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email: jcdiaz@ual.es

Abstract

For a coalgebra C the rational functor Rat(−) : MC∗ → MC∗ is a
left exact preradical whose associated linear topology is the family FC

consisting of all closed and cofinite right ideals of C∗. It was proved in
[8] that if C is right F-noetherian (every I ∈ FC is finitely generated),
then Rat(−) is a radical. We show that the converse follows if C1, the
second term of the coradical filtration, is right F-noetherian. This is a
consequence of our main result on F-noetherian coalgebras which states
that the following assertions are equivalent: i) C is right F-noetherian;
ii) Cn is right F-noetherian for all n ∈ IN ; iii) FC is closed under prod-
ucts and C1 is right F-noetherian. New examples of right F-noetherian
coalgebras are provided.

1 Introduction

Let C be a coalgebra over a field k and C∗ its dual algebra. Let CM denote the
category of left C-comodules and MC∗ the category of right C∗-modules. It is
well-known that CM is isomorphic to the subcategory Rat(MC∗) of all rational
right C∗-modules. Indeed, Rat(MC∗) is an hereditary pretorsion class in MC∗

(i.e., a class closed under subobjects, quotients, and arbitrary direct sums). The
linear topology FC on C∗ associated to Rat(MC∗) consists of all closed and
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cofinite right ideals of C∗. The problem of when Rat(MC∗) is a torsion class
(closed under extensions) has been studied in [4], [5], [8], [10], and, recently,
in [2]. In this note we continue the study of this problem and relate it to a
finiteness condition on FC , that every I ∈ FC be finitely generated. Coalgebras
satisfying this property are called right F -noetherian. It was proved in [8] that
if C is right F -noetherian, then Rat(MC∗) is a torsion class. In this paper we
find an hypothesis under which the converse holds. This is a consequence of
our main theorem on F -noetherian coalgebras that allows to lift the property of
being F -noetherian through the terms of the coradical filtration. It states that
C is right F -noetherian if and only if each term Cn of the coradical filtration is
so, or equivalently, C1 is right F -noetherian and FC is closed under products.
From this theorem it follows that for C1 being right F -noetherian, Rat(MC∗) is
a torsion class if and only if C is right F -noetherian. The hypothesis of C1 being
right F -noetherian is investigated in several cases. When C is almost connected,
C1 is right F -noetherian if and only if C1 is finite dimensional. If C is pointed,
C1 is right F -noetherian if and only if for every group-like element x ∈ G(C)
the set {dim(Px,y(C)) : y ∈ G(C)} is bounded. Finally, as another consequence
of the main theorem we provide new examples of right F -noetherian coalgebras.
These are constructed by imposing the terms of the coradical filtration to be
left semiperfect.

2 Preliminaries

Let us to present several facts on torsion theory and coalgebras that we will
need in the sequel.

Torsion theory (see [11, Chapter VI]): Let R be a ring and MR the category
of right R-modules. A class C ⊂MR is called an hereditary pretorsion class if it
is closed under subobjects, quotients, and direct sums. If, in addition, C is closed
under extensions, then it is called a torsion class. A functor r : MR →MR is
called a left exact preradical if it is a subfunctor of the identity functor of MR, it
is left exact, and r◦r = r. Such a functor is called a radical if r(M/r(M)) = {0}
for all M ∈MR. A right linear topology on R is a family T of right ideals of R
satisfying:

T1. If I ∈ T and I ⊂ J , then J ∈ T .
T2. If I, J ∈ T , then I ∩ J ∈ T .
T3. For any I ∈ T and a ∈ R, the right ideal (I : a) ∈ T .
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A Gabriel topology is a right linear topology T satisfying the additional
axiom:

T4. If I is a right ideal of R and there is J ∈ T such that (I : b) ∈ T for all
b ∈ J , then I ∈ T .

There is a bijective correspondence between:

1) Right linear topologies on R.
2) Hereditary pretorsion classes in MR.
3) Left exact preradicals in MR.

Given a linear topology T the associated hereditary pretorsion class is
C = {M ∈MR : Ann(m) ∈ T for all m ∈ M}. The associated left exact prerad-
ical r is defined as follows: for any M ∈MR, r(M) = {m ∈ M : Ann(m) ∈ T }.
Conversely, if C is an hereditary pretorsion class, the corresponding linear topol-
ogy T consists of all right ideals I of R for which R/I ∈ C. The associated left
exact preradical is defined in the following way: for any M ∈MR, r(M) is the
sum of all submodules of M belonging to C. This correspondence becomes a
bijective correspondence between Gabriel topologies, torsion classes, and radi-
cals.

Coalgebras and comodules: Throughout all vector spaces, algebras, coalge-
bras, ⊗, etc are over a fixed ground field k. For general facts on coalgebras and
comodules we refer to [1], [7] and [12]. For a coalgebra C its dual algebra C∗

is a topological vector space with the weak-* topology. The closed subspaces of
C∗ are the annihilators W⊥(C∗) of subspaces W of C. A subspace U of C∗ is
called cofinite if C∗/U is of finite dimension. A right ideal J of C∗ is closed and
cofinite if and only there is a finite dimensional right coideal W of C such that
J = W⊥(C∗).

The category CM of left C-comodules is isomorphic to the full subcategory
Rat(MC∗) of MC∗ consisting of all rational right C∗-modules. Let M ∈ MC∗

and m ∈ M, we say that m is a rational element if there is ρm =
∑

i ci ⊗mi ∈
C ⊗M such that

m · c∗ =
n∑

i=1

〈c∗, ci〉mi ∀c∗ ∈ C∗.

The set consisting of all rational elements of M , denoted by Rat(M), is a C∗-
submodule of M . When M = Rat(M), M is called rational. The assignment
RatC(−) : MC∗ → MC∗ , M 7→ Rat(M), called the rational functor, is a left
exact preradical. The hereditary pretorsion class associated to this preradical is
the subcategory Rat(MC∗) of all rational left C∗-modules. The linear topology
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FC corresponding to this class is the family of all closed cofinite right ideals
of C∗. It follows from the Fundamental Theorem on Coalgebras that FC is a
symmetric linear topology. This means that for every J ∈ FC there is a two-
sided ideal K of C∗ such that K ∈ FC and K ⊂ J .

3 When is the rational functor a radical?

Definition 3.1 A coalgebra C is said to have a right torsion rat functor if it
satisfies one of the following equivalent conditions:

i) Rat(MC∗) is closed under extensions.

ii) The rational functor is a radical.

iii) FC is a Gabriel topology.

It was proved in [5, Proposition 4, Theorem 6] that these coalgebras enjoy
the following properties:

Proposition 3.2 Having a right torsion rat functor is closed under subcoalge-
bras and arbitrary direct sums.

We give a necessary condition to have a torsion rat functor. We recall from
[6] that a coalgebra C is locally finite if D ∧C D is finite dimensional for any
finite dimensional subcoalgebra D where ∧C denotes the wedge product over C.
See [12, Section 9.0] for the definition of the wedge product and its properties.

Lemma 3.3 Let C be a coalgebra such that FC is closed under products. Then
C is locally finite.

Proof: Let D be a finite dimensional subcoalgebra of C. By hypothesis,
there is a finite dimensional subspace W of C such that D⊥(C∗)D⊥(C∗) = W⊥(C∗).
Now, D ∧C D = (D⊥(C∗)D⊥(C∗))⊥(C) = W⊥(C∗)⊥(C) = W . Hence D ∧C D is of
finite dimension.

The converse of Lemma 3.3 is not true. A counterexample may be found
in [9, Example 3.4]. Since any Gabriel topology is closed under products ([11,
Lemma 5.3]) we have:

Corollary 3.4 Any coalgebra having a right torsion rat functor is locally finite.
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A sufficient condition to have a torsion rat functor was given in [8, page
521]:

Proposition 3.5 Let C be a coalgebra such that that every J ∈ FC is finitely
generated. Then C has a right torsion rat functor.

Definition 3.6 A coalgebra C satisfying the hypothesis of Proposition 3.5 is
called right F-noetherian.

Examples 3.7

i) Let A be an algebra such that every cofinite right ideal of A is finitely
generated. It follows from [6, Theorem 3.3] that the finite dual Ao is right F -
noetherian. In particular, the dual of a finitely generated algebra is right and
left F -noetherian.

ii) Recall from [4] that a coalgebra C is called left semiperfect if the injective
hull of any simple left C-comodule is finite dimensional. It was proved in [2,
Theorem 2.12] that any left semiperfect coalgebra is right F -noetherian.

iii) Subcoalgebras and arbitrary direct sums of right F -noetherian are too,
see [10, Corollary 4.9], [2, Proposition 2.8].

Our next step is to find out some structural properties of right F -noetherian
coalgebras. Recall from [13, Example 1.2] that a right C-comodule M is said
to be finitely cogenerated if there is an injective C-comodule map f : M → C(n)

for some n ∈ IN . For any M ∈MC , let E(M) denote its injective hull.

Proposition 3.8 Let I be a right coideal of C. The following assertions are
equivalent:

i) C/I is finitely cogenerated.

ii) E(I)/I is finitely cogenerated.

iii) I⊥(C∗) is a finitely generated right ideal of C∗.

Proof: i) ⇔ ii) It is just to take into account that C ∼= E(I)⊕ T for some
subcomodule T of C and C/I ∼= E(I)/I ⊕ T , see [3, 1.5g].

i) ⇒ iii) Notice that (C/I)∗ ∼= I⊥(C∗) as right C∗-modules. Since C/I is
finitely cogenerated, there is an injective C-comodule map f : C/I → C(n) for
some n ∈ IN . The dual map f ∗ : C∗(n) → (C/I)∗ ∼= I⊥(C∗) is a surjective
C∗-module map. Thus I⊥(C∗) is finitely generated.
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iii) ⇒ i) We can express C(n) = W ⊗ C with W a space of dimension
n. Let {wi}n

i=1 be a basis of W and {w∗
i }n

i=1 be its dual basis in W ∗. By
hypothesis, there is a surjective C∗-module map f : W ∗ ⊗ C∗ → I⊥(C∗). Let
c∗i = f(w∗

i⊗ε) for all i = 1, ..., n (ε is the counit of C). We define g : C → C(n) by
g(c) =

∑n
i=1 wi⊗ (

∑
(c)〈c∗i , c(1)〉c(2)) for all c ∈ C. It is easy to check that g∗ = f .

Hence g is a C-comodule map. Moreover, I⊥(C∗) = Im(g∗) = Ker(g)⊥(C∗).
Then I = Ker(g). Therefore C/I is finitely cogenerated.

In view of the preceding result the closed right ideals of C∗ are finitely
generated if the quotients of C, as a right comodule, are finitely cogenerated. For
a locally finite coalgebra this latter property may be characterized by studying
the socle of such a quotients. It is known that there is a bijective correspondence
between simple subcoalgebras of C and isomorphism classes of simple right C-
comodules, see [1, Theorem 3.1.4]. Let S denote the set of simple subcoalgebras
of C. For each D ∈ S, let SD be the corresponding simple right comodule. It is
also known that the socle of C as a right comodule coincides with the coradical
of C, C0, and it decomposes as C0 = soc(C) ∼= ⊕D∈SS

(nD)
D where the n′Ds

are natural numbers, see [3, 1.3.2]. For any right C-comodule M , soc(M) ∼=
M2CC0. The isotypic component of SD in M is given by ρ−1(M2CD) with
ρ : M → M ⊗ C being the structure map of M .

The following technical lemma is very useful to describe the simple comod-
ules appearing in soc(C/I) for a right coideal I of C.

Lemma 3.9 Let I be a right coideal of C and E be a subcoalgebra of C. Then
(I ∧C E)/I ∼= (C/I)2CE as right E-comodules.

Proof: It is not difficult to verify that the map

Φ : I ∧C E → (C/I)2CE, c 7→
∑
(c)

(c(1) + I)⊗ c(2)

is a surjective E-comodule map whose kernel is I.

Lemma 3.10 Let C be a locally finite coalgebra and I a right coideal of finite
dimension. Then C/I is finitely cogenerated if and only if there is γ ∈ IN such
that dim((I ∧C D)/I) ≤ γnDdim(SD) for every D ∈ S.

Proof: Using Lemma 3.9 we have that

soc(C/I) ∼= (C/I)2CC0
∼= ⊕D∈S(C/I)2CD ∼= ⊕D∈S(I ∧C D)/I.
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Each (I ∧C D)/I ∼= S
(mD)
D and mD is finite because C is locally finite. Notice

that C/I is finitely cogenerated if and only if soc(C/I) is finitely cogenerated as
C0-comodule. This happens if and only if there is γ ∈ IN such that mD ≤ γnD

for all D ∈ S. Equivalently, dim((I ∧C D)/I) = mDdim(SD) ≤ γnDdim(SD).

This description of the socle using the wedge yields a method to lift the
property of being right F -noetherian through the terms of the coradical filtra-
tion.

Theorem 3.11 Let {Cn}n∈IN be the coradical filtration of C. The following
assertions are equivalent:

i) C is right F-noetherian.

ii) Cn is right F-noetherian for all n ∈ IN .

iii) C1 is right F-noetherian and FC is closed under products.

Proof: Let first prove that if C is right F -noetherian, then FC is closed
under products. Let J, K ∈ FC . By hypothesis J, K are finitely generated. Let
H be a two-sided ideal such that H ∈ FC and H ⊆ J . Again by hypothesis, H is
finitely generated as a right ideal. By [6, Lemma 1.1.1], KH is finitely generated
and cofinite. Since it is finitely generated, it is closed by [6, Proposition 1.3.1
b]. Hence KH ∈ FC . From KH ⊂ KJ , it follows that KJ ∈ FC .

i) ⇒ ii) and i) ⇒ iii) Being right F -noetherian is closed under subcoalge-
bras.

ii) ⇒ i) Since Cn is right F -noetherian, FC is closed under products. From
Lemma 3.3, Cn is locally finite for all n ∈ IN . In particular, C1 is locally finite.
By [6, Proposition 2.4.5], C is locally finite.

Let I be a finite dimensional right coideal of C. In view of Proposition 3.8
it suffices to prove that C/I is finitely cogenerated. There is m ∈ IN such that
I ⊂ Cm. By hypothesis and Proposition 3.8, Cm+1/I is finitely cogenerated. Ap-
plying Lemma 3.10 there is γ ∈ IN such that dim(I∧Cm+1 D)/I) ≤ γnDdim(SD)
for every D ∈ S. On the other hand, I ∧C D ⊂ Cm∧C C0 = Cm+1. By [6, 2.3.4],
I ∧C D = I ∧Cm+1 D. Then dim((I ∧C D)/I) ≤ γnDdim(SD) for each D ∈ S.
Lemma 3.10 implies that C/I is finitely cogenerated.

iii) ⇒ i) We first check that every closed and cofinite maximal ideal is
finitely generated as a right ideal. Let M be such an ideal and D be a simple
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subcoalgebra of C such that M = D⊥(C∗). Arguing as in ii) ⇒ i) we obtain
that C/D is finitely cogenerated. Thus M is finitely generated.

Let J ∈ FC and K be a two-sided ideal such that K ∈ FC and K ⊂ J . Let
P1, ..., Pn be maximal closed and cofinite two-sided ideals containing J (there are
only finitely many because J is cofinite). Set N = ∩n

i=1Pi, then Rad(C∗/K) =
N/K. Hence there is n ∈ IN such that Nn ⊆ K. Let H = P1 · ... · Pn, then
Hn ⊆ Nn ⊆ K ⊂ J . The ideal H is closed and cofinite by hypothesis, and
finitely generated because the P ′

is are so. Therefore J is finitely generated.

As an immediate consequence:

Corollary 3.12 Let C be a coalgebra such that C1 is right F-noetherian. The
following assertions are equivalent:

i) C has a right torsion rat functor.

ii) FC is closed under products.

iii) C is right F-noetherian.

We analyse in some cases the hypothesis of C1 being right F -noetherian.
Recall that a coalgebra C is called almost connected if C0 is finite dimensional.

Proposition 3.13 Let C be an almost connected coalgebra. The following as-
sertions are equivalent:

i) C1 is right F-noetherian.

ii) C is locally finite.

iii) Cn is finite dimensional for all n ∈ IN .

Proof: i) ⇒ ii) If C1 is right F -noetherian, then C1 is locally finite. By [6,
Theorem 2.4.5], C is locally finite.

ii) ⇒ iii) Since C is locally finite, Cn = C0 ∧C Cn−1 is finite dimensional.
iii) ⇒ i) It is clear since C∗

1 is finite dimensional.

Corollary 3.14 Let C be an almost connected coalgebra. The following asser-
tions are equivalent:

i) C has a right torsion rat functor.

ii) FC is closed under products.
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iii) C is locally finite.

iv) C is right F-noetherian.

Proof: It is sufficient to prove iii) ⇒ iv). Let I be a finite dimensional
right coideal of C. There is n ∈ IN such that I ⊆ Cn. For any D ∈ S,
I ∧C D ⊆ Cn+1 which is finite dimensional. Setting r = dim(Cn+1/I), we have
that dim((I ∧C D)/I) ≤ rnDdim(SD) for all D ∈ S. From Lemma 3.10 and
Proposition 3.8, I⊥(C∗) is finitely generated.

Remark 3.15 1.- Corollary 3.14 is a generalization of [4, Corollary 21] where
C0 was assumed 1-dimensional. Notice that Corollary 3.14 is equivalent to [10,
Theorem 4.6] and [2, Theorem 2.10].

2.- The hypothesis of C being almost connected in Corollary 3.14 may be
replaced by C being a direct sum of almost connected coalgebras. This holds
from the fact that a direct sum of coalgebras is right F -noetherian if and only
if each term is so, see [10, Corollary 4.9], [2, Proposition 2.8]. This includes the
cocommutative case.

3.- Note that being locally finite does not depend of the right or left side.
Thus the statements of Corollary 3.14 are equivalent to their left versions.

In the pointed case the bound of Lemma 3.10 takes a clearer form. Let C be
a pointed coalgebra and G(C) its set of group-like elements. For x, y ∈ G(C),
let Px,y(C) denote the space of (x, y)-primitive elements.

Proposition 3.16 Let C be a pointed coalgebra. Then C1 is right F-noetherian
if and only if for each x ∈ G(C) the set {dim(Px,y(C)) : y ∈ G(C)} is bounded.

Proof: Assume that C1 is right F -noetherian. Then C1 is locally finite.
Let x ∈ G(C) and M = (kx)⊥(C∗

1 ). By hypothesis, M is finitely generated.
Proposition 3.8 yields that C1/kx is finitely cogenerated. For each y ∈ G(C)
the isotypic component of ky in C1/kx is (C1/kx)2Cky ∼= ky(nx,y) with nx,y =
dim(Px,y(C)). By hypothesis and Lemma 3.10, the set {nx,y : y ∈ G(C)} is
bounded.

Conversely, let D be a finite dimensional subcoalgebra of C1. We will show
that C/D is finitely cogenerated as a right comodule. For any g, h ∈ G(C) let
P ′

g,h(C) be a subspace of Pg,h(C) such that Pg,h(C) = k(g−h)⊕P ′
g,h(C). By the

Taft-Wilson Lemma ([7, Theorem 5.4.1]), C1 = kG(C)⊕(⊕g,h∈G(C)P
′
g,h(C)). We
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can write D = (⊕g∈F kg)⊕(⊕g,h∈F P ′
g,h(D)) with F being a finite subset of G(C).

For each g ∈ F set Dg = kg ⊕ (⊕h∈F P ′
g,h(D)). Then D = ⊕g∈F Dg as right C-

comodules. In order to prove that D is finitely cogenerated, it suffices to prove
that Dg is so. The injective hull of Dg, E(Dg) = kg ⊕ (⊕h∈G(C)P

′
g,h(C)). Now,

E(Dg)/Dg
∼= ⊕h∈G(C)−F (kh)(mg,h) with mg,h = dim(P ′

g,h(C)/P ′
g,h(D)). From

the hypothesis and Proposition 3.8 we deduce that Dg is finitely cogenerated.

Corollary 3.17 Let C be a pointed coalgebra satisfying that for each x ∈ G(C)
the set {dim(Px,y(C)) : y ∈ G(C)} is bounded. The following assertions are
equivalent:

i) C has a right torsion rat functor.

ii) FC is closed under products.

iii) C is right F-noetherian.

We finish this paper by constructing new examples of right F -noetherian
coalgebras. Combining Examples 3.7 ii) and Theorem 3.11 we have:

Corollary 3.18 Let C be a coalgebra. If Cn is left semiperfect for all n ∈ IN ,
then C is right F-noetherian.

Example 3.19 For a quiver Γ, the path coalgebra kΓ is the k-vector space
generated by the paths in Γ with comultiplication ∆ and counit ε defined by

∆(γ) =
∑

αβ=γ

α⊗ β, ε(γ) =

{
0 if |γ| > 0
1 if |γ| = 0,

where α, β, γ are paths, αβ is the concatenation of paths, and |·| denotes the
length of a path. Assume that for every vertex v ∈ Γ and any n ∈ IN there is a
finite number of paths of length less or equal than n ending at v. This condition
assures that (kΓ)n is left semiperfect for all n ∈ IN . Then, the path coalgebra
kΓ is right F -noetherian.
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