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1 Introduction
One of the most important notions in Hopf algebra theory is the notion of
integral, introduced by Sweedler in [27]. This notion has its origin in the
Haar measure of the Hopf algebra R(G) of regular functions on a compact
Lie group G, see [15]. If H denotes a Hopf algebra over a field k, a left integral
for H is a linear map

∫
l
∈ H∗ such that h∗

∫
l
= h∗(1)

∫
l
for all h∗ ∈ H∗. Hopf

algebras having a non-zero left integral are called co-Frobenius and they have
been extensively studied in the literature, see [27], [25], [26], [18], [6], [7],
[11], [14], [5]. Co-Frobenius Hopf algebras are characterized by the following
interesting finiteness condition: the injective hull of every simple left (or
right) comodule is finite dimensional.

In [23, Corollary 2] Radford proved that if H is a co-Frobenius Hopf alge-
bra whose coradical H0 is a subalgebra, then H has finite coradical filtration.
Andruskiewitsch and Dăscălescu investigated in [5] the relation between co-
Frobenius Hopf algebras and the finiteness of the coradical filtration. They
proved that a Hopf algebra with finite coradical filtration is necessarily co-
Frobenius and they conjectured that any co-Frobenius Hopf algebra has fi-
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nite coradical filtration. In this paper we provide more evidences of the
truthfulness of this conjecture. We give two new sufficient conditions for a
co-Frobenius Hopf algebra to have finite coradical filtration, see Proposition
3.1. Using one of these conditions we prove in Section 3 that the conjecture
holds for the Hopf algebra of rational functions of an algebraic group with
integral over a perfect field. We also observe that it holds for a Hopf algebra
over a perfect field whose coradical is cocommutative and for a Hopf algebra
over a field of characteristic zero such that the restriction of the antipode to
the coradical is an involution.

In Section 4 we characterize in several ways non-cosemisimple co-Frobenius
Hopf algebras. If H is a co-Frobenius Hopf algebra whose coradical is a
subalgebra, we prove that the following statements are equivalent: (i) H
is not cosemisimple; (ii) Rad(H), the radical of H (as a coalgebra), con-
tains the unit; (iii) H0 is contained in Rad(H); (iv) no simple right (or left)
H-comodule is injective. Finally in Section 5 we describe the head of an
injective indecomposable comodule over a co-Frobenius Hopf algebra H. We
show in Theorem 5.2 that the head of the injective hull E(T ) of a simple
right H-comodule T is isomorphic to kg ⊗ T ∗∗ where g is the distinguished
group-like element of H. As a consequence, the socle of E(T )∗ is isomorphic
to T ∗∗∗ ⊗ kg−1, so [14, Corollary 2.4] is recovered. The proof of this latter
result uses different methods to ours. It relies on the equivalence between
the category of H-comodules and the category of unital modules over the
non-unital algebra Rat(H∗).

We next fix some notation and conventions and present some preliminaries
needed in the sequel. The reader is referred to [1], [8], [22] and [28] for basic
facts about coalgebras and Hopf algebras. Unless otherwise stated, we will
always work over a fixed ground field k. All vector spaces, linear maps, and
unadorned tensor product are over k. Throughout C will be a coalgebra and
H a Hopf algebra, both over k. The antipode of H will be denoted by S. By
C∗ we denote the dual algebra of C and 〈?, ?〉 : C∗ × C → k stands for the
evaluation map. We will consider C as a left and right C∗-module with the
natural actions:

c∗ · c =
∑
(c)

〈c∗, c(2)〉c(1), c · c∗ =
∑
(c)

〈c∗, c(1)〉c(2),

for c∗ ∈ C∗ and c ∈ C. We write CC (resp. CC) to stress that C is viewed
as a right (resp. left) comodule.

Co-Frobenius Hopf algebras: The injective hull of a left C-comodule M
will be denoted by E(M). Recall from [16] that C is called:
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- left semiperfect if E(T ) is finite dimensional for each simple right C-
comodule T .

- left co-Frobenius if C, considered as a left C∗-module, embeds in C∗.

In [16, Theorem 3] it is proved that the following assertions are equiva-
lent: (i) H has a non-zero left integral; (ii) H is left semiperfect; (iii) H is left
co-Frobenius; (iv) Rat(H∗H∗) 6= {0}. Here Rat(H∗H∗) denotes the maximal
rational submodule of H∗, viewed as left H∗-module. All these statements
are equivalent to their right versions. A Hopf algebra satisfying any of these
statements will be called co-Frobenius. There are some other characteriza-
tions of co-Frobenius Hopf algebras, see [8, Chapter 5]. We give a new one
whose proof captures the essence in the proof of [5, Theorem 2.1].

Proposition 1.1 The following statements are equivalent:
(i) H is co-Frobenius.
(ii) H, as a left comodule, has a maximal subcomodule.

Proof: The map Φ : H → k, h 7→ 〈
∫

l
, h〉1 is a morphism of left comodules.

Hence Ker(Φ) is maximal. Conversely, let M be a maximal subcomodule
of H, then H/M is simple. Thus M⊥(H∗) ∼= (H/M)∗ is a finite dimensional
simple right ideal of H∗. So Rat(H∗

H∗) is non-zero.

Loewy series: Every left C-comodule M has a filtration

{0} ⊂ Soc(M) ⊂ Soc2(M) ⊂ .... ⊂ Socn(M) ⊂ ...,

called the Loewy series of M and defined as follows: Soc(M) is the socle
of M , and for n > 1, Socn(M) is the unique subcomodule of M satisfying
Socn−1(M) ⊂ Socn(M) and Soc(M/Socn−1(M)) = Socn(M)/Socn−1(M),
see [13, 1.4]. Let {Cn : n ∈ N} denote the coradical filtration of the coalgebra
C. The coradical filtration of C coincides with the Loewy series of C, viewed
as a right or left comodule. There is an alternative description of this series.
Let ρ : M → C ⊗M denote the structure map of M , then Socn+1(M) =
ρ−1(M ⊗ Cn). In case M = Socn(M) for some n, the Loewy length of M is
defined to be ll(M) = min{n ∈ N : M = Socn(M)}.

2 New proofs of two classical results on co-
Frobenius Hopf algebras

In this section we give two alternative proofs of the following result of Rad-
ford, [23, Corollary 2].
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Theorem 2.1 Let H be a co-Frobenius Hopf algebra. If the coradical of H
is a subalgebra, then H has finite coradical filtration.

Recall that when the coradical H0 is a subalgebra of H, the coradical
filtration is indeed an algebra filtration, [22, Lemma 5.2.8]. This fact is crucial
in all the proofs of this result. Radford’s proof goes as follows: it is first
proved that a co-Frobenius Hopf algebra H decomposes as H = E(k1)H0.
Since E(k1) is finite dimensional, it is contained in some Hn. Then H =
E(k1)H0 ⊆ HnH0 = Hn.

Radford’s result is also proved in [5] by different methods. This new proof
provides a way of constructing systematically examples of co-Frobenius Hopf
algebras and suggests an strategy for the classification of co-Frobenius Hopf
algebras whose coradical is a subalgebra.

Our first proof of Radford’s result is very short. It uses properties of injec-
tive comodules and of the coefficient space of a comodule. For the properties
of the coefficient space we refer to [13].

First proof of Theorem 2.1: Take a family {Ti : i ∈ I} of simple right
coideals of H such that HH = ⊕i∈IE(Ti). Then H =

∑
i∈I cf(E(Ti)). The

simple comodule Ti is contained in Ti ⊗ E(k1) and this latter is injective
by [10, Corollary 2]. Hence Ti ⊗ E(k1) must contain E(Ti). From here,
cf(E(Ti)) ⊆ cf(Ti ⊗ E(k1)) = cf(Ti)cf(E(k1)). Since E(k1) is finite di-
mensional, there is n ∈ N such that cf(E(k1)) ⊆ Hn. On the other hand,
cf(Ti) ⊆ H0 for all i ∈ I. Then cf(Ti)cf(E(k1)) ⊆ H0Hn = Hn.

Our second proof is longer but it only uses elementary properties of the
coradical filtration and the fact that a co-Frobenius Hopf algebra has bijective
antipode, [23, Proposition 2]. We record some properties on the coradical
filtration to be used in the proof, see [22, Proposition 5.2.9].

1.1. Consider H∗ endowed with the finite topology. The closure of a
subspace X of H∗ is X = X⊥(H)⊥(H∗). Let J = J(H∗) denote the Jacobson
radical of H∗. Then H

⊥(H∗)
n = Jn+1. Since Hn is a subcoalgebra, Jn+1 is a

two-sided ideal of H∗.

1.2. As H = ∪n∈NHn we have ∩n∈NJn+1 = {0}.
1.3. Regard H as an H∗-bimodule with the usual actions. Since Jn is a

two-sided ideal of H∗, the space Jn ·H is an H∗-subbimodule of H, that is,
a subcoalgebra of H.

1.4. Notice that Jn · Hn ⊆ H0. Furthermore, if Jn · Hn = {0}, then
∆(Hn) ⊆ H ⊗ Hn−1. This gives that Hn ⊆ Hn−1 and then it follows that
H = Hn−1.
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Bearing these properties in mind we are ready to broach our second proof.

Second proof of Theorem 2.1 Let φ : H → H∗ be the monomorphism of
left H∗-modules given by hypothesis. We have

φ(∩n≥1(Jn ·H)) = ∩n≥1φ(Jn ·H) = ∩n≥1Jnφ(H) ⊆ ∩n≥1Jn = {0}.

Hence ∩n≥1(Jn ·H) = {0}. Assume, to get a contradiction, that H 6= Hn for
all n ∈ N. This implies that Jn ·Hn 6= {0}. On the other hand, Jn ·Hn ⊆ H0.
Then (Jn ·H) ∩H0 is a non-zero subcoalgebra of H for all n ∈ N.

Regard H∗ as a left H-module with the action 〈h ⇀ h∗, h′〉 = 〈h∗, h′h〉
for h, h′ ∈ H and h∗ ∈ H∗. Let n,m ∈ N be such that m ≤ n. Given x∗ ∈ Jn

and h ∈ Hm we claim that h ⇀ x∗ ∈ Jn−m. For h′ ∈ Hn−m−1 we have that
〈h ⇀ x∗, h′〉 = 〈x∗, h′h〉 = 0 because h′h ∈ Hn−1. We have used here that
Hn is an algebra filtration. We now prove that (Jn ·H)Hm ⊆ Jn−m ·H. Let∑

i x
∗
i · hi ∈ Jn ·H and h ∈ Hm. Then∑

i(x
∗
i · hi)h =

∑
i〈x∗i , hi(2)h(2)S(h(3))〉hi(1)h(1)

=
∑

i(S(h(2)) ⇀ x∗i ) · (hih(1)).

Since the antipode S of H is bijective, S(Hm) = Hm. By the preceding claim,
S(h(2)) ⇀ x∗i ∈ Jn−m. Hence

∑
i(x

∗
i · hi)h ∈ Jn−m ·H.

Finally we are in a position to get the desired contradiction. For each
n ∈ N we know that (Jn · H) ∩ H0 is a non-zero subcoalgebra of H. Take
hn ∈ (Jn ·H) ∩H0 such that ε(hn) 6= 0. Then

ε(hn)1 =
∑

hn(1)S(hn(2)) ∈ (Jn ·H)H0 ⊆ Jn ·H.

Hence 1 ∈ ∩n≥1(Jn · H) = {0}, a contradiction. Then there is n ∈ N such
that H = Hn.

Remark 2.2 Recall from [3] that the category of right H-comodules has the
Chevalley property if the tensor product of two simple right H-comodules is
semisimple. From the properties of the coefficient space of a comodule, it
follows that H0 is a subalgebra of H if and only if the category of right (or
left) H-comodules has the Chevalley property.

There are Hopf algebras which do not have the Chevalley property, for
example, Frobenius-Lusztig kernels, see [20]. More examples of Hopf alge-
bras not having the Chevalley property may be obtained from the following
result of Molnar, [21, Theorem 2]: Let G be a finite group and k a field of
characteristic p > 0. Then (KG)∗ has the Chevalley property if and only if
G has a normal Sylow p-subgroup.
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We proceed now to give a new proof of the following result of Sullivan,
[25, Theorem 3]. Our proof is inspired by the proof of this result for affine
group schemes given in [11]. Another proof appears in [9, Theorem 2].

Theorem 2.3 Let H be an involutory Hopf algebra such that char(k) does
not divide dim(E(k1)). Then H is co-Frobenius if and only if H is cosemisim-
ple.

Proof: Clearly, H cosemisimple implies H co-Frobenius. For the converse
write E = E(k1) and fix a basis {e1, ..., en} for E. Let {e∗1, ..., e∗n} ⊆ E∗ be
a dual basis. For each j = 1, ..., n we write ρE(ej) =

∑n
i=1 ei ⊗ hij, where

ρE : E → E ⊗H is the comodule structure map of E. Each hij is uniquely
determined, ∆(hij) =

∑n
l=1 hil ⊗ hlj and ε(hij) = δij. It may be checked that

ρE∗(e∗j) =
∑n

i=1 e
∗
i ⊗ S(hji). It is routine to verify that the maps

ι : k → E∗ ⊗ E, 1 7→ 1
n

∑n
j=1 e

∗
j ⊗ ej,

π : E∗ ⊗ E → k, e∗l ⊗ em 7→ 〈e∗l , em〉 = ε(hlm) = δlm,

are right H-comodule maps. As the reader may check, that S is an involution
is only needed to prove that ι is an H-comodule map. Clearly, πι = Idk.
Then k is a direct summand of E∗ ⊗ E. By [10, Corollary 2], E∗ ⊗ E is
injective, so k is injective. Hence H is cosemisimple.

3 Some results on a question of Andruskiewitsch
and Dăscălescu

In [5] Andruskiewitsch and Dăscălescu conjectured that the coradical fil-
tration of a co-Frobenius Hopf algebra H is finite. We know that this is true
under the additional hypothesis of H0 being a subalgebra. In this section we
show that this conjecture holds for the ring of rational functions H = k[G]
of an affine algebraic group G with integral, where k is a perfect field. We
start by giving two new sufficient conditions for a co-Frobenius Hopf algebra
to have finite coradical filtration.

Proposition 3.1 Let H be a co-Frobenius Hopf algebra and let {Ti : i ∈ I}
be a full set of simple right H-comodules. Let {0} ⊂ E1 ⊂ ... ⊂ En = E(k1)
be a composition series for E(k1). If either

(i) {dim(Ti) : i ∈ I} is bounded, or

(ii) Ti ⊗ (Ej+1/Ej) is semisimple for all i ∈ I and j = 1, ..., n,

then H has finite coradical filtration.
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Proof: For a finite dimensional right H-comodule M we have the inequality
ll(M) ≤ cl(M) ≤ dim(M), where cl(M) and ll(M) denote the composition
length and the Loewy length of M respectively. Write HH = ⊕i∈IE(Ti)

(ni)

where {ni : i ∈ I} is a family of finite cardinal numbers. Since the Loewy
series commutes with direct sums, to prove that H = Hn it suffices to show
that the set {ll(E(Ti)) : i ∈ I} is bounded.

Assume (i). We know from the first proof of Theorem 2.1 that E(Ti) is
a subcomodule of Ti ⊗ E(k1) for all i ∈ I. Then ll(E(Ti)) ≤ cl(E(Ti)) ≤
cl(Ti ⊗ E(k1)) ≤ dim(Ti ⊗ E(k1)) = dim(Ti)dim(E(k1)). Now apply (i).

Assume (ii). Take i ∈ I arbitrary. Since (Ti ⊗ Ej+1)/(Ti ⊗ Ej) ∼= Ti ⊗
(Ej+1/Ej) is semisimple, we get that Ti ⊗ Ej ⊆ Socj(Ti ⊗ E(k1)) for all
j = 1, ..., n. Then Ti ⊗ E(k1) = Socn(Ti ⊗ E(k1)). Considering E(Ti) as
embedded in Ti ⊗ E(k1), we have ll(E(Ti)) ≤ ll(Ti ⊗ E(k1)) ≤ n.

Observe that the hypothesis in (ii) of the preceding proposition is weaker
than H0 being a subalgebra. A similar hypothesis, although a little stronger,
would be to ask that the composition factorsEj+1/Ej are included in the Hopf
socle of H, defined in [5, Definition 4.1]. Let S be a full set of representatives
of simple right H-comodules. Each representative can be taken as a right
coideal of H. Let Ŝ denote the subset of S consisting of simple H-comodules
V such that V ⊗W and W ⊗ V are semisimple for all W ∈ S. The Hopf
socle of H is defined to be Hsoc =

∑
V ∈Ŝ cf(V ) and it is a cosemisimple Hopf

subalgebra of H. If H0 is a subalgebra of H, then Hsoc = H0.

With notation as in Proposition 3.1, an upper bound for the set {dim(Ti) :
i ∈ I} is given in [26, Theorem 2.13] in case H = k[G], the ring of rational
functions of an affine algebraic group G with integral, where k is algebraically
closed of positive characteristic. It is shown there that the number of irre-
ducible components of G is an upper bound for the above set. However, not
every co-Frobenius Hopf algebra satisfies that {dim(Ti) : i ∈ I} is bounded.
For example, the quantum groups at a root of unity Cq[G] where G is the sim-
ple connected algebraic group associated to a simple finite dimensional Lie
algebra, see [19], [5]. We give more examples of Hopf algebras such that the
above set is not bounded by means of certain von Neumann regular algebras.
See [12] for an account on this important class of algebras.

Proposition 3.2 Let A be a von Neumann regular algebra. Then the finite
dual coalgebra A0 is cosemisimple.

Proof: First observe that a coalgebra is cosemisimple if and only if each finite
dimensional subcoalgebra is so. Finite dimensional subcoalgebras of the finite
dual A0 are of the form (A/I)∗ where I is a cofinite two-sided ideal of A. If
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A is von Neumann regular, then A/I is too, but A/I is finite dimensional.
Hence A/I is semisimple and thus (A/I)∗ is cosemisimple.

Recall that a group G is said to be locally finite if every finite subset of
G generates a finite subgroup.

Corollary 3.3 Let G be a locally finite group. Assume that the order of any
element of G is not divided by char(k). Then k[G]0 is a cosemisimple Hopf
algebra.

Proof: The group algebra of a group satisfying the hypothesis is known to be
von Neumann regular, [24, page 138].

Example 3.4 Let k be the field of rational numbers and let G = ⊕p∈PZp

where P is the set of prime numbers and Zp denotes the cyclic group of
order p. Since G is locally finite, k[G]0 is cosemisimple. On the other hand,
the projection of groups πp : G → Zp induces a projection of Hopf algebras
πp : k[G] → k[Zp]. Then k[Zp]

∗ is a subcoalgebra of k[G]0. Observe now that
k[Zp] (and hence k[Zp]

∗) has a simple module (comodule) whose dimension
is p− 1.

Let K/k be a field extension. If C is a coalgebra (resp. Hopf algebra)
over k, then CK = C ⊗K is a coalgebra (resp. Hopf algebra) over K in the
natural way. For a Hopf algebra H over k, Sullivan proved in [26, Proposition
2.1] that H is co-Frobenius if and only if HK is so. It is natural then to ask
how the coradical filtration of H and HK are related. The answer is given
in the following result which is pointed out in Section 7 of the survey paper
[4]. We include the proof for the reader’s convenience.

Proposition 3.5 If k is a perfect field, then (C ⊗ K)n = Cn ⊗ K for all
n ∈ N.

Proof: The statement easily follows once the equality (C ⊗K)0 = C0 ⊗K is
established. Since {Cn ⊗K : n ∈ N} is a coalgebra filtration of C ⊗K, by
[22, Proposition 5.3.4], (C ⊗K)0 ⊆ C0 ⊗K. To show the reverse inclusion,
let D be a simple subcoalgebra of C. Since k is perfect, D is a coseparable
coalgebra and hence D ⊗K is cosemisimple. So, D ⊗K ⊆ (C ⊗K)0.

We are now in a position to give the proof of the announced result. We
first recall Sullivan’s result [25, Theorem 2.13] stating that for k algebraically
closed of positive characteristic and G an affine algebraic group with integral,
the dimension of the injective hull of each simple k[G]-comodule is less or
equal than the number of irreducible components of G.
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Theorem 3.6 Let G be an affine algebraic group with integral and let k[G]
be its ring of rational functions. If k is perfect, then k[G] has finite coradical
filtration.

Proof: In light of Theorem 2.3 we can assume that k has positive charac-
teristic. Let k denote the algebraic closure of k. By [26, Proposition 2.1],
k̄[Gk̄] ∼= k[G]k̄ is co-Frobenius. Sullivan’s result above gives an upper bound
for the dimension of the simple k̄[Gk̄]-comodules. Then Proposition 3.1 yields
that k̄[Gk̄] has finite coradical filtration. Now the preceding proposition ap-
plies.

We provide some other examples of co-Frobenius Hopf algebras satisfying
the conjecture. They will be derived from Theorem 2.1, since the coradical
will be shown to be a subalgebra.

Theorem 3.7 Let H be a Hopf algebra over a perfect field k. Assume that
H0 is cocommutative. Then H0 is a subalgebra. As a consequence, if H is
co-Frobenius, then H has finite coradical filtration.

Proof: Let k̄ be the algebraic closure of k. We know from Proposition 3.5
that (H⊗ k̄)0 = H0⊗ k̄. Hence (H⊗ k̄)0 is cocommutative and consequently
pointed. So (H ⊗ k̄)0 is a subalgebra of H ⊗ k̄. Then

H0 ⊗ k̄ = (H ⊗ k̄)0 = (H ⊗ k̄)0(H ⊗ k̄)0 = (H0 ⊗ k̄)(H0 ⊗ k̄) = H0H0 ⊗ k̄.

Since H0 ⊆ H0H0, it follows that H0H0 = H0 and so H0 is a subalgebra of
H.

Proposition 3.8 Let H be a co-Frobenius Hopf algebra such that either
char(k) = 0 or char(k) > dim(E(k1)). Assume that S|H0 is an involution.
Then H0 is a subalgebra. In particular H has finite coradical filtration.

Proof: The argument is analogous to [3, Proposition 4.2, 5. ⇒ 3.]. Let L be
the Hopf subalgebra of H generated by H0. By [26, Theorem 2.15], L is co-
Frobenius. Since S|H0 is an involution, the antipode of L is an involution. Let
EL(k1) denote the injective hull of k1 as an L-comodule. Then EL(k1) may
be considered as a subcomodule of E(k1). So dim(EL(k1)) ≤ dim(E(k1)).
The hypothesis on k together with Theorem 2.3 give that L is cosemisimple.
Hence L = H0.
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4 Characterizing non-cosemisimple co-Frobenius
Hopf algebras

In this section we give several characterizations of co-Frobenius Hopf alge-
bras which are not cosemisimple. Two of these characterizations involve the
radical, as a coalgebra, of the Hopf algebra. We start by presenting several
properties of the radical of a coalgebra and a comodule.

Let C be a coalgebra and M a right C-comodule. The radical of M ,
denoted by Rad(M), is the intersection of all maximal subcomodules of M .
Notice that Rad(M) is equal to the radical of M considered as a left C∗-
module. Then Rad(M) enjoys the following properties:

1.- Rad(⊕i∈IMi) = ⊕i∈IRad(Mi) for a family {Mi}i∈I of right C-como-
dules.

2.- Rad(N) = N ∩Rad(M) for a subcomodule N of M .
3.- Rad(M/Rad(M)) = {0}.
4.- Consider C as a left C∗-module. Then Rad(CC) = Rad(C∗C) is an

(End(C∗C), C∗)-bimodule. Using the isomorphism of algebras End(C∗C) ∼=
C∗, we get that Rad(CC) is a C∗-bimodule (hence a subcoalgebra) of C.

The finiteness conditions of comodules allow the following characteriza-
tion of semisimple comodules which, in general, does not hold for modules.

5.- A right C-comodule M is semisimple if and only if Rad(M) = {0}. It
is known that any semisimple module has zero radical. For the converse, note
that M is semisimple if and only if each finite dimensional subcomodule N of
M is semisimple. The latter is equivalent to that Rad(N) = N ∩Rad(M) =
{0}. In particular, M/Rad(M) is semisimple.

We will next prove that for a co-Frobenius coalgebra the radical of the
regular right comodule coincides with the radical of the regular left comodule.
First we need the following lemma.

Lemma 4.1 Let C be a coalgebra. Then Rad(CC)⊥(C∗) = Soc(Rat(C∗
C∗)).

Proof: IfM is a maximal subcomodule of CC , thenM⊥(C∗) ∼= (C/M)∗ is a fi-
nite dimensional simple right ideal of C∗. So it is contained in Soc(Rat(C∗

C∗)).
From here, Rad(CC)⊥(C∗) = (∩M)⊥(C∗) =

∑
M⊥(C∗) ⊆ Soc(Rat(C∗

C∗))
where the intersection and the sum runs over all maximal subcomodules
of CC . To show the reverse inclusion, let T be a simple rational right ideal
of C∗. Then T is finite dimensional and thus it is closed in the finite topol-
ogy of C∗. It easily follows that T⊥(C) is a maximal right coideal of C and
T = T = T⊥(C)⊥(C∗).
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Theorem 4.2 Let C be a co-Frobenius coalgebra (i.e. left and right co-
Frobenius). Then Soc(Rat(C∗

C∗)) = Soc(Rat(C∗C∗)). Hence Rad(CC) =
Rad(CC).

Proof: Let φ : C∗C → Rat(C∗C∗) and ψ : CC∗ → Rat(C∗
C∗) be the iso-

morphism, of left and right C∗-modules respectively, given by hypothesis.
Take a set {ei}i∈I of orthogonal primitive idempotents in C∗ such that
CC = ⊕i∈IC · ei and CC = ⊕i∈Iei · C. Each C · ei (resp. ei · C) is an
injective indecomposable right (resp. left) C-comodule with simple socle
C0 ·ei (resp. ei ·C0). Since C is left and right semiperfect, C ·ei and ei ·C are
finite dimensional. From the isomorphism of left C∗-modules (ei ·C)∗ ∼= C∗ei

we obtain that C∗ei is finite dimensional. Then C∗ei ⊆ Rat(C∗C∗) and so
C∗ei = Rat(C∗C∗)ei.

We know that the subspaces Rat(C∗
C∗) and Rat(C∗C∗) are equal as C

is semiperfect, and Rat(C∗
C∗) is a two-sided ideal. To avoid confusion we

write Socr(Rat(C∗
C∗)) for the socle of Rat(C∗

C∗) when viewed as a right
C∗-module. Analogously, we write Socl(Rat(C∗C∗)). Since Soc(C∗

C∗) is a
two-sided ideal and Socr(Rat(C∗

C∗)) = Rat(C∗
C∗) ∩ Soc(C∗

C∗), we get that
Socr(Rat(C∗

C∗)) is a two-sided ideal. We claim that the left C∗-module
Socr(Rat(C∗

C∗))ei is non-zero. Let x ∈ C0 · ei be non-zero. Then 0 6= ψ(x) =
ψ(x · ei) = ψ(x)ei and ψ(x)ei ∈ Socr(Rat(C∗

C∗))ei because x ∈ C0 and
ψ(C0) = Socr(Rat(C∗

C∗)). Using now that Soc(C∗ei) is simple and essential
in C∗ei, we find that Soc(C∗ei) = Soc(C∗ei) ∩ Socr(Rat(C∗

C∗))ei. Hence
Soc(C∗ei) = Soc(Rat(C∗

C∗)ei) ⊆ Socr(Rat(C∗
C∗)).

The equality of subspaces of C∗,

Rat(C∗
C∗) = ψ(C) = ψ(⊕i∈IC · ei) = ⊕i∈Iψ(C · ei) = ⊕i∈Iψ(C)ei

= ⊕i∈IRat(C
∗
C∗)ei,

gives the equality Rat(C∗C∗) = ⊕i∈IRat(C
∗
C∗)ei of left C∗-modules. Then

Socl(Rat(C∗C∗)) = Soc(⊕i∈IRat(C
∗
C∗)ei) = ⊕i∈ISoc(Rat(C

∗
C∗)ei),

and the latter is contained in Socr(Rat(C∗
C∗)). A symmetric argument shows

that Socr(Rat(C∗
C∗)) ⊆ Socl(Rat(C∗C∗)). Finally, using the preceding lemma

and the first statement,

Rad(CC) = Socr(Rat(C∗
C∗))⊥(C) = Socl(Rat(C∗C∗))⊥(C) = Rad(CC).

We give a characterization in terms of the radical of when the coradical
of a co-Frobenius Hopf algebra is a subalgebra.
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Proposition 4.3 Let H be a co-Frobenius Hopf algebra. The following as-
sertions are equivalent:

(i) Rad(H)H0 = Rad(H).

(ii) H0 is a subalgebra of H.

Proof: (i) ⇒ (ii) Let φ : H → H∗ be the monomorphism of left H∗-modules
given by hypothesis. It is defined by 〈φ(h), h′〉 = 〈

∫
l
, h′S(h)〉 for h, h′ ∈ H.

We know from Lemma 4.1 that Rad(HH)⊥(H∗) = Socl(Rat(H∗H∗)) = φ(H0).
For g, g′ ∈ H0 and h ∈ Rad(HH) we have:

〈φ(gg′), h〉 = 〈
∫

l

, hS(g′)S(g)〉 = 〈φ(g), hS(g′)〉.

Since g ∈ H0, φ(g) ∈ Socl(Rat(H∗H∗)) = Rad(HH)⊥(H∗) = (Rad(H)H0)
⊥(H∗).

Then 〈φ(g), hS(g′)〉 = 0 for all h ∈ Rad(HH) (we use here that H has bi-
jective antipode to assure S(g′) ∈ H0). From this it follows that φ(gg′) ∈
Rad(HH)⊥(H∗) = φ(H0). Then gg′ ∈ H0.

(ii) ⇒ (i) Clearly Rad(H) ⊆ Rad(H)H0. Since H is co-Frobenius, H is
projective as a left H∗-module, [16, Theorem 23]. Then, by [2, Proposition
17.10], Rad(HH) = Rad(H∗H) = J · H where J = J(H∗) is the Jacobson
radical of H∗. We have seen in the proof of Theorem 2.1 that (J ·H)H0 ⊆
J ·H.

We finally arrive to the main theorem of this section.

Theorem 4.4 Let H be a co-Frobenius Hopf algebra whose coradical is a
subalgebra. The following statements are equivalent:

(i) H is not cosemisimple.

(ii) 1 ∈ Rad(H).

(iii) H0 ⊆ Rad(H).

(iv) No simple left (or right) H-comodule is injective.

Proof: (i) ⇒ (ii) Let
∫

l
be a left integral of H and let φ : H → H∗ denote the

monomorphism of left H∗-modules afforded by
∫

l
. We claim that

∫
l
vanishes

on H0. Since H is not cosemisimple, 〈
∫

l
, 1〉 = 0. Write H0 = k1 ⊕M for

some subcoalgebra M of H0. For h ∈ H we have the equality 〈
∫

l
, h〉1 =

〈
∫

l
, h(2)〉h(1). If h ∈M , then 〈

∫
l
, h〉1 ∈M ∩ k1 = {0}. Hence 〈

∫
l
,M〉 = {0}.

12



Since
∫

l
vanishes on H0, we have that φ(1) ∈ H

⊥(H∗)
0 = J(H∗). Indeed,

φ(1) ∈ Rat(H∗H∗) ∩ J(H∗) and the latter is Rad(Rat(H∗H∗)). But φ estab-
lishes an isomorphism between H∗H and Rat(H∗H∗). Then φ(Rad(H∗H)) =
Rad(Rat(H∗H∗)). Hence 1 ∈ Rad(H).

(ii) ⇒ (iii) If 1 ∈ Rad(H), then H0 ⊆ Rad(H)H0. By Proposition 4.3,
Rad(H)H0 = Rad(H).

(iii) ⇒ (iv) Let {Ti : i ∈ I} be a full set of representative of simple right
H-comodules. As a right H-comodule, H may be decomposed as HH =
⊕i∈IE(Ti)

(ni) where {ni : i ∈ I} is a family of finite cardinal numbers. Then
Rad(H) = ⊕i∈IRad(E(Ti))

(ni). If Ti is injective for some i ∈ I, then Ti =
E(Ti) and Rad(E(Ti)) = {0}. Hence Ti is contained inH0 but not in Rad(H).

(iv) ⇒ (i) If no simple is injective, then k1 is not injective and so H is
not cosemisimple.

Remark 4.5 The equivalence (iii) ⇔ (iv) holds for any coalgebra H. Keep-
ing notation, assume that no simple right H-comodule is injective. Then
Rad(E(Ti)) 6= {0} for every i ∈ I. If Rad(E(Ti)) = {0} for some i, then
E(Ti) is semisimple. Since it is indecomposable, it is simple. Then Ti = E(Ti)
is injective, a contradiction. As Rad(E(Ti)) 6= {0} it contains Ti. Hence
H0 ⊆ Rad(HH).

5 The head of an injective comodule
In this section we describe the head of an injective indecomposable comodule
over a co-Frobenius Hopf algebra. Recall that the head of a right H-comodule
M is the semisimpleH-comoduleM/Rad(M). The main result of this section
is obtained in [11, Proposition 1] for the Hopf algebra of rational functions of a
virtually linearly reductive affine group scheme. This result is in turn inspired
by the finite group scheme case, see [17, I, Chapter 8]. The arguments used in
the aforementioned result easily extend to co-Frobenius Hopf algebras as we
show next. The fact that a co-Frobenius Hopf algebra has bijective antipode
is what makes the proof also works in this case. We will closely follow the
proof of [11, Proposition 1] up to some modifications.

Lemma 5.1 Let H be a co-Frobenius Hopf algebra. Let [?, ?] : H ×H → k
be the bilinear form defined by [h, h′] = 〈

∫
l
, hh′〉 for all h, h′ ∈ H. Then:

(i) [h · S∗(ϕ), h′] = [h, h′ · ϕ] for all ϕ ∈ H∗.

(ii) [?, ?] : H ×H → k is non-singular.

13



Proof: (i) Since
∫

l
is a left integral, 〈

∫
l
, hh′〉1 =

∑
〈
∫

l
, h(2)h

′
(2)〉h(1)h

′
(1) for all

h, h′ ∈ H. Now we have:

[h · S∗(ϕ), h′] =
∑
〈
∫

l
, h(2)h

′〉〈ϕ, S(h(1))〉
=

∑
〈
∫

l
, h(2)h

′
(3)〉〈ϕ, h′(1)S(h(1)h

′
(2))〉

=
∑
〈
∫

l
, hh′(2)〉〈ϕ, h′(1)〉

= [h, h′ · ϕ].

(ii) Let B = {b ∈ H : [b, l] = 0 ∀l ∈ H}. Let ψ ∈ H∗ and b ∈ B. Since S
is bijective, ψ = S∗(ϕ) for some ϕ ∈ H∗. Using (i), [b · ψ, h′] = [b, h′ · ϕ] = 0.
Hence b · ψ ∈ B. So B is a right H∗-submodule of H and thus a left coideal
of H. Take h ∈ H such that [1, h] 6= 0. For b ∈ B arbitrary,

[1, h]b =
∑

[ε(b(2))1, h]b(1) =
∑

[b(2)S(b(3)), h]b(1) =
∑

[b(2), S(b(3))h]b(1) = 0.

Hence b = 0.

In [23, Proposition 3] it is proved that there is a group-like element g ∈
H such that

∫
l
h∗ = 〈h∗, g〉

∫
l

for all h∗ ∈ H∗. This means that the map
ϕ : H → kg, h 7→ 〈

∫
l
, h〉g is right H-colinear. Such an element g is called the

distinguished group-like element of H.

Theorem 5.2 Let H be a co-Frobenius Hopf algebra. For a simple right
H-comodule Ti the head of E(Ti) is isomorphic to kg ⊗ T ∗∗

i .

Proof: Let {ei : i ∈ I} be a complete set of primitive orthogonal idempotents
of H∗ such that HH = ⊕i∈IH · ei and HH = ⊕i∈Iei · H. Applying S to
the latter decomposition we obtain a decomposition of right H-comodules
H = ⊕i∈IS(ei ·H) = ⊕i∈IH · (S−1)∗(ei). For i ∈ I we write Ei = H · ei and
E ′

i = H · (S−1)∗(ei). Take i, j ∈ I with i 6= j and h, h′ ∈ H. By the foregoing
lemma, 0 = [(h · ei) · ej, h

′] = [h · ei, h
′ · (S−1)∗(ej)]. Thus, by restriction,

we have a non-singular pairing [?, ?] : Ei × E ′
i → k for each i ∈ I. Using

that
∫

l
h∗ = 〈h∗, g〉

∫
l

for all h∗ ∈ H∗, it is not difficult to verify that the
map Ψ : Ei → kg ⊗ E ′∗

i , hi 7→ g ⊗ Φ(hi) where Φ(hi)(h) = [hi, h] for h ∈ E ′
i,

is a morphism of right H-comodules. Since [?, ?] is non-singular, Ψ is an
isomorphism.

Let cf(Ti) be the coefficient space of the simple right H-comodule Ti =
H0 · ei. Then T ′

i = ei ·H0 is a simple left cf(Ti)-comodule. Since Soc(E ′
i) =

S(ei ·H0) = S(T ′
i ), the coefficient space of T ∗

i and S(T ′
i ) is S(cf(Ti)). Hence

S(T ′
i )
∼= T ∗

i and so Soc(E ′
i)
∼= T ∗

i . Then E ′
i
∼= E(T ∗

i ). From the isomorphism
in the preceding paragraph, Ei

∼= kg ⊗ E(T ∗
i )∗. Let Hi be the head of Ei.

Then Hi
∼= kg ⊗ Soc(E(T ∗

i ))∗ ∼= kg ⊗ T ∗∗
i .
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Corollary 5.3 Let H be a co-Frobenius Hopf algebra. Then H/Rad(H) ∼=
H0 as a right (or left) H-comodule.

Proof: Let H0 = ⊕j∈JTj be a decomposition of the coradical into sim-
ple right comodules. We know that H = ⊕j∈JE(Tj). Then Rad(H) =
⊕j∈JRad(E(Tj)) and we have:

H/Rad(H) ∼= ⊕j∈JE(Tj)/Rad(E(Tj)) ∼= ⊕j∈Jkg ⊗ T ∗∗
j
∼= kg ⊗ (⊕j∈JT

∗∗
j ).

Since the antipode of H is bijective, H0
∼= ⊕j∈JT

∗∗
j . Finally, it is easy to

check that the map µ : kg ⊗ H0 → H0, g ⊗ h 7→ gh is an isomorphism of
right H-comodules.
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