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1 Introduction

One of the most important notions in Hopf algebra theory is the notion of
integral, introduced by Sweedler in [27|. This notion has its origin in the
Haar measure of the Hopf algebra R(G) of regular functions on a compact
Lie group G, see [15]. If H denotes a Hopf algebra over a field k, a left integral
for H is a linear map [, € H* such that h* [, = h*(1) [, for all h* € H*. Hopf
algebras having a non-zero left integral are called co-Frobenius and they have
been extensively studied in the literature, see [27], [25], |26], [18], [6], [7],
[11], [14], [5]. Co-Frobenius Hopf algebras are characterized by the following
interesting finiteness condition: the injective hull of every simple left (or
right) comodule is finite dimensional.

In |23, Corollary 2| Radford proved that if H is a co-Frobenius Hopf alge-
bra whose coradical H is a subalgebra, then H has finite coradical filtration.
Andruskiewitsch and Dascalescu investigated in [5] the relation between co-
Frobenius Hopf algebras and the finiteness of the coradical filtration. They
proved that a Hopf algebra with finite coradical filtration is necessarily co-
Frobenius and they conjectured that any co-Frobenius Hopf algebra has fi-
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nite coradical filtration. In this paper we provide more evidences of the
truthfulness of this conjecture. We give two new sufficient conditions for a
co-Frobenius Hopf algebra to have finite coradical filtration, see Proposition
3.1. Using one of these conditions we prove in Section 3 that the conjecture
holds for the Hopf algebra of rational functions of an algebraic group with
integral over a perfect field. We also observe that it holds for a Hopf algebra
over a perfect field whose coradical is cocommutative and for a Hopf algebra
over a field of characteristic zero such that the restriction of the antipode to
the coradical is an involution.

In Section 4 we characterize in several ways non-cosemisimple co-Frobenius
Hopf algebras. If H is a co-Frobenius Hopf algebra whose coradical is a
subalgebra, we prove that the following statements are equivalent: (i) H
is not cosemisimple; (ii) Rad(H), the radical of H (as a coalgebra), con-
tains the unit; (iii) Hy is contained in Rad(H); (iv) no simple right (or left)
H-comodule is injective. Finally in Section 5 we describe the head of an
injective indecomposable comodule over a co-Frobenius Hopf algebra H. We
show in Theorem 5.2 that the head of the injective hull E(T') of a simple
right H-comodule T' is isomorphic to kg ® T** where ¢ is the distinguished
group-like element of H. As a consequence, the socle of E(T")* is isomorphic
to T*** @ kg~', so |14, Corollary 2.4] is recovered. The proof of this latter
result uses different methods to ours. It relies on the equivalence between
the category of H-comodules and the category of unital modules over the
non-unital algebra Rat(H*).

We next fix some notation and conventions and present some preliminaries
needed in the sequel. The reader is referred to [1], [8], [22] and [28] for basic
facts about coalgebras and Hopf algebras. Unless otherwise stated, we will
always work over a fixed ground field k. All vector spaces, linear maps, and
unadorned tensor product are over k. Throughout C' will be a coalgebra and
H a Hopf algebra, both over k. The antipode of H will be denoted by S. By
C* we denote the dual algebra of C' and (7,7) : C* x C' — k stands for the
evaluation map. We will consider C' as a left and right C*-module with the
natural actions:

cc= Z<C*, C(2))C(1) c-cf = Z(c*, c(1))C(2)5
(o) (c)

for ¢* € C* and ¢ € C. We write C¢ (resp. ¢C') to stress that C' is viewed
as a right (resp. left) comodule.

Co-Frobenius Hopf algebras: The injective hull of a left C'-comodule M
will be denoted by E(M). Recall from [16] that C is called:
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- left semiperfect if E(T) is finite dimensional for each simple right C-
comodule 7.
- left co-Frobenius if C, considered as a left C*-module, embeds in C*.

In [16, Theorem 3| it is proved that the following assertions are equiva-
lent: (i) H has a non-zero left integral; (ii) H is left semiperfect; (iii) H is left
co-Frobenius; (iv) Rat(y-H*) # {0}. Here Rat(y+H*) denotes the maximal
rational submodule of H*, viewed as left H*-module. All these statements
are equivalent to their right versions. A Hopf algebra satisfying any of these
statements will be called co-Frobenius. There are some other characteriza-
tions of co-Frobenius Hopf algebras, see [8, Chapter 5|. We give a new one
whose proof captures the essence in the proof of |5, Theorem 2.1].

Proposition 1.1 The following statements are equivalent:

(i) H is co-Frobenius.
(i) H, as a left comodule, has a mazimal subcomodule.

Proof: The map ® : H — k, h — (j;, h)1 is a morphism of left comodules.
Hence Ker(®) is maximal. Conversely, let M be a maximal subcomodule
of H, then H/M is simple. Thus M+(H#") = (H/M)* is a finite dimensional
simple right ideal of H*. So Rat(Hj;.) is non-zero. |

Loewy series: Every left C-comodule M has a filtration
{0} € Soc(M) C Soc*(M) C .... C Soc™(M) C ...,

called the Loewy series of M and defined as follows: Soc(M) is the socle
of M, and for n > 1, Soc™(M) is the unique subcomodule of M satisfying
Soc" Y (M) C Soc"(M) and Soc(M/Soc" ' (M)) = Soc"(M)/Soc" (M),
see [13, 1.4]. Let {C,, : n € N} denote the coradical filtration of the coalgebra
C. The coradical filtration of C' coincides with the Loewy series of C, viewed
as a right or left comodule. There is an alternative description of this series.
Let p: M — C ® M denote the structure map of M, then Soc"™ (M) =
p ' (M ® C,). In case M = Soc"(M) for some n, the Loewy length of M is
defined to be I[(M) = min{n € N: M = Soc"(M)}.

2 New proofs of two classical results on co-
Frobenius Hopf algebras

In this section we give two alternative proofs of the following result of Rad-
ford, [23, Corollary 2.



Theorem 2.1 Let H be a co-Frobenius Hopf algebra. If the coradical of H
1s a subalgebra, then H has finite coradical filtration.

Recall that when the coradical H is a subalgebra of H, the coradical
filtration is indeed an algebra filtration, [22, Lemma 5.2.8|. This fact is crucial
in all the proofs of this result. Radford’s proof goes as follows: it is first
proved that a co-Frobenius Hopf algebra H decomposes as H = E(k1)H,.
Since F/(k1) is finite dimensional, it is contained in some H,. Then H =
E(k1)Hy C H,Hy = H,.

Radford’s result is also proved in [5] by different methods. This new proof
provides a way of constructing systematically examples of co-Frobenius Hopf
algebras and suggests an strategy for the classification of co-Frobenius Hopf
algebras whose coradical is a subalgebra.

Our first proof of Radford’s result is very short. It uses properties of injec-
tive comodules and of the coefficient space of a comodule. For the properties
of the coefficient space we refer to [13].

First proof of Theorem 2.1: Take a family {T; : i € I} of simple right
coideals of H such that Hy = @i/ E(T;). Then H = ., cf(E(T;)). The
simple comodule T; is contained in T; ® E(k1) and this latter is injective
by [10, Corollary 2]. Hence T; ® E(k1) must contain E(7;). From here,
cf(E(T;) C ef(T; ® E(k1)) = cf(T;)cf(E(k1)). Since E(k1) is finite di-
mensional, there is n € N such that ¢f(F (k1)) C H,. On the other hand,
cf(T;) € Hy for all i € I. Then cf(T;)cf(E(kl)) C HyH, = H,. |

Our second proof is longer but it only uses elementary properties of the
coradical filtration and the fact that a co-Frobenius Hopf algebra has bijective
antipode, [23, Proposition 2|. We record some properties on the coradical
filtration to be used in the proof, see [22, Proposition 5.2.9].

1.1. Consider H* endowed with the finite topology. The closure of a
subspace X of H* is X = XUHLH) Let J = J(H*) denote the Jacobson
radical of H*. Then Hp™" = Jn*1. Since H,, is a subcoalgebra, J**! is a
two-sided ideal of H*.

1.2. As H = UpenH,, we have NyenJmt = {0}.

1.3. Regard H as an H*-bimodule with the usual actions. Since J is a
two-sided ideal of H*, the space J" - H is an H*-subbimodule of H, that is,
a subcoalgebra of H.

1.4. Notice that J» - H, C Hy. Furthermore, if J» - H, = {0}, then

A(H,) € H® H,_1. This gives that H, C H,_; and then it follows that
H - Hn—l-




Bearing these properties in mind we are ready to broach our second proof.

Second proof of Theorem 2.1 Let ¢ : H — H* be the monomorphism of
left H*-modules given by hypothesis. We have

¢(mn21(ﬁ ’ H)) = nglgb(ﬁ ' H) = ﬂnZlﬁgb(H) - nglﬁ = {O}

Hence N,>1(J" - H) = {0}. Assume, to get a contradiction, that H # H, for
all n € N. This implies that J"- H,, # {0}. On the other hand, J»- H,, C H,.
Then (Jm - H) N Hy is a non-zero subcoalgebra of H for all n € N.

Regard H* as a left H-module with the action (h — h* h') = (h*, h'h)
for h, W' € H and h* € H*. Let n,m € N be such that m < n. Given 2* € J»
and h € H,, we claim that h — z* € J»—™. For I/ € H,,_,,_1 we have that
(h — z*, 1) = (2", Wh) = 0 because h'h € H,_;. We have used here that
H,, is an algebra filtration. We now prove that (ﬁ H)H,, C Jn=m . H. Let

x! - h; € Jv-H and h € H,,. Then

2@l ha)h =3 0,(x%, i) by S (hey)) hiay by
= 22i(S(h) = a7) - (hihq)-

S(h

R
Since the antipode S of H is bijective S(H,,) = H,,. By the preceding claim,
S(he) — xy € Jr=™. Hence y_,(x} )hEJ"mH

Finally we are in a position to get the desired contradiction. For each
n € N we know that (J" - H) N Hy is a non-zero subcoalgebra of H. Take
hn, € (J*- H) N Hy such that e(h,) # 0. Then

e(hn)l =Y hnyS(ha) € (J*- H)Hy € J" - H

Hence 1 € N,>1(J" - H) = {0}, a contradiction. Then there is n € N such
that H = H,. 1

Remark 2.2 Recall from [3]| that the category of right H-comodules has the
Chevalley property if the tensor product of two simple right H-comodules is
semisimple. From the properties of the coefficient space of a comodule, it
follows that Hy is a subalgebra of H if and only if the category of right (or
left) H-comodules has the Chevalley property.

There are Hopf algebras which do not have the Chevalley property, for
example, Frobenius-Lusztig kernels, see [20]. More examples of Hopf alge-
bras not having the Chevalley property may be obtained from the following
result of Molnar, |21, Theorem 2|: Let G be a finite group and k a field of
characteristic p > 0. Then (KG)* has the Chevalley property if and only if
G has a normal Sylow p-subgroup.



We proceed now to give a new proof of the following result of Sullivan,
[25, Theorem 3]. Our proof is inspired by the proof of this result for affine
group schemes given in [11|. Another proof appears in [9, Theorem 2|.

Theorem 2.3 Let H be an involutory Hopf algebra such that char(k) does
not divide dim(E(k1)). Then H is co-Frobenius if and only if H is cosemisim-

ple.

Proof: Clearly, H cosemisimple implies H co-Frobenius. For the converse
write £ = E(k1) and fix a basis {e,...,e,} for E. Let {e},...,ef} C E* be
a dual basis. For each j = 1,...,n we write pg(e;) = >, €; ® h;j, where
pe : E — E® H is the comodule structure map of £. Each h;; is uniquely
determined, A(h;;) = Y2, hqy ® hy; and e(h;;) = d;;. It may be checked that
pe-(€5) = > 11 e; ® S(hy;). It is routine to verify that the maps

L:k—FE*QFE, 1— %Z?zle;*@ej,

T E*QF — k,ef ®en — (€, em) = (hum) = Om,

are right H-comodule maps. As the reader may check, that S is an involution
is only needed to prove that ¢ is an H-comodule map. Clearly, 7. = Id,.
Then k is a direct summand of E* ® E. By [10, Corollary 2|, E* ® E is
injective, so k is injective. Hence H is cosemisimple. 1

3 Some results on a question of Andruskiewitsch
and Dascalescu

In [5] Andruskiewitsch and Dascélescu conjectured that the coradical fil-
tration of a co-Frobenius Hopf algebra H is finite. We know that this is true
under the additional hypothesis of Hy being a subalgebra. In this section we
show that this conjecture holds for the ring of rational functions H = k[G]
of an affine algebraic group G with integral, where k is a perfect field. We
start by giving two new sufficient conditions for a co-Frobenius Hopf algebra
to have finite coradical filtration.

Proposition 3.1 Let H be a co-Frobenius Hopf algebra and let {T; :i € I}
be a full set of simple right H-comodules. Let {0} C Ey C ... C E,, = E(k1)
be a composition series for E(k1). If either

(i) {dim(T;) :i € I} is bounded, or
(1) T; ® (E;+1/ E;) is semisimple for alli € I and j =1,...,n,

then H has finite coradical filtration.



Proof: For a finite dimensional right H-comodule M we have the inequality
(M) < (M) < dim(M), where cl(M) and lI(M) denote the composition
length and the Loewy length of M respectively. Write Hy = @;c; E(T;)™)
where {n; : ¢ € I} is a family of finite cardinal numbers. Since the Loewy
series commutes with direct sums, to prove that H = H,, it suffices to show
that the set {{I(F(T;)) : i € I} is bounded.

Assume (i). We know from the first proof of Theorem 2.1 that E(T;) is
a subcomodule of T; ® E(k1) for all ¢ € I. Then l(E(T;)) < c(E(T;)) <
c(T; ® E(k1)) < dim(T; ® E(k1)) = dim(T;)dim(E(k1)). Now apply (i).

Assume (ii). Take ¢ € I arbitrary. Since (T; ® E;11)/(T; ® E;) = T; ®
(Ej4+1/E;) is semisimple, we get that T; @ E; C Sod (T; @ E(k1)) for all
j=1,..,n. Then T; ® E(kl) = Soc"(T; @ E(k1)). Considering E(T;) as
embedded in T; ® E(k1), we have l[(E(T;)) < (T, ® E(k1)) < n. |

Observe that the hypothesis in (ii) of the preceding proposition is weaker
than Hj being a subalgebra. A similar hypothesis, although a little stronger,
would be to ask that the composition factors £, /E; are included in the Hopf
socle of H, defined in [5, Definition 4.1]. Let S be a full set of representatives
of simple right H-comodules. Each representative can be taken as a right
coideal of H. Let S denote the subset of S consisting of simple H-comodules
V such that V@ W and W ® V are semisimple for all W € S. The Hopf
socle of H is defined to be Hye = D, cscf(V) and it is a cosemisimple Hopf
subalgebra of H. If Hy is a subalgebra of H, then H,,. = H,.

With notation as in Proposition 3.1, an upper bound for the set {dim(T;) :
i € I} is given in 26, Theorem 2.13] in case H = k[G], the ring of rational
functions of an affine algebraic group G with integral, where £k is algebraically
closed of positive characteristic. It is shown there that the number of irre-
ducible components of GG is an upper bound for the above set. However, not
every co-Frobenius Hopf algebra satisfies that {dim(T;) : i € I} is bounded.
For example, the quantum groups at a root of unity C,[G] where G is the sim-
ple connected algebraic group associated to a simple finite dimensional Lie
algebra, see [19], [5]. We give more examples of Hopf algebras such that the
above set is not bounded by means of certain von Neumann regular algebras.
See [12] for an account on this important class of algebras.

Proposition 3.2 Let A be a von Neumann regular algebra. Then the finite
dual coalgebra A° is cosemisimple.

Proof: First observe that a coalgebra is cosemisimple if and only if each finite

dimensional subcoalgebra is so. Finite dimensional subcoalgebras of the finite
dual A° are of the form (A/I)* where I is a cofinite two-sided ideal of A. If
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A is von Neumann regular, then A/I is too, but A/I is finite dimensional.
Hence A/I is semisimple and thus (A/I)* is cosemisimple. |

Recall that a group G is said to be locally finite if every finite subset of
GG generates a finite subgroup.

Corollary 3.3 Let G be a locally finite group. Assume that the order of any
element of G is not divided by char(k). Then k[G]° is a cosemisimple Hopf
algebra.

Proof: The group algebra of a group satisfying the hypothesis is known to be
von Neumann regular, |24, page 138§]. |

Example 3.4 Let k be the field of rational numbers and let G = ©pcpZ,
where P is the set of prime numbers and Z, denotes the cyclic group of
order p. Since G is locally finite, k[G]° is cosemisimple. On the other hand,
the projection of groups m, : G — Z, induces a projection of Hopf algebras
7, : k[G] — k[Z,). Then k[Z,]* is a subcoalgebra of k[G]°. Observe now that
k[Z,] (and hence k[Z,]*) has a simple module (comodule) whose dimension
isp—1.

Let K/k be a field extension. If C' is a coalgebra (resp. Hopf algebra)
over k, then Cx = C ® K is a coalgebra (resp. Hopf algebra) over K in the
natural way. For a Hopf algebra H over k, Sullivan proved in [26, Proposition
2.1] that H is co-Frobenius if and only if Hg is so. It is natural then to ask
how the coradical filtration of H and Hy are related. The answer is given
in the following result which is pointed out in Section 7 of the survey paper
[4]. We include the proof for the reader’s convenience.

Proposition 3.5 If k is a perfect field, then (C ® K), = C, @ K for all
n € N.

Proof: The statement easily follows once the equality (C ® K)o = Cy ® K is
established. Since {C, ® K : n € N} is a coalgebra filtration of C' ® K, by
[22, Proposition 5.3.4], (C ® K)y C Cy ® K. To show the reverse inclusion,
let D be a simple subcoalgebra of C'. Since k is perfect, D is a coseparable
coalgebra and hence D ® K is cosemisimple. So, D ® K C (C' ® K)j. |

We are now in a position to give the proof of the announced result. We
first recall Sullivan’s result [25, Theorem 2.13] stating that for k& algebraically
closed of positive characteristic and GG an affine algebraic group with integral,
the dimension of the injective hull of each simple k[G]-comodule is less or
equal than the number of irreducible components of G.
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Theorem 3.6 Let G be an affine algebraic group with integral and let k[G]|
be its ring of rational functions. If k is perfect, then k|G| has finite coradical
filtration.

Proof: In light of Theorem 2.3 we can assume that k£ has positive charac-
teristic. Let k denote the algebraic closure of k. By [26, Proposition 2.1],
k[GE] = k[G];, is co-Frobenius. Sullivan’s result above gives an upper bound
for the dimension of the simple k[G]-comodules. Then Proposition 3.1 yields
that k[G}] has finite coradical filtration. Now the preceding proposition ap-

plies. 1

We provide some other examples of co-Frobenius Hopf algebras satisfying
the conjecture. They will be derived from Theorem 2.1, since the coradical
will be shown to be a subalgebra.

Theorem 3.7 Let H be a Hopf algebra over a perfect field k. Assume that
Hy 1s cocommutative. Then Hy is a subalgebra. As a consequence, if H is
co-Frobenius, then H has finite coradical filtration.

Proof: Let _/_f be the algebraic closure of k. We know from Proposition 3.5
that (H ®k)o = Ho® k. Hence (H @ k)o is cocommutative and consequently
pointed. So (H ® k) is a subalgebra of H ® k. Then

Hy®k=(H®k)=(H®k)(H®k)=(Hy®k)(Hy® k) = HyHy ® k.

Since Hy C HyH,y, it follows that HyHy = Hy and so Hj is a subalgebra of
H. |

Proposition 3.8 Let H be a co-Frobenius Hopf algebra such that either
char(k) = 0 or char(k) > dim(E(k1)). Assume that S|y, is an involution.
Then Hy is a subalgebra. In particular H has finite coradical filtration.

Proof: The argument is analogous to |3, Proposition 4.2, 5. = 3.]. Let L be
the Hopf subalgebra of H generated by Hy. By |26, Theorem 2.15|, L is co-
Frobenius. Since S|g, is an involution, the antipode of L is an involution. Let
Ep (k1) denote the injective hull of k1 as an L-comodule. Then Ey (k1) may
be considered as a subcomodule of E(k1l). So dim(EL (k1)) < dim(E(k1)).
The hypothesis on k£ together with Theorem 2.3 give that L is cosemisimple.
Hence L = H,. |



4 Characterizing non-cosemisimple co-Frobenius
Hopf algebras

In this section we give several characterizations of co-Frobenius Hopf alge-
bras which are not cosemisimple. Two of these characterizations involve the
radical, as a coalgebra, of the Hopf algebra. We start by presenting several
properties of the radical of a coalgebra and a comodule.

Let C be a coalgebra and M a right C-comodule. The radical of M,
denoted by Rad(M), is the intersection of all maximal subcomodules of M.
Notice that Rad(M) is equal to the radical of M considered as a left C*-
module. Then Rad(M) enjoys the following properties:

1.- Rad(®ie;M;) = BierRad(M;) for a family {M,;},e; of right C-como-
dules.

2.- Rad(N) = N N Rad(M) for a subcomodule N of M.

3.- Rad(M/Rad(M)) = {0}.

4.- Consider C' as a left C*-module. Then Rad(C¢) = Rad(c+C) is an
(End(c+C), C*)-bimodule. Using the isomorphism of algebras End(c-C) =
C*, we get that Rad(C¢) is a C*-bimodule (hence a subcoalgebra) of C'.

The finiteness conditions of comodules allow the following characteriza-
tion of semisimple comodules which, in general, does not hold for modules.

5.- A right C-comodule M is semisimple if and only if Rad(M) = {0}. It
is known that any semisimple module has zero radical. For the converse, note
that M is semisimple if and only if each finite dimensional subcomodule N of
M is semisimple. The latter is equivalent to that Rad(N) = N N Rad(M) =
{0}. In particular, M/Rad(M) is semisimple.

We will next prove that for a co-Frobenius coalgebra the radical of the
regular right comodule coincides with the radical of the regular left comodule.
First we need the following lemma.

Lemma 4.1 Let C be a coalgebra. Then Rad(Cc)*¢") = Soc(Rat(C¥.)).

Proof: If M is a maximal subcomodule of C¢, then M) 2 (C/M)* is a fi-
nite dimensional simple right ideal of C*. So it is contained in Soc(Rat(CE.)).
From here, Rad(Cc)H ) = (NM)HC) = S M) C Soc(Rat(CE.))
where the intersection and the sum runs over all maximal subcomodules
of C¢. To show the reverse inclusion, let T" be a simple rational right ideal
of C*. Then T is finite dimensional and thus it is closed in the finite topol-
ogy of C*. Tt easily follows that T(©) is a maximal right coideal of C' and
T =T =T, 1
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Theorem 4.2 Let C' be a co-Frobenius coalgebra (i.e. left and right co-
Frobenius). Then Soc(Rat(Cf.)) = Soc(Rat(c«C*)). Hence Rad(Ce) =
Rad(CC)

Proof: Let ¢ : ¢+C — Rat(c~C*) and ¢ : Co» — Rat(Cf.) be the iso-
morphism, of left and right C*-modules respectively, given by hypothesis.
Take a set {e;}ic; of orthogonal primitive idempotents in C* such that
Co = @ictC - ¢; and ¢C = Dere; - C. Each C - ¢; (resp. ¢; - C) is an
injective indecomposable right (resp. left) C-comodule with simple socle
Co-e; (resp. e;-Cp). Since C is left and right semiperfect, C'-e; and e; - C are
finite dimensional. From the isomorphism of left C*-modules (e; - C)* = C*e;
we obtain that C*e; is finite dimensional. Then C*e; C Rat(c+C*) and so
C*e; = Rat(c+C*)e;.

We know that the subspaces Rat(Cf.) and Rat(c+~C™*) are equal as C
is semiperfect, and Rat(C{.) is a two-sided ideal. To avoid confusion we
write Soc"(Rat(Cf.)) for the socle of Rat(Cf.) when viewed as a right
C*-module. Analogously, we write Soc!(Rat(c-C*)). Since Soc(Cg.) is a
two-sided ideal and Soc"(Rat(Cf.)) = Rat(CE.) N Soc(CE.), we get that
Soc"(Rat(Cf.)) is a two-sided ideal. We claim that the left C*-module
Soc"(Rat(CE.))e; is non-zero. Let x € Cp - ¢; be non-zero. Then 0 # ¢(z) =
Y(x - e;) = P(r)e; and Y(x)e; € Soc"(Rat(CE.))e; because x € Cp and
P(Co) = Soc"(Rat(CE.)). Using now that Soc(C*e;) is simple and essential
in C*e;, we find that Soc(C*e;) = Soc(C*e;) N Soc"(Rat(C¢.))e;. Hence
Soc(C*e;) = Soc(Rat(CE)e;) C Soc” (Rat(CEw)).

The equality of subspaces of C*,

Rat(Cg.) =Y(C) = P(Dic1C - €) = @ictv(C - €;) = @ier(C)e;
— @ie[RCLt(CE*)Gi,

gives the equality Rat(c+C*) = @;crRat(Cfn )e; of left C*-modules. Then
Soc (Rat(c-C*)) = Soc(®ierRat(Ch.)e;) = @icrSoc(Rat(CE.)e;),

and the latter is contained in Soc” (Rat(Cf.)). A symmetric argument shows
that Soc"(Rat(C¢.)) C Soc'(Rat(c-C*)). Finally, using the preceding lemma
and the first statement,

Rad(C¢) = Soc" (Rat(C.)) M = Soct(Rat(¢-C*)) D = Rad(cC).
|

We give a characterization in terms of the radical of when the coradical
of a co-Frobenius Hopf algebra is a subalgebra.
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Proposition 4.3 Let H be a co-Frobenius Hopf algebra. The following as-
sertions are equivalent:

(i) Rad(H)Ho, = Rad(H).
(ii) Hy is a subalgebra of H.

Proof: (i) = (ii) Let ¢ : H — H* be the monomorphism of left H*-modules
given by hypothesis. It is defined by (¢(h),n') = ([, W S(h)) for h,h' € H.
We know from Lemma 4.1 that Rad(Hy)**") = Soc!(Rat(g-H*)) = ¢(Hy).
For g,¢' € Hy and h € Rad(Hp) we have:

(69, h) = ( / 1S(6)S(9)) = {8(9). hS(d)).

Since g € Hy, ¢(g) € Soc (Rat(g-H*)) = Rad(Hy)*H") = (Rad(H)Hy)*~H").
Then (¢(g),hS(¢")) = 0 for all h € Rad(Hp) (we use here that H has bi-
jective antipode to assure S(g’) € Hp). From this it follows that ¢(gg’) €
Rad(Hy)* ") = ¢(H,). Then gg' € H,.

(i1) = (i) Clearly Rad(H) C Rad(H)H,. Since H is co-Frobenius, H is
projective as a left H*-module, [16, Theorem 23]. Then, by |2, Proposition
17.10|, Rad(Hy) = Rad(y«H) = J - H where J = J(H*) is the Jacobson
radical of H*. We have seen in the proof of Theorem 2.1 that (J - H)H, C
J-H. 1

We finally arrive to the main theorem of this section.

Theorem 4.4 Let H be a co-Frobenius Hopf algebra whose coradical is a
subalgebra. The following statements are equivalent:

(i) H is not cosemisimple.
(1) 1 € Rad(H).
(iii) Hy C Rad(H).
(iv) No simple left (or right) H-comodule is injective.

Proof: (i) = (i) Let [, be a left integral of H and let ¢ : H — H* denote the
monomorphism of left H*-modules afforded by fl We claim that fl vanishes
on Hy. Since H is not cosemisimple, (f,,1) = 0. Write Hy = k1 & M for
some subcoalgebra M of Hy. For h € H we have the equality ( fl,h>1 =
(f;»h@2)hqy- If h € M, then ([,,h)1 € M Nkl = {0}. Hence ([, M) = {0}.
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Since [, vanishes on Hy, we have that ¢(1) € HOL(H*) = J(H*). Indeed,
(1) € Rat(g«-H*) N J(H*) and the latter is Rad(Rat(g-H*)). But ¢ estab-
lishes an isomorphism between p+H and Rat(g«H*). Then ¢(Rad(y-H)) =
Rad(Rat(g+~H*)). Hence 1 € Rad(H).

(i1) = (i) If 1 € Rad(H), then Hy C Rad(H)H,. By Proposition 4.3,
Rad(H)Hy = Rad(H).

(11i) = (iv) Let {T; : i € I'} be a full set of representative of simple right
H-comodules. As a right H-comodule, H may be decomposed as Hy =
Bicr E(T;)™) where {n; : i € I} is a family of finite cardinal numbers. Then
Rad(H) = @ic;Rad(E(T;))™). If T; is injective for some i € I, then T; =
E(T;) and Rad(E(T;)) = {0}. Hence T; is contained in Hy but not in Rad(H).

(iv) = (i) If no simple is injective, then k1 is not injective and so H is
not cosemisimple. |

Remark 4.5 The equivalence (7ii) < (iv) holds for any coalgebra H. Keep-
ing notation, assume that no simple right H-comodule is injective. Then
Rad(E(T;)) # {0} for every ¢ € I. If Rad(E(T;)) = {0} for some i, then
E(T;) is semisimple. Since it is indecomposable, it is simple. Then T; = E(T;)
is injective, a contradiction. As Rad(E(T;)) # {0} it contains 7;. Hence
Hy C Rad(Hp).

5 The head of an injective comodule

In this section we describe the head of an injective indecomposable comodule
over a co-Frobenius Hopf algebra. Recall that the head of a right H-comodule
M is the semisimple H-comodule M/Rad(M). The main result of this section
is obtained in [11, Proposition 1] for the Hopf algebra of rational functions of a
virtually linearly reductive affine group scheme. This result is in turn inspired
by the finite group scheme case, see [17, I, Chapter 8|. The arguments used in
the aforementioned result easily extend to co-Frobenius Hopf algebras as we
show next. The fact that a co-Frobenius Hopf algebra has bijective antipode
is what makes the proof also works in this case. We will closely follow the
proof of [11, Proposition 1] up to some modifications.

Lemma 5.1 Let H be a co-Frobenius Hopf algebra. Let [7,7]: H x H — k
be the bilinear form defined by [h, k') = ([, hh') for all h,h' € H. Then:

(i) [h-S*(p), W] =[h,h -] for all p € H*.

(i) (7,7 H x H— k is non-singular.
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Proof: (i) Since [, is a left integral, ([, hh')1 = 32( [, hiz)h{g)) hayhiy) for all
h,h' € H. Now we have:

[h- S*() (1 he ,S(h))
= E Ji h@his) ’h(l)S(h ()
Z(fp hh/(2)> (o, h,(1)>
=[h,h -]

(i) Let B={be H:[bl]=0Vl€ H}. Let ¢ € H* and b € B. Since S
is bijective, 1 = S*(p) for some ¢ € H*. Using (i), [b-¢,h'] = [b, R/ - p] = 0.
Hence b -1 € B. So B is a right H*-submodule of H and thus a left coideal
of H. Take h € H such that [1,h] # 0. For b € B arbitrary,

[1,2)b =) "[e(b@)L, hlbay = Y _[beyS(b). klbay = Y (b, S(bes)hlba) = 0.
Hence b = 0. |

In |23, Proposition 3| it is proved that there is a group-like element g €
H such that [ h* = (h*,g) [, for all h* € H*. This means that the map
¢ : H — kg, h— (J,,h)g is right H-colinear. Such an element g is called the
distinguished group-like element of H.

Theorem 5.2 Let H be a co-Frobenius Hopf algebra. For a simple right
H-comodule T; the head of E(T;) is isomorphic to kg @ T;*.

Proof: Let {e; : 1 € I} be a complete set of primitive orthogonal idempotents
of H* such that Hy = ®;c/H - e; and yH = @;cre; - H. Applying S to
the latter decomposition we obtain a decomposition of right H-comodules
H=®c;S(e;- H) = ®ierH - (S71)*(e;). For i € I we write E; = H - ¢; and
E!=H-(S™Y*(e;). Take i,j € I with i # j and h,h' € H. By the foregoing
lemma, 0 = [(h-e;)-e;, ] = [h-e;,h/ - (S7')*(e;)]. Thus, by restriction,
we have a non-singular pairing [7,7] : F; x E! — k for each i € I. Using
that [ h* = (h*, g) [, for all h* € H*, it is not difficult to verify that the
map ¥ : E; — kg ® E* h; — g ® ®(h;) where ®(h;)(h) = [hs, h] for h € E,
is a morphism of right H-comodules. Since [?,7] is non-singular, ¥ is an
isomorphism.

Let ¢f(T;) be the coefficient space of the simple right H-comodule T; =
Hy - e;. Then T] = e; - Hy is a simple left ¢f(T;)-comodule. Since Soc(E}) =
S(e; - Hy) = S(TZ’) the coefficient space of T;* and S(T}) is S(cf(71;)). Hence
S(T!) =2 T7 and so Soc(E}) = T;. Then E] = E(T}). From the isomorphism
in the preceding paragraph, F; = kg @ E(T})*. Let H; be the head of E;.
Then H,; = kg ® Soc(E(T}))* = kg ® T}, "
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Corollary 5.3 Let H be a co-Frobenius Hopf algebra. Then H/Rad(H) =
Hy as a right (or left) H-comodule.

Proof: Let Hy = @jc;1; be a decomposition of the coradical into sim-
ple right comodules. We know that H = @;c;E(1;). Then Rad(H) =
®jesRad(E(T;)) and we have:

H/Rad(H) = ©;c,E(T;)/Rad(E(T})) = ©je kg @ Tj™ = kg ® (e, T;7).

Since the antipode of H is bijective, Hy = @jec; 1" Finally, it is easy to
check that the map u : kg ® Hy — Hy, g ® h — gh is an isomorphism of
right H-comodules. |
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