
The Brauer Group of the Dihedral Group

G. Carnovale
Dipartimento di Matematica Pura ed Applicata

via Belzoni 7
I-35131 Padua, Italy

email:carnoval@math.unipd.it
and

J. Cuadra
Universidad de Almeŕıa
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Abstract

Let pm be a power of a prime number p, Dpm be the dihedral group
of order 2pm and k be a field where p is invertible and containing a
primitive 2pm-th root of unity. The aim of this paper is computing the
Brauer group BM(k, Dpm , Rz) of the group Hopf algebra of Dpm with
respect to the quasi-triangular structure Rz arising from the group Hopf
algebra of the cyclic group Zpm of order pm, for z coprime with p. The
main result states that BM(k, Dpm , Rz) ∼= Z2×k·/k·2×Br(k) when p is
odd and when p = 2, BM(k, D2m , Rz) ∼= Z2×Z2×k·/k·2×k·/k·2×Br(k).
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Introduction

Let k be a ring with unity and H be a Hopf algebra over k with bijective
antipode. In [2] S. Caenepeel, F. Van Oystaeyen, and Y.H. Zhang defined
the Brauer group of the Hopf algebra H, denoted by BQ(k,H), consisting
of Brauer equivalence classes of H-Azumaya algebras. The Brauer group
BQ(k,H) generalizes to arbitrary Hopf algebras the Brauer-Long group of
a commutative and cocommutative Hopf algebra introduced in [10]. Thus the
class of Hopf algebras with a Brauer group theory is enlarged. In particular,
it makes sense to think about the Brauer group of the group Hopf algebra of
a non abelian group. For G a finite abelian group the Brauer-Long group of
the Hopf algebra kG, denoted by BD(k,G) and studied in [9], was proposed
as a generalization of previous existing Brauer groups of graded algebras like
the Brauer-Wall group [20] or the Brauer group Bφ(k, G) of G-graded algebras
with respect to a pairing φ : G × G → k, see [6], [5], [7]. The Brauer group
BD(k,G) contains these other Brauer groups as subgroups.

In the generalization proposed in [2], the Brauer group Bφ(k,G) may be
recognized as the Brauer group of a coquasi-triangular Hopf algebra, see
[3, Lemma 1.2]. For a coquasi-triangular Hopf algebra (H, r) the Brauer
group BQ(k,H) contains a subgroup BC(k,H, r) consisting of classes of Hop-
comodule algebras with H-action stemming from the coquasi-triangular struc-
ture r. Dually, if (H, R) is a quasi-triangular Hopf algebra, BQ(k,H) contains
a subgroup BM(k, H,R) consisting of classes of H-module algebras with H-
coaction arising from the quasi-triangular structure R.

Let n be a nonnegative integer, let k be a field containing a primitive n-th
root of unity ω and such that n is invertible in k. In this paper we study the
Brauer group BM(k, Dn, Rz) of the group Hopf algebra of the dihedral group
Dn = 〈g, h : gn = h2 = 1, gh = hgn−1〉 with respect to the quasi-triangular
structures

Rz =
1

n
(

∑
0≤l,m<n

ω−lmgl ⊗ gzm), (0 ≤ z ≤ n− 1)

for z coprime with n. These quasi-triangular structures arise from the quasi-
triangular structure on the group Hopf algebra kZn. For n = pm a power
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of a prime number p a concrete description of BM(k, Dn, Rz) is given. It is
proved in Theorem 3.5 that BM(k, Dn, Rz) ∼= Z2 × k·/k·2 × Br(k) if p is odd
and BM(k, Dn, Rz) ∼= Z2 × Z2 × k·/k·2 × k·/k·2 ×Br(k) if p = 2. Here Br(k)
denotes the usual Brauer group of k and k·/k·2 is the multiplicative group of k
modulo squares. For the case p = 2 the assumption that ω = θ2 for a primitive
2n-root of unity θ is needed.

The underlying idea in our study of BM(k, Dn, Rz) is to relate it to the
Brauer groups BM(k, Z2, R0) and BM(k, Zn, Rz) which belong to the theory
of the Brauer-Long group and describe BM(k, Dn, Rz) from the knowledge
of them. The cases n odd and n even are different and need to be treated
separately. The inclusion map i : Zn → Dn induces a group homomorphism i∗ :
BM(k, Dn, Rz) → BM(k, Zn, Rz). It is shown in Theorem 2.10 that Ker(i∗) ∼=
k·/k·2 when n is odd and Ker(i∗) ∼= k·/k·2×Z2 when n is even. Any [β] ∈ k·/k·2

and ā ∈ Z2 is represented in Ker(i∗) by the algebra A(β, ωa). As an algebra
A(β, ωa) is the 2 × 2 matrix algebra M2(k) and the Dn-action is defined by
letting g and h act by conjugation by the elements

u =

(
ωa 0
0 1

)
, v =

(
0 β
1 0

)
,

respectively. The algebra C(1) = k〈δ : δn = 1〉 with g-action given by g · δ =
ωz−1

δ is Zn-Azumaya. The class of C(1) in BM(k, Zn, Rz) lies in the image of
i∗ since the g-action may be extended to a Dn-action by setting h · δ = ωrδn−1

for 0 ≤ r ≤ n − 1. With this Dn-action C(1) is Dn-Azumaya. When n
is odd the isomorphism class of this Dn-module algebra is independent of r
while when n is even there are exactly two inequivalent Dn-Azumaya algebra
structures on C(1) depending on the parity of r (Proposition 2.12). If k is
algebraically closed and n is a power of a prime p not dividing z it is known
that BM(k, Zn, Rz) ∼= Z2 and it is generated by [C(1)]. From these facts it
is derived that BM(k, Dn, Rz) ∼= BM(k, Zn, Rz) ∼= Z2 if p is odd (Corollary
2.13), and BM(k, Dn, Rz) ∼= Z2 × Z2 if p = 2 (Corollary 2.16).

This result is used to determine BM(k, Dn, Rz) for k arbitrary by going
to its algebraic closure k. The inclusion map ι : k → k induces a group ho-
momorphism ι∗ : BM(k, Dn, Rz) → BM(k, Dn, Rz). When n is odd the kernel
of ι∗ is the subgroup BAz(k, Dn, Rz) consisting of classes of BM(k, Dn, Rz)
containing a representative element which is classically Azumaya. It is shown
in Proposition 3.2 that Ker(ι∗) ∼= k·/k·2 × Br(k). The group k·/k·2 is rep-
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resented by the algebras A(β, 1) for [β] ∈ k·/k·2. When n = 2q with q even,
Ker(ι∗) ∼= k·/k·2 × k·/k·2 × Br(k). For q odd, Ker(ι∗) is isomorphic to the
direct product of k·/k·2 and the group extension k·/k·2 ×{−,−} Br(k) where
{−,−} : k·/k·2 × k·/k·2 → Br(k) is the 2-cocycle mapping ([a], [b]) to [{a, b}].
Here {a, b} denotes the quaternion algebra generated by x, y subject to the
relations x2 = a, y2 = b and xy = −yx. In both cases the first copy of k·/k·2 is
represented by the algebras A(β, 1) and the second copy is represented by the
algebra A(t) defined as follows: for [t] ∈ k·/k·2, A(t) = M2(k) as an algebra
and the Dn-action is given by h acting trivially and g acting by conjugation
by

u =

(
0 t
1 0

)
.

When n is a power of a prime number the map ι∗ is surjective and split and
its image commutes with Ker(ι∗) (Theorem 3.5).

1 Preliminaries

Throughout k will be a field and H a finite dimensional Hopf algebra over k.
For general facts on Hopf algebras and related notions we refer the reader to
[17], [14], and [8]. In this section we recall the construction of the Brauer group
BM(k, H,R) of a finite dimensional quasi-triangular Hopf algebra (H, R) over
a field k, see [2], [3].

Let (H, R) be a quasi-triangular Hopf algebra with quasi-triangular struc-
ture R =

∑
R(1) ⊗ R(2) ∈ H ⊗H. Any left H-module algebra A is naturally

endowed with a standard right H-comodule algebra structure

ρ : A → A⊗Hop, a 7→
∑

(R(2) · a)⊗R(1). (1)

The braided product A#B of two left H-module algebras A, B is again a left
H-module algebra and it is defined as follows: as a vector space A#B = A⊗B,
with multiplication and H-action defined by

(a#b)(a′#b′) =
∑

a(R(2) · a′)#(R(1) · b)b′

h · (a⊗ b) =
∑

(h(1) · a)⊗ (h(2) · b)
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for all a, a′ ∈ A, b, b′ ∈ B, h ∈ H. The H-opposite algebra A of a left H-module
algebra A is equal to A as a left H-module but with multiplication given by

a ∗ b =
∑

(R(2) · b)(R(1) · a)

for all a, b ∈ A. For a finite dimensional left H-module M , the endomorphism
algebra Endk(M) becomes a left H-module algebra with H-action

(h · f)(m) =
∑

h(1) · f(S(h(2)) ·m),

for all h ∈ H, f ∈ Endk(M), and m ∈ M, where S denotes the antipode of
H. Similarly, the usual opposite algebra Endk(M)op becomes a left H-module
algebra with H-action

(h · f)(m) =
∑

h(2) · f(S−1(h(1)) ·m),

for all h ∈ H, f ∈ Endk(M)op, and m ∈ M.

A finite dimensional left H-module algebra A is called H-Azumaya if the
following two left H-module algebra maps are isomorphisms:

F : A#A → Endk(A), F (a#b)(c) =
∑

a(R(2) · c)(R(1) · b),
G : A#A → Endk(A)op, G(a#b)(c) =

∑
(R(2) · a)(R(1) · c)b,

for all a, b, c ∈ A and a, b ∈ A. Let Az(H, R) denote the set of isomorphism
classes of left H-Azumaya algebras. The following equivalence relation in
Az(H, R) is introduced: two H-Azumaya module algebras A, B are called
Brauer equivalent, denoted by A ∼ B, if there are two finite dimensional
left H-modules M, N such that A#End(M) ∼= B#End(N) as left H-module
algebras. The quotient set BM(k,H,R) = Az(H, R)/ ∼ turns out to be a
group with product induced by the braided product, that is, for [A], [B] ∈
BM(k, H,R), [A][B] = [A#B]. The inverse of [A] is [A] and the identity
element is [k]. Note that for a finite dimensional left H-module M , End(M)
is a representative element of [k]. The group BM(k, H,R) is called the Brauer
group of H with respect to the quasi-triangular structure R.

The Brauer group BM(k,H,R) has a functorial behaviour at the field
level and at the Hopf algebra level. Any field homomorphism f : k → k′

induces a group homomorphism f∗ : BM(k, H,R) → BM(k, H ⊗k k′, Rk′)
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by mapping the class [A] into the class [A ⊗k k′]. Any quasi-triangular map
χ : (H, R) → (H ′, R′) induces a group homomorphism χ∗ : BM(k,H ′, R′) →
BM(k,H,R), [A] 7→ [A] by pulling back the action of H ′ on A along the map
χ.

For a coquasi-triangular Hopf algebra (H, r) a dual construction of the
Brauer group holds; one considers right Hop-comodule algebras and use the
coquasi-triangular structure in order to define a braiding, braided product, H-
opposite algebras, and H-Azumaya algebras. The group obtained in this way
is denoted by BC(k,H, r) and it is called the Brauer group of H with respect to
the coquasi-triangular structure r. For a quasi-triangular Hopf algebra (H, R),
H∗ is a coquasi-triangular Hopf algebra with coquasi-triangular structure r
induced on H∗ by R. Then BM(k, H,R) ∼= BC(k,H∗, r). If H is commu-
tative and cocommutative, then r induces a pairing φ on H and the Brauer
group BC(k, H, r) is isomorphic to the Brauer group Bφ(k, H) of φ-Azumaya
algebras, see [3, Lemma 1.1], [4, page 329], [7], [15] for more details.

Let (D(H),R) the Drinfel’d double of H equipped with its canonical quasi-
triangular structure R. The Brauer group BQ(k, D(H),R) is usually denoted
by BQ(k,H) and it is called the Brauer group of H. If H admits a quasi-
triangular structure R, then BM(k, H,R) is a subgroup of BQ(k,H). Simi-
larly, if (H, r) is a coquasi-triangular structure, then BC(k, H, r) is a subgroup
of BQ(k,H). All these Brauer groups are particular cases of Brauer groups of
a braided monoidal category, see [19].

When H is the group algebra H = kG of some group G we will denote
BM(k,H,R) by BM(k,G,R).

2 The Brauer group BM(k, Dn, R)

From now on k is a field containing a primitive 2n-th root of unity θ and
n is invertible in k. Let k· denote the multiplicative group of k. Consider
the dihedral group Dn = 〈g, h : gn = h2 = 1, gh = hgn−1〉. We identify Zn

with 〈g〉. The quasi-triangular structures on kDn were studied in [21]. It is
proved in [21, Proposition 3.2] that for n 6= 4, (kDn, R) is a quasi-triangular
Hopf algebra if and only if (kZn, R) is quasi-triangular. For n = 4 there are
more quasi-triangular structures arising from the subgroups 〈h, g2〉, 〈hg, g2〉
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which are isomorphic to Z2 × Z2. The quasi-triangular structures on kZn are
computed in [16, page 219], and these are of the form,

Rz =
1

n
(

∑
0≤l,m<n

ω−lmgl ⊗ gzm),

for 0 ≤ z ≤ n−1, where ω is a primitive n-th root of unity. Let i : kZn → kDn

be the inclusion map and p : kDn → kZ2, g 7→ 0̄, h 7→ 1̄ be the canonical
projection map. We have quasi-triangular maps,

(kZn, Rz)
i - (kDn, Rz)

p
- (kZ2, R0),

where R0 = 1⊗1 is the trivial quasi-triangular structure on kZ2. The functorial
behaviour of the Brauer group BM(k,−) yields a sequence

BM(k, Z2, R0)
p∗

- BM(k, Dn, Rz)
i∗- BM(k, Zn, Rz).

We describe explicitly these homomorphisms. Any Dn-Azumaya algebra is a
Zn-Azumaya algebra by forgetting the action of h. Indeed, a Dn-module alge-
bra is Dn-Azumaya if and only if it is Zn-Azumaya. This is due to the fact
that the quasi-triangular structures on kZn and kDn are the same. Thus
we get a map i∗ : BM(k, Dn, Rz) → BM(k, Zn, Rz), [A] 7→ [A] but with
the latter A considered as a Zn-module algebra. Similarly, any Z2-Azumaya
module algebra is a Dn-Azumaya module algebra via p, and we have a map
p∗ : BM(k, Z2, R0) → BM(k, Dn, Rz), [A] 7→ [A].

The rest of this section is devoted to study the above sequence. Let us first
note that for the case z = 0, i.e., R0 = 1⊗ 1, the Brauer group BM(k, Dn, R0)
is already known. It consists of classes of Dn-module algebras which are clas-
sically Azumaya. By [10, Theorem 1.12], BM(k, Dn, R0) ∼= Br(k)×H2(Dn, k)
where H2(Dn, k) is the second cohomology group of Dn with values in k. We
will concentrate on the case z 6= 0 and we will describe BM(k, Dn, Rz) in
terms of BM(k, Zn, Rz) and BM(k, Z2, R0). These two groups belong to the
classical theory of the Brauer group of an abelian group, see [4], [9], [10]. The
Brauer group BM(k, Z2, R0) ∼= k·/k·2 × Br(k), see [10, Theorem 1.12]. The
Brauer group BM(k, Zn, Rz) is just the group Bφz(k, Zn) of φz-Azumaya al-
gebras with φz : Zn×Zn → k being the pairing induced by Rz, see [3, Lemma
1.2], [4, pages 329, 341, 434]. For this description we have identified kZn and
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(kZn)∗ as Hopf algebras. The Brauer group Bφz(k, Zn) was first defined by
Child, Garfinkel and Orzech in [5] and it can be described by an exact sequence
due to Childs, see [6] .

Recall that the action of a Hopf algebra H on an algebra A is called inner
if there is a convolution invertible linear map π : H → A such that

h · a =
∑

π(h(1))aπ−1(h(2))

for all h ∈ H, a ∈ A. The action is called strongly inner if π may be chosen as
an algebra map. The Skolem-Noether Theorem for Hopf algebras claims that
the action of any Hopf algebra on a classically Azumaya algebra is inner, see
[12]. The following lemma will be very useful in the sequel.

Lemma 2.1 Let (H, R) be a quasi-triangular Hopf algebra and A be a ma-
trix algebra which is an H-Azumaya module algebra. Then [A] is trivial in
BM(k, H,R) if and only if the action of H on A is strongly inner.

Proof: This is proved in [18, Lemma 2] for the Drinfel’d double of a Hopf
algebra with its canonical quasi-triangular structure. The same proof works
for any quasi-triangular Hopf algebra.

Proposition 2.2 Let A be a Dn-module algebra which is classically Azumaya.
The following statements hold:

i) A contains a subalgebra generated by u, v subject to the relations un =
α, v2 = β, uv = γvun−1, with α, β, γ ∈ k· satisfying γnαn−2 = 1.

ii) The action of Dn on A is strongly inner if and only if there are s, t ∈ k·

such that α = tn, β = s2 and γ = (t−1)n−2.

iii) If n = 2q is even, then the action of Dn on A is strongly inner if and
only if there are s, t ∈ k· such that α = tn, β = s2 and γq = α1−q.

Proof: i) Since A is classically Azumaya, the Skolem-Noether Theorem
yields that the action of Dn on A is inner. Let π ∈ Homk(kDn, A) be a
convolution invertible map such that σ · a = π(σ)aπ−1(σ) for all σ ∈ Dn. As σ
is a group-like element, π−1(σ) = π(σ)−1.
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Let u = π(g) and v = π(h). Then, a = 1 · a = gn · a = una(u−1)n for all
a ∈ A. Since A is central, there is α ∈ k· such that un = α. Similarly, v2 = β
for some β ∈ k·. From the equalities,

(gh) · a = g · (h · a) = uvav−1u−1,

(gh) · a = (hgn−1) · a = h · (gn−1 · a) = vun−1a(u−1)n−1v−1,

we deduce that there exists γ ∈ k· satisfying uv = γvun−1. Multiplying this
latter equality on the left by un−1 we get αv = γnvun(n−1) = γnαn−1v. Hence
γnαn−2 = 1.

ii) Assume that the action of Dn on A is strongly inner, and let ζ : kDn → A
be a convolution invertible algebra map such that σ · a = ζ(σ)aζ(σ)−1 for all
σ ∈ G, a ∈ A. The elements ū = ζ(g) and v̄ = ζ(h) satisfy:

ūn = 1, v̄2 = 1, ūv̄ = v̄ūn−1.

Since g · a = uau−1 = ūaū−1 for all a ∈ A, there is an element t ∈ k· such that
u = tū. Then, α = un = tnūn = tn. Similarly, there is s ∈ k· such that v = sv̄,
and β = s2. Now, γstn−1v̄ūn−1 = γvun−1 = uv = tsūv̄ = tsv̄ūn−1. Therefore,
γ = (t−1)n−2.

Conversely, suppose that α = tn, β = s2, and γ = (t−1)n−2 for some s, t ∈
k·. Define

ζ(g) =
1

t
u, ζ(h) =

1

s
v,

and extend it to an algebra map from Dn into A. This map is well-defined and
gives the same action as π.

iii) If the action of Dn is strongly inner, then from ii) we obtain

α1−q = (t2q)1−q = (t−1)2q(q−1) = γq.

Conversely, if α = tn, β = s2 and γq = α1−q then

α = (αγ)q, γ = ((αγ)−1)q−1.

By part ii) it is enough to show that αγ is a square in k. Since α = t2q = (αγ)q

there exists a q-th root of unity ξ = θ4r for some r such that αγ = ξt2 = (θ2rt)2,
hence the statement.
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Remark 2.3 The elements u, v of Proposition 2.2 i) are unique up to scalar
multiples. The subalgebra generated by them is completely determined by the
Dn-action and we will call it the induced subalgebra on A by the Dn-action.
If we take different generators u′ and v′, then u′ = tu and v′ = sv for some
nonzero scalars t and s and the corresponding constants will be α′ = tnα,
β′ = s2β and γ′ = (t−1)n−2γ.

The set G = {(α, γ) ∈ k·×k· : γnαn−2 = 1} is a group with the multiplica-
tion induced from k·×k·. We introduce the following equivalence relation on G.
Two elements (α, γ), (α′, γ′) ∈ G are equivalent, denoted by (α, γ) ∼ (α′, γ′),
if there is t ∈ k· such that α′ = tnα and γ′ = (t−1)n−2γ. The quotient set
G = G/ ∼ is a group. Any Dn-module algebra which is classically Azumaya
has associated a unique invariant ([β], [(α, γ)]) ∈ k·/k·2 × G.

Remark 2.4 Note from the proof of Proposition 2.2 that the action of g is
strongly inner if and only if α is a n-th power in k and that in this case one
can always choose u and v such that un = 1 and uv = γvu−1 with γn = 1.

Lemma 2.5 i) If n is odd, then G is trivial.

ii) If n is even, then G ∼= k·/k·2 × Z2.

Proof: i) We only need to show that if n is odd we can always find t ∈ k·

such that α = tn and γ = t2−n. Since γnαn = α2 this is equivalent to α = tn

and αγ = t2. As (2, n) = 1, there exist integers a and b for which 1 = 2a + nb.
Then α = α2aαnb = (αγ)anαbn and αγ = (αγ)2a(αγ)nb = (αγ)2aα2b so we may
take t = αa+bγa.

ii) Suppose that n = 2q and let [(α, γ)] ∈ G. From γnαn−2 = 1, it follows
that γqαq−1 = ±1. It may be checked that the map

Φ : G → k·/k·2 × Z2, [(α, γ)] 7→ ([γα], γqαq−1)

is an isomorphism.

Corollary 2.6 With notation as in Proposition 2.2 i), for n odd we can always
choose u such that un = 1 and uv = vun−1.
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Any Dn-module algebra A becomes a Zn-comodule algebra with comodule
structure as in (1) for the quasi-triangular structure Rz. Hence A is a Zn-
graded algebra. An element a ∈ A has degree r, denoted by deg(a) = r, if
ρ(a) = a ⊗ gr. Equivalently, gz · a = ωra. If A, B are Dn-module algebras,
then the multiplication in the braided product A#B is

(a#b)(a′#b′) = aa′#(gdeg(a′) · b)b′ (2)

for homogeneous a, a′ ∈ A and b, b′ ∈ B.

Lemma 2.7 Let A, B be Dn-module algebras and let B be a classically Azu-
maya algebra such that g acts strongly innerly on it. Then, A#B ∼= A⊗B as
Dn-module algebras. In particular, if A and B are both classically Azumaya
with a strongly inner g-action, A#B is again so.

Proof: The proof is inspired by [9, Lemma 2.2]. Since the action of g is
strongly inner on the Azumaya algebra B there exists uB ∈ B with g · b =
uBbu−1

B for every b ∈ B and un
B = 1. Similarly, there exists vB ∈ B such

that h · b = vBbv−1
B for every b ∈ B with uBvB = γvBu−1

B and γn = 1. Let
ζ = θr ∈ k· be a 2n-th root of unity for which ζ2 = γ. We check that the map

Φ: A#B → A⊗B, a#b 7→ a⊗ ζdeg(a)u
− deg(a)
B b,

for a ∈ A homogeneous, is a Dn-module algebra isomorphism. For a, a′ ∈ A
homogeneous, and b, b′ ∈ B,

Φ((a#b)(a′#b′)) = Φ(aa′#(gdeg(a′) · b)b′)
= aa′ ⊗ ζdeg(a)+deg(a′)u

− deg(a)
B u

− deg(a′)
B (u

deg(a′)
B bu

− deg(a′)
B )b′

= (a⊗ ζdeg(a)u
− deg(a)
B b)(a′ ⊗ ζdeg(a′)u

− deg(a′)
B b′)

= Φ(a#b)Φ(a′#b′).

So the map Φ is an algebra homomorphism and it is clearly bijective because
uB is invertible. The inverse Φ−1 : A⊗ B → A#B is defined as Φ−1(a⊗ b) =

a#ζ− deg(a)u
deg(a)
B b for a ∈ A homogeneous and b ∈ B. We next show that Φ

is a Dn-module isomorphism. Notice that the action of g does not change the
degree of an element in A and the action of h maps elements of a given degree
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into elements of opposite degree. Then,

g · Φ(a#b) = g · (a⊗ ζdeg(a)u
− deg(a)
B b)

= (g · a⊗ ζdeg(a)uBu
− deg(a)
B bu−1

B )

= (g · a⊗ ζdeg(g·a)u
− deg(g·a)
B g · b)

= Φ(g · (a#b)).

h · Φ(a#b) = (h · a)⊗ ζdeg(a)vBu
− deg(a)
B bv−1

B

= (h · a)⊗ ζdeg(a)γ− deg(a)u
deg(a)
B (h · b)

= (h · a)⊗ ζ− deg(a)u
deg(a)
B (h · b)

= (h · a)⊗ ζdeg(h·a)u
− deg(h·a)
B (h · b)

= Φ(h · (a#b)).

To prove the last statement of the lemma, assume that A is also a classically
Azumaya algebra with a strongly inner g-action, and let uA, vA be generators
of the induced subalgebra such that un

A = 1. Then A#B ∼= A ⊗ B is again
classically Azumaya and u := Φ−1(uA ⊗ uB) satisfies g · (a#b) = u(a#b)u−1

for every a ∈ A and b ∈ B and un = 1#1.

Corollary 2.8 The subset BAzg(k, Dn, Rz) of classes in BM(k, Dn, Rz) which
can be represented by an Azumaya algebra with strongly inner g-action is an
abelian subgroup of BM(k, Dn, Rz). If n is odd, BAzg(k, Dn, Rz) coincides
with BAz(k, Dn, Rz), the subgroup of BM(k, Dn, Rz) of elements which can be
represented by an Azumaya algebra.

Proof: The last statement follows by Corollary 2.6.

Lemma 2.9 If [A] in BM(k, Dn, Rz) may be represented by a classically Azu-
maya algebra A, then all other representatives will be also classically Azumaya.
Moreover, with notation as in Remark 2.3, we may associate to [A] the invari-
ant ([βA], [(αA, γA)]) ∈ k·/k·2 × G and this assignment does not depend of the
representative of [A].

Proof: If B is any other representative of the class [A] then there are
Dn-modules P and Q such that A#End(P ) ∼= B#End(Q). Using Lemma 2.7,

A⊗ End(P ) ∼= A#End(P ) ∼= B#End(Q) ∼= B ⊗ End(Q).
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Therefore B ⊗ End(Q) is classically Azumaya. Then the algebra B is also
Azumaya because it is the centralizer of End(Q) in a classically Azumaya al-
gebra. This gives the first statement. We prove the second one. By Lemma
2.7, uA#End(P ) = Φ−1(uA⊗uEnd(P )) and vA#End(P ) = Φ−1(vA⊗vEnd(P )) are gen-
erators for the induced subalgebra of A#End(P ). Similarly for B#End(Q).
Since the Dn-action on End(P ) and End(Q) is strongly inner, then

αA#End(P ) = αAαEnd(P ) = αAtn, αB#End(Q) = αBαEnd(Q) = αBt′n

βA#End(P ) = βAβEnd(P ) = βAs2, βB#End(Q) = βBβEnd(Q) = βBs′2

γA#End(P ) = γAγEnd(P ) = γAt2−n γB#End(Q) = γBγEnd(Q) = γBt′2−n

for some t, t′, s, s′ ∈ k·. By Remark 2.3, there are s̃, t̃ ∈ k· such that αAtn =
t̃nαBt′n, βAs2 = s̃2βBs′2 and γAt2−n = t̃2−nγBt′2−n, hence the statement.

Theorem 2.10 There are two exact sequences of groups,

1 // k·/k·2 // BM(k, Dn, Rz)
i∗

// BM(k, Zn, Rz), (3)

for n odd and

1 // k·/k·2 × Z2
// BM(k, Dn, Rz)

i∗
// BM(k, Zn, Rz), (4)

for n even.

Proof: The kernel of i∗ is given by elements which can be represented by
a matrix algebra with a strongly inner g-action, therefore it is a subgroup of
the abelian group BAzg(k, Dn, Rz). Let A be a representative of an element in
Ker(i∗). Its induced subalgebra is generated by uA, vA such that un

A = 1, v2
A =

βA and uAvA = γAvAu−1
A , for βA ∈ k· and γA ∈ k· an n-th root of unity. For n

odd we can always make sure that γA = 1 by Corollary 2.6. For n = 2q even,
γq

A = ±1. In light of Lemma 2.9, the maps Invo: Ker(i∗) → k·/k·2, [A] 7→ [βA]
for n odd, and Inve: Ker(i∗) → k·/k·2 × Z2, [A] 7→ ([βA], γq

A) for n = 2q
even are well defined. We check that they are are group homomorphisms. If
A, B are in Ker(i∗) and have induced subalgebras generated by uA, vA and
uB, vB respectively, then by Lemma 2.7, the induced subalgebra of A#B is
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generated by u = Φ−1(uA ⊗ uB) and v = Φ−1(vA ⊗ vB). Hence v2 = βAβB

and uv = γAγBvu−1. The injectivity follows by Lemma 2.1, Remark 2.4 and
Proposition 2.2 ii), iii).

Finally we prove the surjectivity of these two maps. Let γ be an n-th root
of unity. Consider the matrix algebra A(β, γ) = M2(k). Let

u =

(
γ 0
0 1

)
, v =

(
0 β
1 0

)
.

It is easy to verify that un = 1, v2 = β and uv = γvu−1. Thus the conjugation
by u and v provide A of a Dn-module algebra structure. Consider the Zn-
action induced by restriction. Since A(β, γ) is classically Azumaya and it has
a Zn-trivial graded center, it is Zn-Azumaya. Hence A(β, γ) is Dn-Azumaya.
Clearly, if n is odd, Invo(A(β, γ)) = [β] and if n = 2q is even Inve(A(β, γ)) =
([β], γq). Hence both maps are surjective.

Remark 2.11 The Brauer group BM(k, Zn, Rz) may be identified with the
Brauer group Bφz(k, Zn) where φz : Zn×Zn → k, (gi, gj) 7→ ωzij is the pairing
induced by the quasi-triangular structure Rz, [3, Lemma 1.2]. When n = pm

is a power of a prime number p with p invertible in k, k containing a primitive
2n-th root of unity and φz is non-degenerated (equivalently, z is coprime with
n), the multiplication rules of Bφz(k, Zn) are known, see [4, Corollary 13.12.36].
As a set Bθz(k, Zn) = Z2 × k·/k·n ×Br(k). The product is given by

(±, S, A)(+, S ′, A′) = (±, SS ′, AA′|S ′#S|)
(±, S, A)(−, S ′, A′) = (∓, S−1S ′, AA′|S ′#S−1|).

We identify these rules in Bφz(k, Zn), see [1, page 235]. For α ∈ k·, the algebra
C(α) = k〈δ : δn = α〉 with Zn-action given by g·δ = ωz−1

δ is Zn-Azumaya. The
symbol − is represented by [C(1)]. Each [α] ∈ k·/k·n is viewed in Bφz(k, Zn)
as [C(α)#(kZn)∗]. For [α], [β] ∈ k·/k·n, the braided product C(α)#C(β) is
an Azumaya algebra, see [11, Proposition 2.1], [4, page 359]. By |C(α)#C(β)|
we denote the underlying algebra. It is generated by two elements x, y subject
to the relations xn = α, yn = β, yx = ωz−1

xy. The Brauer group Br(k) is
embedded as usual as the subgroup of ordinary Azumaya algebras with trivial
Zn-action. In particular, if k is algebraically closed, BM(k, Zn, Rz) ∼= Z2 and
it is generated by [C(1)].
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By the Remark above, if k is algebraically closed and n is a power of a
prime p not dividing z, then the exact sequences (3), (4) in Theorem 2.10
become

1 - BM(k, Dn, Rz)
i∗ - Z2

(5)

for n odd and

1 - Z2
- BM(k, Dn, Rz)

i∗ - Z2
(6)

for n even. In this setting BM(k, Dn, Rz) is thus always an abelian group. In
particular, for n odd, we can prove that BM(k, Dn, Rz) ∼= Z2 by showing that
it is nontrivial. The even case is slightly more complicated. We will prove that
BM(k, D2m , Rz) ∼= Z2 ×Z2 by showing that i∗ is surjective and split. For this
purpose, we study all possible lifts of the Zn-action on C(α) to a Dn-action.

In the sequel we will assume that z is coprime with n and we will denote
by s the inverse of z modulo n.

Proposition 2.12 Consider the algebra C(α) = k〈δ : δn = α〉 with Zn-action
given by g · δ = ωsδ. Then, C(α) is Dn-Azumaya if and only if there is λ ∈ k·

such that λnαn−2 = 1. In this case, h · δ = λδn−1. Furthermore:

i) If n is odd all possible lifts of the Zn-action give isomorphic Dn-module
algebras.

ii) If n = 2q, there are either 0 or 2 possible isomorphism classes of lifts
of the Zn-action according on the existence of a λ as above. Two lifts corre-
sponding to λ and λ′ are isomorphic if and only if λq = (λ′)q.

Proof: From [11, page 442], C(α) is Zn-Azumaya. Recall that an algebra is
Dn-Azumaya if and only if it is Zn-Azumaya. So it is enough to check whether
we can provide C(α) of a Dn-module algebra structure. It is easy to see that
for λ, α ∈ k· satisfying λnαn−2 = 1, the action given by g ·δ = ωsδ, h·δ = λδn−1

makes C(α) into a Dn-module algebra.

Conversely, the h-action on C(α) maps eigenvectors of the g-action of
eigenvalue ωt into eigenvectors of eigenvalue ω−t. As s is coprime with n, the
eigenspaces for the g-action are 1-dimensional. Thus, necessarily h ·δ = λδn−1.
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From the equality

δ = h2 · δ = h · (h · δ) = h · (λδn−1) = λ(h · δ)n−1 = λ(λδn−1)n−1 = λnδ(n−1)2

= λnαn−2δ,

it follows that λnαn−2 = 1.

For λ ∈ k· such that λnαn−2 = 1 let Cλ(α) denote the lift of C(α) with
h · δ = λδn−1. Consider two lifts Cλ(α) and Cλ′(α). Then (λ′)n = λn. So that
λ′ = ζλ for an n-th root of unity ζ = ωr for some integer r. It is easy to
check that if r = 2t is even, then the map Ψ: Cλ(α) → Cλ′(α), δ 7→ ωtδ is a
Dn-module algebra isomorphism.

i) For n odd, we can always make sure that r is even.

ii) For n = 2q even, r is even if and only if λq = (λ′)q. Hence if λq = (λ′)q,
then Cλ(α) and Cλ′(α) are isomorphic as Dn-module algebras. Conversely,
suppose now that Ψ : Cλ(α) → Cλ′(α) is an isomorphism of Dn-module alge-
bras. Then Ψ(δ) = ωrδ for some r because (s, n) = 1 and δn = α. Since the
elements Ψ(h · δ) = λ′ω−tδn−1 and h ·Ψ(δ) = ωtλδn−1 coincide, it follows that
λ′ = ω2tλ. Therefore λq = λ′q.

For n a power of an odd prime number and k algebraically closed the
computation of BM(k, Dn, Rz) derives from the sequence (5) and Proposition
2.12 i).

Corollary 2.13 Let n = pm for an odd prime p and let k be algebraically
closed. Then, for every z not divisible by p, BM(k, Dn, Rz) ∼= Z2. The non
trivial element is [C1(1)].

For n a power of 2 and k algebraically closed more work is needed to
compute BM(k, Dn, Rz).

Proposition 2.14 Let n = 2q and let Cλ(α), Cλ′(α) as above. Then, [Cλ′(α)] =
[Cλ(α)] in BM(k, Dn, Rz) if and only if λq = λ′q.

Proof: If λq = λ′q, we know from Proposition 2.12 ii) that Cλ(α) and
Cλ′(α) are indeed isomorphic. Conversely, suppose that Cλ(α) and Cλ′(α)
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represent the same element in BM(k, Dn, Rz), and let P, Q be two Dn-modules
such that Cλ(α)#End(P ) ∼= Cλ′(α)#End(Q) as Dn-module algebras. It fo-
llows from Lemma 2.7 that Cλ(α)⊗End(P ) ∼= Cλ′(α)⊗End(Q) as Dn-module
algebras. Then the centres Cλ(α)⊗ k and Cλ′(α)⊗ k of these two algebras are
isomorphic as Dn-module algebras. By Proposition 2.12 ii), λq = λ′q.

From now on the algebra C1(1) will be denoted by C0̄(1) both for n even
or odd. For n even, C1̄(1) will denote Cωs(1).

Lemma 2.15 With notation as above, the classes [C0̄(1)] (n even or odd),
[C1̄(1)] and [C0̄(1)#C1̄(1)] have all order 2 in the corresponding BM(k, Dn, Rz).
Moreover, [C0̄(1)] commutes with [C1̄(1)].

Proof: As the braided product of Dn-module algebras coincides with the
braided product of Zn-module algebras, the algebra Cā(1)#Cb̄(1) is a matrix
algebra ([11, Proposition 2.4]) with strongly inner g-action. We prove that
the Dn-action on Cā(1)#Cb̄(1) for a, b = 0, 1 is strongly inner if and only if
a = b. Let δ, η denote generators of C(1). Let u = ζ(δn−1#η) with ζ an
n-th (respectively 2n-th) root of unity for n odd (respectively even) for which
ζ2 = ωs. By induction, ur = ζ2r−r2

δn−r#ηr, so that un = 1. It may be checked
that the g-action on Cā(1)#Cb̄(1) is given by conjugation by u. The h-action
on Cā(1) and Cb̄(1) is defined by

h · δj = ωsajδ−j, h · ηj = ωsbjη−j.

Let

v =

{
1
n

∑n−1
i,j=0 ζ ijδi#ηj if n is odd,

1
q

∑q−1
i,j=0 ω−sai−sbj+2sijδ2i#η2j if n = 2q.

We claim that the element v satisfies v2 = 1 and h · (δi#ηj) = v(δi#ηj)v−1.
We prove it for n = 2q, the odd case is proved similarly.

v2 = 1
q2

∑q−1
i,j=0

∑q−1
l,m=0 ω−sa(i+l)−sb(j+m)+2sij+2slm+4sjlδ2(i+l)#η2(j+m)

= 1
q2

∑q−1
r,t=0

∑q−1
l,m=0 ω−sar−sbt+2sr(t−m)+2sltδ2r#η2t

= 1
q2

∑q−1
r,t=0 ω−sar−sbt+2str(

∑q−1
l,m=0 ω−2srm+2stl)δ2r#η2t

= 1#1.
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In order to prove that the h-action is conjugation by v we show that v(δi#ηj) =
ωsai+sbj(δ−i#η−j)v. We do so for the even case, the odd case is done similarly.

v(δi#ηj) = 1
q

∑q−1
l,m=0 ω−sal−sbm+2slm+2simδ2l+i#η2m+j

= 1
q

∑q−1+i
l′=i

∑q−1+j
m′=j ω−sal′−sbm′+sai+sbj+2sl′m′−2sl′jδ2l′−i#η2m′−j

= ωsai+sbj(δn−i#ηn−j)(1
q

∑q−1
l′=0

∑q−1
m′=0 ω−sal′−sbm′+2sl′m′

δ2l′#η2m′
)

= ωsai+sbj(δn−i#ηn−j)v,

where in the second equality the limits of the sums are reduced modulo q if
necessary. Hence, for n odd, [C0̄(1)]2 = 1 because v2 = 1#1 is a square in k.
For n = 2q we still have to compute γq where γ is defined as usual. Using the
commutation rules for v and δi#ηj and the expression of powers of u we find:

vun−1 = ζ−3v(δ#ηn−1) = ζ−3ωs(a−b)(δn−1#η)v = ω−2sωs(a−b)uv.

Thus γ = ω2sωs(b−a). Hence γq = 1 if and only if a = b. It follows that
[C0̄(1)]2 = [C1̄(1)]

2 = 1 while [C0̄(1)#C1̄(1)] = [C0̄(1)][C1̄(1)] 6= 1. The
algebra C0̄(1)#C1̄(1) is a matrix algebra with strongly inner g-action. So
[C0̄(1)#C1̄(1)] is in the kernel of i∗. Its image through the map Inve of
Theorem 2.10 is ([1],−1). A similar argument applies to [C1̄(1)#C0̄(1)] =
[C1̄(1)][C0̄(1)]. Since Inve is injective, both classes coincide.

Corollary 2.16 Let k be algebraically closed, n = 2m and let z be odd. Then
BM(k, Dn, Rz) ∼= Z2 × Z2. It is generated by [C0̄(1)] and [C1̄(1)].

Proof: By Lemma 2.15 the map i∗ in sequence (4) is surjective and split.
Hence BM(k, Dn, Rz) ∼= Z2 × Z2 with generators [C0̄(1)] and [C1̄(1)].

3 The map ι∗

In this section we study the Brauer group BM(k, Dn, Rz) when the field k is not
necessarily algebraically closed. Let k denote the algebraic closure of k. The
inclusion map ι : k → k induces a group homomorphism ι∗ : BM(k, Dn, Rz) →
BM(k, Dn, Rz), [A] 7→ [A⊗k k]. We describe the kernel of ι∗.
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Lemma 3.1 If n is odd there is an exact sequence

1 - BAz(k, Dn, Rz) - BM(k, Dn, Rz)
ι∗- BM(k, Dn, Rz),

where BAz(k, Dn, Rz) = BAzg(k, Dn, Rz) is the set consisting of classes of
BM(k, Dn, Rz) represented by classically Azumaya algebras.

If n = 2q is even, then Ker(ι∗) consists of classically Azumaya algebras
with α, γ in the induced subalgebra satisfying γqαq−1 = 1.

Proof: The kernel of ι∗ consists of classes of Dn-Azumaya algebras [A]
such that [A⊗k k] becomes Brauer-trivial in BM(k, Dn, Rz). Hence A⊗k k is
a matrix algebra over k with strongly inner Dn-action, and consequently, an
Azumaya algebra over k. But it is well-known that A is Azumaya over k if
and only if Ak̄ = A⊗k k̄ is Azumaya over k.

If n is odd, then [A] ∈ BAz(k, Dn, Rz). Conversely, for n odd and A a
Dn-Azumaya module algebra which is classically Azumaya, A⊗k k is Azumaya
over k. But the only Azumaya algebras over an algebraically closed field are
matrix algebras. Moreover, from Proposition 2.2, the Dn-action on A ⊗k k is
strongly inner since k̄ is algebraically closed. Then A⊗k k is Brauer-trivial in
BM(k, Dn, Rz) by Lemma 2.1.

If n = 2q and [A] ∈ Ker(ι∗), then Ak̄ = A⊗k k̄ is a matrix algebra over k.
So A is Azumaya over k. The induced subalgebra B on Ak̄ is generated by u
and v such that un = α and uv = γvun−1 with α, γ ∈ k̄ satisfying γqαq−1 = 1
by Proposition 2.2. On the other hand, B = B′ ⊗k k where B′ is the induced
subalgebra on A. Let u′, v′ be the generators of B′. The elements u, v in B
must be scalar multiples of u′, v′. If u = tu′ and v = sv′ for some s, t ∈ k̄,
then α′ = tnα and γ′ = (t−1)n−2γ so

γ′qα′q−1 = (t2−n)qγq(tn)q−1αq−1 = (tq−1)2−nt2−n(tq−1)n−2(tq−1)2γqαq−1 = γqαq−1.

Conversely, if A is a Dn-Azumaya module algebra which is classically Azumaya
and satisfying γqαq−1 = 1, then A ⊗k k̄ is Brauer trivial in BM(k̄, Dn, Rz)
because k̄ is algebraically closed.

Proposition 3.2 i) For n odd, BAzg(k, Dn, Rz) ∼= k·/k·2 ×Br(k).

ii) For n even, BAzg(k, Dn, Rz) ∼= Z2 × k·/k·2 ×Br(k).
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Proof: We know from Corollary 2.8 that BAzg(k, Dn, Rz) is abelian. The
assignment τ : BAzg(k, Dn, R) → Br(k) which maps [A] into [A] by forgetting
the Dn-action is a group homomorphism by Lemma 2.7. Moreover, any k-
Azumaya algebra may be endowed with the trivial Dn-action becoming clearly
Dn-Azumaya. Thus the map so defined splits τ . Hence BAzg(k, Dn, Rz) ∼=
Br(k)×Ker(τ). As in the proof of Theorem 2.10 we can show that Ker(τ) ∼=
k·/k·2 for n odd, and Ker(τ) ∼= k·/k·2 × Z2 for n even. In both cases Ker(τ)
is represented by the classes of the algebras A(β, γ) for β ∈ k· and γ an n-th
root of unity.

For a, b ∈ k· let {a, b} denote the quaternion algebra generated by x, y such
that x2 = a, y2 = b and xy = −yx. Since this algebra is also generated by x
and θqbxy−1, we have that {a, b} = {a, ab}. When b = 1, {a, 1} is a matrix
algebra. For more details on these algebras see [11], [13, Section 15].

For any t ∈ k· let A(t) denote the Dn-module algebra constructed in the
following way: as an algebra A(t) = M2(k), and the Dn-action is given by h
acting trivially and g acting by conjugation by

u =

(
0 t
1 0

)
.

Lemma 3.3 With A(t) as above and n = 2q even, the following assertions
hold:

i) A(t) is a Dn-Azumaya module algebra.

ii) A(t) ∼= A(tr2) as Dn-module algebras for any r ∈ k·.

iii) If q is even, then A(t)#A(r) ∼= M2(k) ⊗ A(tr) as Dn-module algebras
where M2(k) has trivial Dn-action. If q is odd, then A(t)#A(r) ∼= {t, r}⊗A(tr)
as Dn-module algebras where {t, r} has trivial Dn-action.

iv) [A(t)] belongs to Ker(ι∗) and it has order two.

Proof: i) We show that A(t) is a Zn-Azumaya algebra, hence a Dn-
Azumaya algebra. We observe that since u2 = t and since z is odd in this
case, the action of gz is again conjugation by u. Therefore

gz ·
(

a b
c d

)
= g ·

(
a b
c d

)
=

(
d tc

t−1b a

)
.
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There are only elements of degree 0 and degree q in A(t), so A(t) is in fact Z2-
graded. The elements of degree 0 (even elements) and the elements of degree
q (odd elements) are given by matrices of the form(

a tc
c a

)
,

(
a −tc
c −a

)
,

respectively. It is easy to check that the graded center of A(t) is k, and
consequently, A(t) is Zn-Azumaya.

ii) The elements

x = θq

(
0 −t
1 0

)
, y =

(
1 0
0 −1

)
, (7)

are generators for A(t). These satisfy x2 = t, y2 = 1, xy = −yx and g · x =
−x, g · y = −y. For r ∈ k·, the isomorphism of Dn-module algebras from A(t)
to A(tr2) is given by mapping x into rx and y into y.

iii) Let M, M ′ ∈ A(t) and N, N ′ ∈ A(r) be homogeneous. From (2),

(M#N)(M ′#N ′) = MM ′#(gdeg(M ′) ·N)N ′.

As we saw in i), deg(M ′) is equal to 0 or q. If q is even, then the action by gq

is trivial. Thus A(t)#A(s) = A(t)⊗A(s). Let x, y be generators for A(t) and
x′, y′ generators for A(r) as in (7). Let

X = x#y′, Y = y#y′, Z = 1#y′, W = θq(xy#x′).

A computation shows that these elements satisfy the following relations:

X2 = t, Y 2 = 1, XY = −Y X, Z2 = 1, W 2 = tr, ZW = −WZ,

XZ = ZX, XW = WX, Y Z = ZY, Y W = WY,

g ·X = X, g · Y = Y, g · Z = −Z, g ·W = −W

This yields that A(t) ⊗ A(r) ∼= {t, 1} ⊗ A(tr) as Dn-module algebras with
{t, 1} having trivial g-action. Since {t, 1} ∼= M2(k) as algebras, the statement
follows.
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Assume now that q is odd. Then the action by gq is the same as the action
by g. Thus gq ·N = (−1)deg(N)N . The product takes the form

(M#N)(M ′#N ′) = MM ′#(−1)deg(M ′)deg(N)NN ′. (8)

Let X = θq(xy#1), Y = θq(x#x′), Z = 1#y′ and W = θq(xy#x′). Using the
formula (8), it may be checked that

X2 = t, Y 2 = tr, XY = −Y X, Z2 = 1, W 2 = tr, ZW = −WZ,

XZ = ZX, XW = WX, Y Z = ZY, Y W = WY,

g ·X = X, g · Y = Y, g · Z = −Z, g ·W = −W.

From these relations, A(t)#A(r) ∼= {t, tr} ⊗ A(tr) as Dn-module algebras.
Notice now that {t, tr} ∼= {t, r} as algebras.

iv) The elements αA(t), βA(t), and γA(t) of the induced subalgebra on A(t)

are αA(t) = tq, βA(t) = 1 and γA(t) = t1−q. As γq
A(t)α

q−1
A(t) = 1 and A(t) is a

matrix algebra, [A(t)] belongs to Ker(ι∗).

The algebra A(t)#A(t) is classically Azumaya since it belongs to Ker(ι∗).
Moreover, it has strongly inner Dn-action. Note that uA(t)#A(t) = uA(t)#uA(t)

and vA(t)#A(t) = 1 because uA(t) has degree 0 and the h-action is trivial on
A(t). From this, αA(t)#A(t) = tn, βA(t)#A(t) = 1 and γA(t)#A(t) = t2−n. If q is
even, then A(t)#A(t) ∼= M2(k)⊗A(t2), and so A(t)#A(t) is a matrix algebra.
If q is odd, then A(t)#A(t) ∼= {t, t2} ⊗ A(t2). But {t, t2} ∼= {t, 1} and {t, 1}
is a matrix algebra. Hence, in this case also A(t)#A(t) is a matrix algebra.
Finally, Lemma 2.1 implies that [A(t)#A(t)] is trivial.

The map {−,−} : k·/k·2 × k·/k·2 → Br(k), ([a], [b]) 7→ [{a, b}] is a 2-
cocycle, see [13, page 146]. Let k·/k·2 ×{−,−} Br(k) denote the extension of
k·/k·2 and Br(k) by this cocycle.

Theorem 3.4 With notation as above

Ker(ι∗) ∼=


k·/k·2 ×Br(k) for n odd

k·/k·2 × k·/k·2 ×Br(k) for n = 2q, q even

k·/k·2 × (k·/k·2 ×{−,−} Br(k)) for n = 2q, q odd
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Proof: For n odd, Lemma 3.1 and Corollary 2.8 establish that Ker(ι∗) =
BAzg(k, Dn, Rz). Now Proposition 3.2 i) applies. The case n even is more
complicated and requires a different argument. The elements of Ker(ι∗) may
all be represented by classically Azumaya algebras with α, γ in the induced
subalgebra satisfying γqαq−1 = 1 by Lemma 3.1.

Suppose that n = 2q is even. Let [A] ∈ Ker(ι∗), then A is classically
Azumaya and the elements αA, βA, and γA in the induced subalgebra satisfy
γq

Aαq−1
A = 1. For tA = (αAγA)−1, the algebra A#A(tA) represents an element of

Ker(ι∗) because A and A(tA) do. Hence it is classically Azumaya. Moreover,
it has strongly inner g-action because uA#A(tA) = uA#uA(tA) and un

A#A(tA) =

un
A#un

A(tA) = αA(αAγA)−q = 1 (the degree of u in the induced subalgebra is

always zero). So [A#A(tA)] ∈ BAzg(k, Dn, Rz). By Proposition 3.2,

[A#A(tA)] = [A(β, γ)][|A#A(tA)|] ∈ Ker(ι∗)

where [β] ∈ k·/k·2, γ is an n-th root of unity, and |A#A(tA)| denotes the
underlying algebra of A#A(tA) with trivial action. By Lemma 2.9 we obtain
[γ] = [γA#A(tA)] and γq = 1. By the proof of Theorem 2.10, [A(β, γ)] =
[A(β, 1)] so we may assume that the g-action on the right hand side is trivial
and that the braided product of the representative of elements of the right
hand side with A(tA) is trivial. Hence

[A] = [A(β, 1)⊗ |A#A(tA)| ⊗ A(tA)]

were both representatives are classically Azumaya. By Lemma 2.9, [β] =
[βA] ∈ k·/k·2. Thus the three classes [A(βA, 1)], [A(tA)] and |A#A(tA)| are
uniquely determined by [A].

Assume that q is even. We prove that the map

Ψ : Ker(ι∗) −→ k·/k·2 × k·/k·2 ×Br(k)

[A] 7→ ([βA], [(αAγA)−1], [|A#A((αAγA)−1)|])

is an isomorphism. We first check that it is well-defined. Assume that [A] =
[B] in Ker(ι∗). Let tA = (αAγA)−1 and tB = (αBγB)−1. By Lemma 2.9
and Lemma 2.5, [βA] = [βB] and [tA] = [tB] in k·/k·2. By Lemma 3.3 ii),
A(tA) ∼= A(tB). Then [A#A(tA)] = [B#A(tB)] in BM(k, Dn, Rz). There are
finite dimensional Dn-modules P, Q such that

(A#A(tA))#End(P ) ∼= (B#A(tB))#End(Q)
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as Dn-module algebras. Since End(P ), End(Q) are classically Azumaya with
strongly inner g-action, from Lemma 2.7 it follows that

(A#A(tA))⊗ End(P ) ∼= (B#A(tB))⊗ End(Q)

as algebras. Hence [|A#A(tA)|] = [|B#A(tB)|] in Br(k). This proves that Ψ
is well-defined. Secondly, we show that Ψ is a group homomorphism. Let
[A], [B] ∈ Ker(ι∗) and assume that

[A] = [A(βA, 1)][|A#A(tA)|][A(tA)], [B] = [A(βB, 1)][|B#A(tB)|][A(tB)],

[A#B] = [A(βA#B, 1)][|(A#B)#A(tA#B)|][A(tA#B)].

Observe that when q is even [A(tA)] commutes with [A(tB)] in light of
Lemma 3.3, [A(tA)] commutes with the elements [A(β, 1)] and with the ele-
ments of Br(k) since these have trivial g-action. This implies that [B][A(tA)] =
[A(tA)][B]. Then,

[A#B][A(tA#B)] = [A][B][A(tA)][A(tB)]
= [A][A(tA)][B][A(tB)]
= [(A#A(tA))#(B#A(tB))]
= [(A#A(tA))⊗ (B#A(tB))]

where in the last equality we have used Lemma 2.7 since the g-action on
B#A(tB) is strongly inner. Hence

[|(A#B)#A(tA#B)|] = [|(A#A(tA))| ⊗ |(B#A(tB))|]

in Br(k). Using all the preceding facts, we have,

[A#B] = [A][B]
= [A(βA, 1)][|A#A(tA)|][A(tA)][A(βB, 1)][|B#A(tB)|][A(tB)]
= [A(βA, 1)][A(βB, 1)][|A#A(tA)|][|B#A(tB)|][A(tA)][A(tB)]
= [A(βA, 1)#A(βB, 1)][|A#A(tA)| ⊗ |B#A(tB)|][A(tA)#A(tB)]
= [A(βAβB, 1)][|(A#A(tA))|][|(B#A(tB))|][A(tAtB)]

(9)
where in the last equality we have used Lemma 3.3 iii) and Theorem 2.10.
Finally we show that Ψ is bijective. It is clearly surjective since to any
([β], [λ], [D]) ∈ k·/k·2 × k·/k·2 × Br(k) we can associate [A(λ−1) ⊗ A(β, 1) ⊗
|D|] ∈ Ker(ι∗). To prove the injectivity, let [A] ∈ Ker(Ψ). Then βA, tA are
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squares and |A#A(tA)| is a matrix algebra. Thus [A] = [A(1, 1)][|Mm(k)|][A(s2)]
for some m ∈ N and s ∈ k· such that tA = s2. Then [A] is represented by a
matrix algebra with strongly inner Dn-action. Lemma 2.1 implies that [A] is
trivial.

For q odd, the same proof works but we have to modify the multiplication
on k·/k·2×k·/k·2×Br(k). With notation as in (9), for q odd, A(tA)#A(tB) ∼=
{tA, tB} ⊗ A(tAtB) by Lemma 3.3. Then,

[|(A#B)#A(tA#B)|] = [|(A#A(tA))| ⊗ |(B#A(tB))| ⊗ {tA, tB}].

Notice that [B][A(tA)] = [A(tA)][B] is true in this case because {tA, tB} ∼=
{tB, tA}.

Theorem 3.5 Let p be a prime number not dividing z, m ∈ N, and n = pm.
Let k be a field containing a primitive 2n-th root of unity and let n be invertible
in k. Then

BM(k, Dn, Rz) ∼=
{

k·/k·2 ×Br(k)× Z2 if p is odd,
k·/k·2 × k·/k·2 ×Br(k)× Z2 × Z2 if p = 2.

Proof: By Corollary 2.13, Corollary 2.16, Lemma 3.1 and Theorem 3.4 we
have two exact sequences

1 - k·/k·2 ×Br(k) - BM(k, Dn, Rz)
ι∗ - Z2

for p odd and

1 - k·/k·2 × k·/k·2 ×Br(k) - BM(k, Dn, Rz)
ι∗- Z2 × Z2

for p = 2.

Let Cā(1)k = Cā(1)⊗k k for a = 0, 1. The nontrivial element of the latter
term in the first exact sequence is represented by C0̄(1)k. The latter term in
the second exact sequence is given by the group generated by [Cā(1)k] with
a = 0, 1. Hence ι∗ is surjective in both cases. Mapping [Cā(1)k] to [Cā(1)] we
obtain a group homomorphism in light of Lemma 2.15, which splits ι∗. Then
BM(k, Dn, Rz) is a semidirect product of k·/k·2×Br(k) and Z2 for n odd and
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a semidirect product of k·/k·2 × k·/k·2 ×Br(k) and Z2 ×Z2 for n even. If n is
odd, since the elements representing BAz(k, Dn, Rz) have trivial g-action, the
braided product of such an element and C0̄(1) is just the usual tensor product.
Thus the elements of BAz(k, Dn, Rz) commute with [C(1)0̄] and we have the
direct product decomposition for BM(k, Dn, Rz). If n is even the elements
representing the first copy of k·/k·2 and those representing Br(k) have trivial
g-action hence they commute with the elements of Z2 × Z2. The second copy
of k·/k·2 is represented by the algebras A(t) defined in the proof of Theorem
3.4, with Zn-grading inducing a Z2-grading, which we will denote by deg′ . Let
δ be the generator of C(1) and let M, N ∈ A(t) with M homogeneous. By
formula (2),

(δi#M)(δj#N) = δi+j#(gjmod 2 ·M)N = (−1)(jmod 2) deg′(M)δi+j#MN.

Thus Cā(1)#A(t) ∼= Cā(1) ⊗2 A(t). Here ⊗2 denotes the Z2-graded tensor
product. Similarly,

(M#δi)(N#δj) = MN#(gdeg(N) · δi)δj

= ωsiq deg′(N)MN#δi+j

= (−1)(imod 2) deg′(N)MN#δi+j.

Since A(t)⊗2 Cā(1) ∼= Cā(1)⊗2 A(t) as Dn-module algebras, [A(t)] commutes
with [Cā(1)] for a = 0, 1. Therefore the kernel of ι∗ commutes with Z2 × Z2

and we are done.
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