [TZ, Th.
2.5], Pic9"(T") = Pic(T.). 1

Let gr Autc(D) denote the group of graded C-automorphisms of the graded
C-coalgebra D. An C-automorphism f € grAutc(D) is said to be gr-inner if
there is an unity in D? such that f(d) = (u®1®@u ') (A®1)A(d) for all d € D.
We denote by grinne(D) the group of inner C-automorphisms of D. It is easy
to check that grinne(D) is a normal subgroup of gr Auto (D). The factor group
grAutc(D)/grinne(D) is called the group of outer C-automorphisms and it
is denoted by grOutc(D).

Let pMp be a graded bicomodule over C' and f, g € grAutc(D), we denote
by ;M, the bicomodule constructed in the following way: as vector space
#My, = M and the structure maps are defined by:
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pp(m) = Xy f(my) @mey  pp(m) = Xn) M) @ g(m())

for all m € M. We have the following fact, ¢ (;M,)y =5 Myy. Analogously
to the non graded case, cf. [TZ, Lem. 2.6], we can prove the following lemma:

Lemma 5.5 Let D be a graded C-coalgebra, f,q,h € grAutc(D) and we con-

sider the (D, D)-bicomodule ;D,. Then we have the following isomorphisms
as graded (D, D)-bicomodules:

i) 1Dg=" 1nDgp,
i) ¢ D107 (D1=9" 4Dy
ZZZ) fDlggrlDl 4 f S ngnnC(D)

Theorem 5.6 Let D be a graded C-coalgebra and E a graded coalgebra. We
consider the smash coproduct associated to E, E > kG and we set Inn9"(F) =
Inn(E > kG), Aut"(FE) = Aut(E > kG) and Outd" (E) = Autd" (E)/Inn’"(E),
then we have exact sequences:

1 ———grinng(D)—-grAutc(D)—YsgrPice(D)

1 — I (B)— Auto (E)—2 . picr (E)

where a(f) = [ ¢D1] for all f € grAutc(D) and B(g) = [ £ > kG| for
all g € Aut"(E). grOutc(D) and Outd"(E) are subgroups of grPicc(D) and
Pic9"(E), respectively.

Proof: i),ii) of the above lemma give that « is a well-defined group mor-
phism and iii) gives the exactness of the first sequence. The second sequence
is just [TZ, Th. 2.7] applied to E > kG. 1

Corollary 5.7 Let [M],[N] € grPicc(D) and [P], Q] € Pic"(E).

i) Mp=9"Np if and only if [N] € [M]Im(«a), that is, N=9" (M, as graded
bicomodules for some f € grAut(D).
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i) Ppsac = Qrsac if and only if there is g € Aut9" (D) such that Q = ;P
as E > kEG-bicomodules.

Proof: The first item is analogous to [TZ, Cor. 2.8] and the second is [TZ,
Cor. 2.8] applied to F > kG. 1

Next, we are able to interpret grPicc(D) in terms of graded C-automor-
phisms of D and grPicentp(D) when D is cocommutative and the group G is
abelian.

Let D be a cocommutative C-coalgebra graded by an abelian group G, if M
is a right graded D-comodule with structure map pp and 7: M@ D — D M
is the twist map, M becomes a graded left D-comodule with the structure
map pp = 7pp (Note that if G is not abelian, then pp is not graded). Also,
every graded left D-comodule may be viewed as a graded right D-comodule
in the same form. Similar facts happen for the map of graded right and left
D-comodules.

Let p Mp be an invertible graded (D, D)-bicomodule over C'. The structure
maps pp : M — M® D and pp: M — D ® M induce isomorphisms of graded
C-coalgebras a and b such that the following triangles are commutative:

pP Pp

M DeM M M®D
0 ¢
a®1 1®b
E_p(M)® M M® Ep (M)

We can identify (E_p(M),0) = (D, ,p) and (Ep_(M),0') = (D,p,). We
consider the map 7p, : M — D ® M which is a left graded D-colinear map,
then there is a unique graded C-coalgebra map u : D — D such that 7p, =
(u®1) ,p. Analogously, for 7,p: M — M ® D there exists a unique graded
C-coalgebra map v : D — D such that 7,p = (1 ® v)p,. We have:

pp=010ur,p=10u)(1ov)p,=(1Quww)p,
=R, =R (we1),p=(vu®1),p.

Hence uv = 1, and vu = 1, and thus u is a graded C-automorphism of D.
So, given [M]| € grPicc(D) there is a unique u,, € grAutc(D) such that
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7p, = (u,, ® 1),p. Thus we can define a map ¢ : grPicc(D) — grAutc(D)
by ¢([M]) = Uy,

Theorem 5.8 Let D be a cocommutative C-coalgebra graded by an abelian
group G. Then, there is a splitting exact sequence of groups:

1 %grPicent(D)ngPicC(D)&grAutc(D)% 1

Hence grPicc(D) = grPicent(D) b< grAutc(D), where >< denotes the semidi-
rect product of groups.

Proof: First, we see that ¢ is a group morphism. u,, is the unique map
which verifies 3,y M) ® my = X m) M) ® u,, (m—1)) for all m € M. Let
[M],[N] € grPicc(D) and we consider MOYN and z = x ® y € MOJN.
Then, we have:

() 2(0) ® UMDgN(Z(—l)) = 22(2) 2(0) @ 2(1) = 2 () T @ Y(0) @ Y1)

=2 T @ Y) @ Uy (Y1) = X(a) T(0) @Y @ uy (1))
= X T(0) @ Y @ Uyt (T(-1)) = Xz 2(0) B Uy Uy, (2(-1))

where in the fourth equality we have used that z € MO} N. Therefore
Upggary = Uyl

Now, we show that Ker(¢) = grPicent(D). If [M] € grPicent(D), then
the structure maps of M verifies p, = 7,p. Thus, 7p, = ,p=(1,®1),p and
so u,, = lp, that is, [M] € Ker(¢). Conversely, if u,, = 1,, then 7p, = _p
and [M] € grPicent(D).

Let a : grAuto(D) — Pice(D) be as in Theorem 5.6 and let o € grAuto (D).
We set M = ,-1D;. u,, is the unique map which verifies 7p, = (u,, ® 1), p

with p, = A and ,p = (67! ® 1)A. Therefore, u,, =0o. |

Next, we apply our results in the study of graded Picard groups of gr-
irreducible coalgebras. First, we need some definitions:

Definition 5.9 Let D be a graded coalgebra and X € grP.

i) A graded subcoalgebra E C D is called gr-simple if it has no proper graded
subcoalgebras.
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ii) D is said to be gr-irreducible if it has a unique graded gr-simple subcoal-
gebra.

iii) X is called gr-free if X=29" @ e C(g9)"o) for some indexed sets I, for all
geqG.

Lemma 5.10 Let D be a coconmutative gr-irreducible graded coalgebra. Then
every gr-injective D-comodule is gr-free.

Proof: Let X € gr” gr-injective. We know that X = @®;c;E9(S;) with
S; € gr? gr-simple for all i € I. Since D is gr-irreducible then it has a unique
gr-simple subcoalgebra S and the only gr-simple comodules are of the form
S(g) with g € G. Thus, we can set X = @y B (S(g))U2). But E"(S(g)) =
D(g) for all g € G. Hence X = ®geaD(g)"s) and so X is gr-free. 1

Corollary 5.11 Let D be a cocommutative gr-irreducible coalgebra graded by
an abelian group G. Let S be the unique gr-simple subcoalgebra in D. Suppose
that S(g) is not isomorphic to S as graded comodules for any g € G. Then,
grPic(D) = G < grAut(D)

Proof: We are going to prove that grPicent(D) = G and we apply Theo-
rem 5.8. For every g € G the graded bicomodule (the left structure is induced
by the right structure) D(g) is invertible with inverse D(g~!) and if D(g)=9"D
then S(g) = soc(D(g)) = soc(D) = S which is a contradiction with the
hypothesis. Hence ¢ = e and G — grPicent(D). Also, if M is a graded
invertible comodule, then M is gr-injective and by the above lemma M is gr-
free. Set M = ®,ccD(g)!s). Since M is invertible there is N € gr? such that
MOSN = @yeaN(g9) 29" D and hence

5069 (D92 N (9) )2 ez 500" (N () 255007 (D)=
So, we conclude that M=9"D(g) for some g € G. 1

Theorem 5.12 Let C be a cocommutative gr-irreducible graded coalgebra. Then
Pico"(C) = Outy" (C).

Proof: Denote by A : gr® — M%¢ and B : M>*¢ — gr® the
isomorphisms between both categories. Suppose that [M] € Pic9"(C), then
M is a quasi-finite injective cogenerator C' > kG-bicomodule. Hence B(M)
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is a quasi-finite injective cogenerator as graded right C-comodule. Since C' is
gr-irreducible, by the above lemma B(M) is gr-free, that is, B(M)=9" @y
C(g9)%). From [T, Prop. 4.5, I, is a finite index set and |I,| > 1 for all
g € G because B(M) is a quasi-finite injective cogenerator. We can write
B(M)2" &y Cg) @V with V € gr®, then M =~ AB(M) =2 A(®4ecC(g)) @
A(V). But A(®y4ecCl(g)) = C > kG as right C' > kG-comodules. Thus
M =C > kGeW with W = A(V) as right C' > kG-comodules.

On the other hand, since M is invertible, there is an invertible C' > kG-
comodule N such that MOgwquagN = C > kG as right C' >1 kG-comodules.
Then, (C > kGDkaGN)@(WDkaGN) = (O =< kG. Setting 7 = WDcka
N we have that N @ Z = C' > kG, and thus soc(N) @ soc(Z) = soc(C' >«
kG). The argument of the above paragraph applied to N gives that N =
C > kG @ W' and then soc(N) = soc(C > kG) @ soc(W'). Combining
this with the fact that N is a quasi-finite injective cogenerator and C' > kG
contains all simples of the category, from [T, Prop. 4.5], we deduce that
soc(Z) = {0} and therefore Z = {0}. Using that —Oc~qe N is an equivalence,
Z = WOc¢sqeN = {0} implies W = {0}. So that, M = C > kG as
right C' >1 kG-comodules. Finally, from Corollary 5.7 ii), it follows that
[M] € Im(() and thus Out?" (C') = Pico"(C). 1

EXAMPLES:

1.- We consider the coalgebra generated by two elements ¢y, ¢; with comul-
tiplication and counit given by:

A(Co) = ¢y ® ¢y, A(Cl) =co®c1+ 1 Qe 8(00) = 1, 8(01) =0

We see C' graded by Zs with Cy = kc¢y and Cy = kc¢y. Consider the
associated smash coproduct C' > kZ,. It is easy to check that the only
automorphisms of C' >1 kZ, are given by:

co><10—cp >0 co >0 o>l
co>< 1 cy>=l co><1 ¢y >0
c1 >0+ ac; >0 c1 >0 be; >11
cg ><11—acy >1 c1 ><1r+bc; >0

where a,b € k*. Then, Autd"(C) = k* X Z5. The group of units of (C' >«
kZy)* = C*#(kZ>)* (see [DNRV, Remark 1.7]) is £* and Inn?"(C) = {1}.
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So that Out?" (C) = Aut?(C)/Inn?" (C) = k* x Zy. From Theorem 5.12,
Picd"(C) = Out?" (C) = k* X Zs. On the other hand, gr Aut(C') = k* and from
Theorem 5.11, grPic(C) = Zy x k*. By [TZ, Th. 2.7] Pic(C) = Aut(C) = k*.

2.- Let C be the trigonometric coalgebra, that is, the coalgebra generated
by two elements ¢, s with comultiplication and counit given by:

Ale)=c®c—5®s, A(s) =c®s+s®@c e(c)=1, e(s) =0

C becomes a Zsy-graded coalgebra by setting Cy = kc and C; = ks. In fact,
C' is strongly graded. By Proposition 5.4 vi), Pic?"(C') = Pic(Cy) = Pic(k)
since () is isomorphic to k as coalgebra.

Before we give the last example, we note the following fact: if C' = @©4ecCy
is a graded coalgebra and C' > kG is its associated smash coproduct, then
grAut(C)xG C Aut?" (C). Given (f, h) € grAut(C)xG we define fj,(c >1¢g) =
f(c) > gh for every homogeneous ¢ € Cy, and g € G. f;, is an automorphism
of C > kG-

A fu(c > g)

A(f(c) > gh)

Zf(c) f(C)(l) > deg(f(c)(2))gh ® f(c)(z) > gh
o) fley) > deg(cz))gh ® f(c@) > gh
(fn® fo)A(c > g)

e(fule >1g)) = e(f(c) > g) = e(f(c)) = (c)

3.- Let C be the power divided coalgebra C' = {c, ¢1, ca, ...} with A(¢;) =
§=1 c;j®c;i_j and (¢;) = 0p; for all i > 0. C'is graded by Z if we set C; = k¢;
for all i > 0 and C; = {0} for all i < 0.
It is easy to check that every gr-automorphism of C'is of the form ¢; — a‘c;
with a € k*. Hence grAut(C) = k*. From Corollary 5.11, gr Pic(C) = Z x k*.
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