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ON TWO FINITENESS CONDITIONS FOR HOPF ALGEBRAS
WITH NONZERO INTEGRAL

NICOLAS ANDRUSKIEWITSCH, JUAN CUADRA, PAVEL ETINGOF

ABSTRACT. A Hopf algebra is co-Frobenius when it has a nonzero integral. It
is proved that the composition length of the indecomposable injective comodules
over a co-Frobenius Hopf algebra is bounded. As a consequence, the coradical
filtration of a co-Frobenius Hopf algebra is finite; this confirms a conjecture by
Sorin Discélescu and the first author. The proof is of categorical nature and the
same result is obtained for Frobenius tensor categories of subexponential growth.
A family of co-Frobenius Hopf algebras that are not of finite type over their Hopf
socles is constructed, answering so in the negative another question by the same
authors.

INTRODUCTION

The Haar measure on a compact group G induces a linear functional | on the Hopf
algebra of representative functions on G. The (right) invariance property of the Haar
measure reads as a condition on [ that can be expressed in Hopf algebraic terms
[H, page 28|. In [Sw2], Sweedler extended the notion of (right invariant) integral to
arbitrary Hopf algebras by means of this condition. However, not every Hopf algebra
admits a nonzero (right) integral; those that do are called co-Frobenius. There is
an obvious left version but a right co-Frobenius Hopf algebra is automatically left
co-Frobenius. Two main examples arose early in the study of this notion:

e finite dimensional Hopf algebras [LS],
e cosemisimple Hopf algebras [Sw2].

It became slowly clear that the existence of a nonzero integral is fundamentally
linked with these properties: finiteness and semisimplicity. There are two instances
where these relations are apparent. The first is cohomological. Let H be a Hopf
algebra over a field k and let M* denote the category of right H-comodules. Given
M € M its injective hull is denoted by E(M). The next characterization summa-
rizes several results along the years, see [L Theorems 3 and 10|, [DN| Proposition
2.3], [Doll Lemma 1|, [Do2l page 223| and [AC, Theorems 2.3 and 2.8|.

Theorem 1. The following statements are equivalent:

() H is co-Frobenius.
ii) E(S) is finite dimensional for every S € MY simple.
iii) E(k) is finite dimensional.
(iv) M has a nonzero finite dimensional injective object.
v) Every 0 # M € M has a nonzero finite dimensional quotient.
(vi) M possesses a nonzero projective object.
(vii) Bvery M € M has a projective cover.
)

(viii) Bvery injective in M is projective.
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The second instance is the heuristic principle, suggested by several examples and
results, that co-Frobenius Hopf algebras are somehow finite over a cosemisimple sub-
object. The largest cosemisimple subcoalgebra of H is the coradical Hg, the first
member of the coradical filtration (Hy)p>0. The relation between the following
statements was early observed by Radford in [R2, Corollary 2:

(a) H is co-Frobenius.
(b) The coradical filtration of H is finite.

It was proved there that (a) implies (b) under the assumption that Hy is a Hopf
subalgebra. This was derived from |[R2, Proposition 4] stating that H = HyE(k) for
H co-Frobenius. Later, it was shown in [ADl Theorem 2.1] that (b) implies (a) and
it was conjectured there that (a) = (b) always holds. The first main result of this
paper (see Section [I]) is a positive answer to this conjecture, thus establishing that

Theorem 2. A Hopf algebra is co-Frobenius if and only if its coradical filtration is
finite.

The strategy of the proof is to use that the finiteness of the coradical filtration
is equivalent to bound the Loewy length of all indecomposable injective objects in
MH . We find, more strongly, that when H is co-Frobenius their composition length
is bounded by ddim E(k), where d is the largest dimension of a composition factor of
E(k), Theorem The proof exploits the tensor structure of the category of finite
dimensional H-comodules and the existence of injective hulls. Indeed, we observe in
Section 2 that the same result holds for Frobenius tensor categories of subexponential
growth, Theorem 2.5l and provide an explicit uniform bound on the length of the
indecomposable injective objects in terms of the composition series of the injective
hull of the unit object.

In [AD], an alternative proof to Radford’s theorem was given, together with an
analysis of the structure of a co-Frobenius Hopf algebra whose coradical is a Hopf
subalgebra, along the lines of the method proposed in [AS]; see also [BDGN|. How-
ever, there are examples of co-Frobenius Hopf algebras whose coradical is not a Hopf
subalgebra. A prominent one is the function algebra O,(G) of a semisimple quantum
group G at a root of one ¢; it was shown in [APW] that the injective hulls of the
simple comodules are finite dimensional. Another approach appears in [AD| through
the notion of Hopf socle. Assume that H has bijective antipode. The Hopf socle Hgoc
of H is the span of the matrix coefficients of those simple W € M such that V@ W
and W ® V are semisimple for every V € M simple. If H is a finitely generated
module over Hg,. (finite type), then H is co-Frobenius [AD, Lemma 4.2]. This is
another realization of the heuristic principle above since O,4(G) is of finite type over
its Hopf socle O(G). The following natural question was posed in [AD| page 153|: Is
any co-Frobenius Hopf algebra H of finite type over Hgo.? Our second main result
gives a negative answer to this question. After presenting an initial direct example
in Theorem 3] and Proposition 321 we construct in Subsection B3] a new family of
infinite dimensional co-Frobenius Hopf algebras D(m,w, (¢;)icr, ), depending on a
natural number m, a root of unity w whose order n divides m, a scalar «, a non-
empty set I, and a family (g;);er of nonzero scalars. Theorem [B.7] characterizes when
D(m,w, (qi)icr, ) is of finite type over its Hopf socle and yields as a consequence:
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Theorem 3. The Hopf algebra D(m,w, (q;)icr, ) is not of finite type over its Hopf
socle if a # 0 and at least one of the q;’s is not a root of one.

The construction of D(m,w, (¢;)icr, ) is inspired by the presentation by genera-
tors and relations of the dual of a lifting of a quantum line, see Subsection B.2] but
blowing-up, in some sort, part of the structure. This seems to be a novel point of
view that is being explored.

In Section dlwe construct other examples of co-Frobenius Hopf algebras, over fields
of positive characteristic, that are not of finite type over their Hopf socles. They are
smash products of a group algebra and the function algebra of a finite abelian group.
An example of an infinite dimensional co-Frobenius Hopf algebra with trivial Hopf
socle is given.

Although the answer to the question in [ADL page 153| is negative, the heuristic
principle remains unscathed because the examples presented here fit into a cleft exact
sequence of Hopf algebras where the kernel is finite dimensional and the cokernel
cosemisimple. We wonder whether any co-Frobenius Hopf algebra is an extension of
some sort (short exact sequence, bosonization or else) of a finite dimensional and
a cosemisimple Hopf algebra. For example, the function algebra O(G) of an affine
group scheme G is co-Frobenius if and only if G contains a linearly reductive subgroup
(not necessarily normal) of finite index [Do2l page 218]. In this case, O(G) fits into a
short exact sequence where the kernel is not a normal Hopf subalgebra but a coideal
subalgebra instead.

Preliminaries. For basic notions and results on Hopf algebra theory and unex-
plained terminology we refer to [DNRL M| or [Sw1]. Throughout we will work over a
ground field k. We write k* for k\{0}. Vector spaces, linear maps, and unadorned
tensor products are always over k. The comultiplication and counit of a coalgebra
are denoted by A and ¢ respectively. For a Hopf algebra H its antipode is denoted
by 8 and its group of group-like elements by G(H). Given g,h € G(H) we set
Pon(H) = {z € H: A(z) = g® x4+ 2 ®h}. A left integral [ for H satisfies
J(h@y)hay = [(h)1g for all h € H. Recall from [DNR] page 197] that if [ # 0
there exists a unique g € G(H) such that [(h))he) = [(h)g for all h € H. Such

an element is called the distinguished group-like element of H.

The Loewy series of a right H-comodule M is the series

0 C Soc(M) C Soc*(M) C --- C Soc"(M) C --- C U Soc™(M) = M,
meN

defined as follows: Soc(M) is the socle of M, i.e., the sum of all simple subcomodules
of M. For n > 1, Soc™(M) is the unique subcomodule of M satisfying Soc" 1 (M) C
Soc™(M) and Soc(M/Soc™ 1(M)) = Soc™(M)/Soc™ (M), see |Gl 1.4] or [DNR]
page 121]. An alternative description of this series is through the coradical filtration:
let p: M — M®H denote the structure map of M, then Soc" (M) = p~' (M H,),
IDNR] Lemma 3.1.9|. If M = Soc™(M) for some n, the Loewy length of M is defined
to be (M) = min{m € N : M = Soc™(M)}. Otherwise, /(M) = oco. The
coradical filtration of H coincides with the Loewy series of H, either as a right or
left comodule.
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1. THE CORADICAL FILTRATION OF A CO-FROBENIUS HOPF ALGEBRA IS FINITE

Let H be a co-Frobenius Hopf algebra. To prove that H has finite coradical
filtration, we use a criterium from [C]. Let {S;}ics be a full set of representatives of
simple right H-comodules. Then H ~ @, FE(S;)™, with n; € N for all i € I. Since
H is co-Frobenius, E(S;) is finite dimensional for all i € I and hence it has finite
Loewy length. Observe that ¢((E(S;)) < L(E(S;)) < dim E(S;), where ¢(E(S;))
denotes the composition length of E(S;). Since the Loewy series commutes with
direct sums, we have:

Proposition 1.1. |[C| Proposition 3.1] H has finite coradical filtration if and only if
the set {€L(E(S;))}ier s bounded. O

Thus, it would be sufficient to show that the set {¢/(E(S;))}icr is bounded. Indeed,
we will prove the stronger statement: the set {¢/(E(S;))}ier is bounded.

Theorem 1.2. Let S € M be simple and d the largest dimension of a composition
factor of E(k). Then ¢(E(S)) < ddim E(k).

Proof. Let W be a composition factor of E(S). Then Hompy(E(S), E(W)) # 0.
Consider E(W) as a subcomodule of W ® E(k) and take a nonzero morphism f :
E(S) - W ® E(k). We know, see for example [Cl Theorem 5.2|, that E(S) has a
unique simple quotient, isomorphic to kg ® S**, where ¢ is the distinguished group-
like element of H. So kg ® S** is a composition factor of Im(f) and W @ E(k).
There is a composition factor U of E(k) such that kg ® S** is a composition factor
of W®U. Then dim S < dimW dimU < ddim W.

Set n = £(E(S)) and let W1, ..., W,, be the composition factors of E(S). We have

dim S dim E(k) = dim S ® E(k) > dim E(S) = Y dim W, > ndlrgs .
j=1

From here, n < ddim E(k). O

A small variation of the above arguments gives a bound for the length of S ® X,
with X € M of finite dimension, in terms of data not depending on S. Viewing
E(S) as a subcomodule of S ® E(k), we get another bound for F(S). It is less tight
than the previous one but the proof is simpler and generalizable to tensor categories,
as we will see in the next section.

Proposition 1.3. Let X, S € MY with S simple and dim X < oco. Let bx denote the
largest dimension of a composition factor of E(k)® X*. Then £(S® X) < bx dim X.

Proof. Let W be a composition factor of S ® X. Then Hompy (S ® X, E(W)) # 0.
Using the adjunction, Hompg (S, E(W) ® X*) # 0. Consider E(W) included in
W ® E(k). Since S is simple, it can be viewed as a subcomodule of W ® E(k) ® X*.
There is a composition factor U of E(k) ® X* such that S is a composition factor
of W®U. Then dim S < dim W dimU < bx dim W. Now proceed as at the end of
the previous proof. O

This new bound can be slightly improved as follows:
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Corollary 1.4. Let X, S € MY with S simple and dim X < oco. Let r be the number
of 1-dimensional composition factors of X. Then:

K(S(X)X) <byxydimX — T(bx — 1)

Proof. Set n = ¢(X). Let Xi,..., X, be the composition factors of X and assume
that X,,—r11,...,X, are 1-dimensional. Then X; is a composition factor of X* for
j=1,...,n. A composition series of X* gives rise to a series of F(k)® X* whose
factors are isomorphic to F(k) ® X7 for j =1,...,n. Each composition factor of
E(k) ® X7 is a composition factor of E(k) ® X*. Then bx; < bx. Finally,

((S®X)=) US®X;) =) HS®X;)+r<r+) by, dimX;
j=1 j=1 j=1

<bx(dimX —7r)+r.

For X,Y € M* of finite dimension, the previous result implies that

(Y ® X) < £(Y) (bx dim X — r(bx — 1)).

Corollary 1.5. Let S € MY be simple. Let b denote the largest dimension of a
composition factor of E(k) @ E(k)*. Assume that there are r composition factors of
E(k) of dimension 1. Then:

(1.1) U(E(S)) < bdim E(k) — r(b— 1) < bdim E(k) — 2(b — 1).

Proof. The first inequality is a consequence of Corollary [[L4l For the second one,
recall from the proof of Theorem that F(k) has a unique simple quotient, iso-
morphic to kg. Hence r > 2. g

Remark 1.6. Observe that if H is pointed, then ¢(E(S)) = ¢(E(k)) = dim E(k) for
every S € M simple. In this case, the bounds in Theorem and Corollary
are tight because d = b =1 and r = dim E(k). However, they are not so in general,
as the next example shows.

Assume that k contains a primitive 3rd root of unity q. Denote by H the dual Hopf
algebra of the Frobenius-Lusztig kernel wu,(sla(k)). There are 3 simple comodules:
Vo = k, Vi, and V5 of dimensions 1, 2, and 3 respectively. The comodule V5 is
injective, see, e.g., [Al page 158|. The injective hull of V; is V] ® Va. Its composition
factors are Vj and V; repeated twice each. Then ¢(E(V;)) = 4. The decomposition
of Vi ® E(V7) is Vo @ Vo @ E(k). Hence dim E(k) = 6. The composition factors of
E(k) are Vp and V; repeated twice each. Then d = r = 2. The bound in Theorem
gives 12 to approximate 4.

On the other hand, E(k)* ~ E(k) because the distinguished group-like element is
trivial in this example. We have the decomposition V; @ E(k) ~ Vo @& Vo @ E(V;) and
so {(Vi ® E(k)) =24 ¢(E(V1)). This also implies that V5 occurs as a composition
factor of E(k) ® E(k)*. Hence b = 3. The error of approximating ¢(E(V})) by
(V; ® E(k)) is 2. The bound in Corollary gives 14 to approximate 4.
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2. FINITENESS OF THE CORADICAL FILTRATION FOR FROBENIUS TENSOR
CATEGORIES

We show in this section that part of the arguments used above to prove that a
co-Frobenius Hopf algebra has finite coradical filtration works in the more general
setting of Frobenius tensor categories of subexponential growth. This allows one to
obtain the same result, for instance, for co-Frobenius co-quasi-Hopf algebras.

We refer the reader to [EQ] for terminology, basic notions and the results on tensor
categories needed in the sequel.

2.1. Artinian categories and the coradical filtration. An essentially small
abelian category € over k is called artinian if objects have finite length and Hom
spaces are finite dimensional. This amounts to that € is equivalent to the category
mC of finite dimensional right comodules over a coalgebra C over k (which is uniquely
determined up to an equivalence), see section on reconstruction theory in [EGNO]
and [T} Theorem 5.1]. Notice that the terminology used there for artinian is locally
finite.

Let € be an artinian category. For X € € denote, as before, by ¢(X) and £¢(X)
the length and Loewy length of X respectively. The category € admits a filtration
(Cp)n>0, called coradical filtration, where G, is the full subcategory consisting of
objects of Loewy length less or equal than n+ 1. Considering € as equivalent to m°,
we have that G, is equivalent to m", where C,, is the n-th member of the coradical
filtration of C.

2.2. Tensor categories of subexponential growth. Assume that k is algebrai-
cally closed. Here, by a tensor category we mean a rigid monoidal artinian category
over k with unit object 1, in which the tensor product is bilinear on morphisms,
and End(1) = k. The following definition is essentially due to Deligne, see [Dell
Proposition 0.5].

Definition 2.1. A tensor category C has subexponential growth if for any X € C
there exists a constant K > 1 such that £(X®") < K™ for large enough n. The
infimum of such K is called the spectral radius of X and denoted by p(X).

Remark 2.2. 1. If C =m! for a (co-quasi-) Hopf algebra H, then it is clear that C
has subexponential growth, and p(X) < dim X.

2. More generally, assume that C admits a dimension function, i.e., a function
X — Dim(X) € Ry on isomorphism classes of objects, satisfying the following
properties: Dim(1) = 1, Dim(X™*) = Dim(X), Dim(Z) = Dim(X) + Dim(Y") for an
exact sequence 0 - X — Z — Y — 0, and Dim(X ® Y) = Dim(X)Dim(Y"). Then
C has subexponential growth, and p(X) < Dim(X). Indeed, since for X # 0, the
object X ® X* contains 1, we see that Dim(X) > 1. The additivity of Dim gives
¢(X) < Dim(X), which implies the statement.

3. Let € be a tensor category. Suppose that its Grothendieck ring admits a
unital complex matrix representation 7 such that m(X) is a matrix of size m with
nonnegative real entries for any X € C (e.g., this holds if € has a module category

IThis means that the isomorphism classes of objects form a set.
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M with finitely many simple objects). Then € has subexponential growth. Indeed,
we have

(XY < [XOn @ X*On 1] < %tr ((X)" (X)),

The latter grows exponentially with n since so do the matrix elements of 7(X )™ and
m(X*)". Here [X®" @ X*®" : 1] denotes the multiplicity of 1 in a composition series
of X®n @ X*on,

4. There exist tensor categories which do not have subexponential growth, e.g., the
categories Rep(S;), t € C, obtained by extrapolating of the representation categories
of the symmetric groups Sy, defined by Deligne in [De2].

2.3. Frobenius tensor categories. The following definition is inspired by the pre-
vious considerations on the category of finite dimensional comodules over a co-
Frobenius Hopf algebra, see Theorem [I1

Definition 2.3. A tensor category € is called Frobenius if each simple object has
an injective hull. Equivalently, € has injective hulls.

Remark 2.4. It is known, see [EOL Proposition 2.3], that duals of projective objects
in a tensor category are injective, and vice versa. Since X = *(X*) for any object
X, a tensor category is Frobenius if and only if it has projective covers.

Semisimple tensor categories are Frobenius. In particular, Deligne’s tensor cate-
gory Rep(St) is Frobenius for ¢ ¢ Z>(. Easy examples of Frobenius tensor categories
that do not arise from m* for a (co-quasi-) Hopf algebra H can be constructed by
tensoring m! with a fusion category of irrational dimension.

As before, for X € €, let F(X) denote the injective hull of X. Let {S;};cr be a
full set of representatives of the simple objects in €. Given X, S € € with S simple,
[X : S] stands for the number of occurrences of S in a composition series of X.
Notice that [X : S] = dimHom(X, E(S)) and [X : S] > dim Hom(S, X).

The next result is a generalization of Theorem [[.21land Corollary [[L5 with a weaker
bound on the length.

Theorem 2.5. The coradical filtration of a Frobenius tensor category C of subexpo-
nential growth is finite. More precisely, its Loewy length does not exceed

D 1B : S (S @ E(1) @ SF).

i€l
We need several preliminary results to establish Theorem
Lemma 2.6. Let X, S € C with S simple. Then [S® X : S] < p(X).
Proof. Write m =[S ® X : S]. Clearly, m" < [S ® X®" : S] for any r > 1. Thus,
m” < dimHom(S ® X®", E(S)) = dim Hom(X®",*S ® E(S)) < Kg£(X®")
for some constant Kg depending only on S. This implies that m < p(X). O
Proposition 2.7. Let S be a simple object of C. Then {(S®X) < p(XQE(1)®@X*).
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Proof. Let W be a composition factor of S ® X. Then
[S® X : W] =dimHom(S ® X, E(W)) = dimHom(S, E(W) ® X*).

Hence [S® X : W] < dimHom(S, W ® E(1)® X*), as E(W) is a direct summand of
W ® E(1). Let Wy, ..., W, be the different composition factors of S ® X. We have
S@X@EBE(1L)®@X*:S8] =) [W;@E(1)®X*:S|[S® X : W)

j=1

> Z dim Hom (S, W; ® E(1) ® X™)
j=1

> Z dim Hom(S ® X, E(W;))

j=1
j=1
=/{(S®X).
By Lemma 2.6 /(S ® X) < p(X ® E(1) ® X*), as desired. O

Corollary 2.8. For any V € C simple,

(BW) < 3B : S o5 B(1) & 57),
el
Proof. One has {(E(V)) <LV @ E(1)) = > ,;[E(1) : SiJ{(V ® S;), and the latter
is bounded by >, ;[E(1) : Si] p(S; ® E(1) ® S}) in view of Proposition 27l O

Now Theorem follows from the fact that the length of the coradical filtration
of € is the maximal Loewy length of an indecomposable injective object.

Remark 2.9. By Proposition 2.7 any Frobenius tensor category of subexponential
growth satisfies /(S ® X) < K(X), namely, K(X) = p(X ® E(1) ® X*). Conversely,
any Frobenius tensor category € with this property is necessarily of subexponential
growth. For, assume that for each X, S € € with S simple, there is K(X) such that
(S ® X) < K(X). This implies that for Y € € arbitrary, /(Y ® X) < {(Y)K(X).
Then ((X®") < K(X)" for all n > 1. Since Deligne’s tensor category Rep(S;) has
not subexponential growth, there is no bound here for (S ® X) depending only on
X and not on S (this is also easy to see directly, e.g., when X is the analog of the
permutation representation of Sy,).

Remark 2.10. Suppose that € has a dimension function Dim. Theorem [L2] Propo-
sition [L3 and Corollaries L4l and [LH hold in € with exactly the same proofs. The role
of the 1-dimensional comodules is played by the invertible objects. The existence and
invertibility of the distinguished group-like element g is shown in [EO| 2.8|. Notice
that the finiteness assumption there on the isomorphism classes of simple objects is
not used for this. The key point is that duals of projective objects are projective. For
S € € simple, that F(S) has a unique simple quotient, isomorphic to kg ® S**, follow
from Lemmata 2.9 and 2.10 and Corollary 2.11 in [EO]. With notation as there, the



CO-FROBENIUS HOPF ALGEBRAS 9

injective hull E; of the simple L; is isomorphic to (P;)* =~ Pp+;. By Lemma 2.10,
PD(*@') ~ Pu; ® Ly. By Lemma 2.9 and Corollary 2.11, P ~ Ly ®@ Ppr ® L;. Then
E;~L;® P ® L; ® Ly ~ Ly ® Pj«. From here, the head of E; is isomorphic to
Ly ® L.

3. A FAMILY OF CO-FROBENIUS HOPF ALGEBRAS NOT OF FINITE TYPE OVER
THE HOPF SOCLE

Before constructing the family of Hopf algebras described in the title, we present
an example that tackles directly the problem of the finiteness over the Hopf socle.

3.1. An initial example. We assume in this subsection that chark = 0. Consider
the Hopf algebra A generated by g, h subject to the relations ¢> = 1 and gh = —hg,
where g is group-like and h is (g, 1)-primitive. The example will be realized as a
Hopf subalgebra of the finite dual Hopf algebra A°.

For 2z € Z let J, denote the ideal generated by h? — z. The algebra A, = A/J, is
isomorphic to My (k) when z # 0. Writing g, h for the class of g, h respectively, the
isomorphism is defined by:

(3.2) g»—><(1)_01>, FL#—)(S%)

Let S, be the unique (up to isomorphism) simple left A,-module. It is also simple
when viewed as a left A-module via the canonical projection w, : A — A,. For
z = 0 the algebra Aj is just Sweedler Hopf algebra H4 and my is a Hopf algebra
morphism. Recall that H4 has two simple modules: k, and k, given by the character
x: Hy — k,g— —1,h — 0. Let E(k) and E(k,) denote the injective hulls (as
Hjy-modules) of k and k, respectively. These four modules are (up to isomorphism)
all the indecomposable left modules over Hy.

Consider now the category Rep(A) of finite dimensional left A-modules. Let €
be the full subcategory of Rep(A) consisting of objects V' on which h? acts by a
semisimple linear operator with integer eigenvalues. Write V' = @&,V (z;), where
zi€Zand V(z) ={v eV :h? v=zv}forali=1,.,m. Since h? is central,
V(z;) is an A-submodule of V. If z; # 0, then the A-action on V (z;) factors through
A, and V(z;) =2 S]' as an A-module for some n; > 1. If z; = 0, then the A-action
on V(0) factors through Hy and V'(0) is isomorphic to a finite direct sum of copies
of k,ky, E(k), and E(k,). Conversely, h? acts by a semisimple linear operator with
integer eigenvalues on any object of Rep(A) isomorphic to a finite direct sum of
copies of k,ky, F(k), E(k, ), and S,,"s. This totally describes the objects of €.

Theorem 3.1. The category C is a tensor subcategory of Rep(A). It is tensor equiv-
alent to m* for a co-Frobenius Hopf algebra H which is not of finite type over its
Hopf socle.

Proof. That € is an abelian subcategory of Rep(A) follows from the assumption on
the action of k2. By the same reason, F(k) is injective in €, and it is the injective hull
of k. Given V, W € @, since h? is primitive, it acts as a semisimple linear operator on
V @ W. Notice that h? - (V(2) @ W(2")) C (V@ W)(z + 2') for 2,2’ € Z. Moreover,
if V.=a&",V(z), then V* = @™, V*(—2;) because §(h?) = —h?. This shows that
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C is a tensor subcategory of Rep(A). The forgetful functor U : € — Veck is a fiber
functor. By reconstruction theory, there is a tensor equivalence F' from € to m* for
some Hopf algebra H. This Hopf algebra must be co-Frobenius because F(E(k)) has
finite length.

Finally, we prove that H is not of finite type over its Hopf socle Hyoc. By the form
of the objects in €, the only (up to isomorphism) simple objects are k, k,, and S, for
z € Z°. Here Z° = Z\{0}. It is not difficult to check directly that the multiplication
rules for them are the following:

Hy if 2/ = —2z,

SQ

k, ® ky, ~ Kk, ky®S,~8,~5, 0k, SZ®SZ/2{
z+2z'

otherwise.

Then, Hgoe has only two simple comodules and hence it is finite dimensional. Since
H is infinite dimensional, it cannot be of finite type over Hgqc. O

Proposition 3.2. The Hopf algebra H of the previous theorem is presented by gen-
erators u, z,a*' and defining relations:

(3.3) u? = 1, z? = 0, ur= —zu, atlaT! = 1, wa =au, ar = za.

Its comultiplication, counit, and antipode are given by:

Aw)=u®u, A)=uz+zo1l, A(e™)=d"'®ad"" +zuat! @ zat?,
e(u) =1, e(z) =0, e(a*h) =1,
8(u) = u, 8(x) = zu, 8(at!) = aT!

Proof. Each object X € € is naturally a finite dimensional right A%-comodule. Let
cf(X) denote the coefficient space of X. Then H := )y ccf(X) is a Hopf sub-
algebra of AY because € is a tensor subcategory of Rep(A). The category m!l is
tensor equivalent to €. By the form of the objects in C, it suffices to consider
the family ¥ = {k,k,, E(k), E(k,)} U {S, : z € Z°} to reconstruct H, that is,
H =3 ycycf(X). To describe the elements of H, recall that cf(X) is isomorphic
to (A/ Ann(X))*, as a coalgebra, viewing (A/ Ann(X))* inside A° through the dual
map of the canonical projection of A onto A/ Ann(X).

The set {g'h/ : 0 < i < 1,0 < j} is a basis of A. For each z € Z we consider A%
inside A? through 7% : A% — A°. Let u,z € Hj be defined by (u,g'h’) = (—1);0
and (z,g'h’) = (—1)%5;1, with 0 < i,j < 1. The assignment u — g,z + h gives
a Hopf algebra isomorphism between H} and Hy. View u,x inside A° through -
Since it is a Hopf algebra morphism, we obtain the given relations and formulae for

the comulplication, counit, and antipode of u and x.

We now discuss the case z # 0. Recall from (3.2]) that A, ~ My(k). Forr,s = 1,2
let ¢(2)rs be the matrix with 1 in the entry (r,s) and zero elsewhere. Under the
previous isomorphism,

1 - 1 - - 1 - 1 -

C(Z)n —> 5(1+§), C(Z)12 —> —(h—th), 6(2)21 — —(B—gh), 0(2)22 —> 5(1—@)
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Let {C(z)rs}%s:l C My (k)* be the dual basis of the above one. Then,

2
A(C(2)rs) =Y C2)k @ C(2)ks,  e(C2)rs) = rs.

k=1
These elements can be considered inside AY as follows:
.. i .. i—1
(C(2)11, ') = 2247510, (C(2)12,9'H) = 272 oy,
(C(2)21, 9" W) = (=1)'2"7 3y 1, (C(2)22, g'W) = (=1)'226y;) 0.

Here [j] stands for the class of j modulo 2. The following relations can be easily
checked by direct computation:

C(2)22 = uC(z)11 = C(2)11u, C(2)91 = z2C(2)11 = 2C(2) 112,
C(2)12 = 2uC(2)11 = C(z)nzu, Cz+2)11=C(2)nC()n if 2/ # —2,
C(2)11C(—2)11 =1, 8(C(2)11) = C(—2)11-
Writing @ = C(1)11, we obtain C(—1)1; = a~! and
C(2)11 = a®, C(2)12 = zua®, C(z)21 = zza®, C(z)22 = ua® for all z € Z°.
Also, ua = au and za = ax. The comultiplication of a and a~! read as
A(a) = a® a+ rua ® za, Al =ar'®a! —zua ! @ za™t,

and the antipode 8(a™') = aT!. The previous relations show that H equals the
subalgebra generated by u,z, and a*!.

We have H = Hy + (D .cz0 A}). The second sum is direct since it consists of
simple subcoalgebras. Moreover, Hy N (Y, 70 A%) = 0 because otherwise either k
or ku would be contained in some A%, which is not possible. This, together with
the previous relations, implies that the set {z/u‘a® : 0 < i,j < 1, z € Z} is a basis
of H. From here, it easily follows that H is presented by u,z and a*! and defining
relations (3.3]). Notice that H ~ H4 ® kZ as algebras. O

In the next subsections we construct a large family of infinite dimensional co-
Frobenius Hopf algebras that, apart from producing other examples to the above
question, are interesting in its own for several reasons. This family is completely
new and it does not fit in any of the general approaches to construct examples of
co-Frobenius Hopf algebras, [AD, Section 3] and [BDGN| Section 4]. It provides
examples of Hopf algebras generated by the coradical, a property stressed in [AC|
Theorem 1.3]. We will adopt a point of view different to the above one, though
related, that is susceptible of generalizations. Our construction will be better under-
stood from the analysis of the Hopf algebra dual to a lifting of a quantum line.

3.2. The dual of a lifting of a quantum line. Let G be a finite abelian group
and G its group of characters. Suppose that chark { |G|. Take 1 # g € G, x € G
and o € k. Let w = x(g) and n = ordw. We assume that n > 1 and

(3.4) a#0 = x"=1and g" # 1.

Let G act on the polynomial algebra k[z| by 0.2 = x(0)z, 0 € G. The quotient of the
smash product k[z]#kG by the ideal generated by =™ — a(1 — ¢") is a Hopf algebra,
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denoted by H(G, g, X, @); it has dimension |G|n and basis {270 : 0 < j < n,o € G}.
The elements of G are group-like and « € Py 1(H (G, g, x, ). Defined in [AS] Section
5], it is a lifting of a quantum line in the sense of [AS, Section 4].

n

If k is algebraically closed we can always take o € {0,1} replacing = by a /g
for @ # 0. When G is cyclic of order n generated by g and o = 0 we get Taft Hopf
algebra T, (w). The case @« = 1 and G cyclic of order pn was constructed in [RI)
Section 2| to give an example of noncommutative noncocommutative Hopf algebra
whose Jacobson radical is not a Hopf ideal.

Put K = Kery, p = |K|, and m = ord x; n divides m and if a # 0, then m = n
by assumption. Choose u € G such that x(u) = 7, with 1 a primitive m-th root of
unity. The quotient group G/K is cyclic of order m and it is generated by the class
of u. We fix now a decomposition C,, @ --- @ Cp, of K as a direct sum of cyclic
groups of orders py,...,ps. Fori =1,...,s let a; € K denote a generator of the
subgroup Cj,. Every element of G may be uniquely expressed as uaf’...a% with
0<t<mandO0<e <p;. Weabbreviate (e1,...,es) to e, ai*...as* to a, and
so on. In particular, g = u%t{l alt =wal. When a # 0, we can take u = g so
that v = 1 and f = 0. We have w = x(g) = x(uaf) = x(u)? = n?. We also write
g" =a’. Clearly, p=|K|=p1...ps and |G| = pm. Write d; = p/p;. Take £ € k a
primitive |G|-th root of unity such that &P = 7.

Define U, X, A; : H(G, g, x,a) — k by

(U, x7utaft ... a%) = 1",

0t s\ —
(X, 2’uaf' ... a%*) = 61,
(Aj,aiata . ar) = ghOtrmedg,

Let now D = D(G, g, x, @) be the dual Hopf algebra of H(G, g, x,a). For 0 <k <n
recall that the w-factorial and w-binomial coefficients are given by:

k—1 k
_ W _ ; Yy (7”‘#
(K)o = ;) : (k) jl;[l(J)w <k>w CINCETS

Proposition 3.3. The algebra D is generated by U, X and A;, i =1,...,s, subject
to the relations:

Uum =1, X" =0, AP =yl UX =wXU,
UA; = AU, AX =ehlGtmflx A, AA, = AL A;.
Its comultiplication, counit, and antipode are given by U € G(D), X € Py 1(D) and

(3.5)

n—1
(36)  AA) = Ase di+a1-€0m) 3 oo XU A 0 XEA,
k:1 w W

(3.7)  e(A) =1,  8(4;)=Artymh,
We stress again that m =n, v =1 and f = 0 when o # 0.

Proof. Throughout we shall use that {z7u’a®} is a basis of H(G, g, x,a). We divide
the proof into several steps.
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Step 1. To verify the relations in (3.5) one needs the formula

J )
A(zlo) = Z <i:> 7 F ke @ aFo.

k=0

The computations are straightforward; along the way, one establishes the identities:

U, iuta®) = nt 5]0, this implies U™ =
(X7 2uta®y = ()b j; this implies X™ = 0;
<Af;, x]utae> §e;d"(0it+me")5j7o; this implies A = Ui,

Step 2. Consider the subalgebra R of D generated by U, X and A4;,i=1,...,s
The set

(3.8) (XTUYAD A% 0< s <n,0<t <m,0<¢ <p;}

spans R and has |G|n elements. We will show that it is also linearly independent
and then R = D.

We claim that

(3.9) (XU A 2t <H§dze (0 t+m@z>) ()b -
i=1
For this, we easily check that (Ael, puta®) = 8;0 15, gdiei(Oittmei) Thep

J .
<leUt,Ae,7xjutae> _ Z (J) <Xj,Ut,7xj_kuvkafkutaeﬂA / xkutae>
w

die;(9¢t+me¢)> <Xj/Ut/ xjutae>
b

I
N
1K
o
s

(Hé-d,e (it+me; > Z (2) <Xj/7xj—ku'ykafkutae><Ut’ xkutae>

k=0
= (Hsdiei”it*meﬂ)nw (X7 e
1=1

and ([3.9)) follows. To show linear independence of (B.8]), consider the following equa-
tion, where the \’s are scalars and the limits in the sum are understood:

-/ / /
§ : )‘j/ﬂf’,e’Xj Ut A® =0
jl7t/7e/

Take j,t and e = (eq, ..., es) arbitraries and evaluate the previous sum at the element

m—1p1—1 ps—1
Gl 2o 2 - zn—ﬂ(Hs—dreﬂmkrww)xjulafl

=0 k1=0 ks= r=1
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we obtain
_ Z (.]/)'w Sor s Z i Tnzl " —t)l f[ é-fdieieil Z f[ é—die;ﬂil s
- (])!w ],7_] m 77 jlvtlvellv"'vels
5 v 1=0 i=1 &l Nim1

pi—1

X ﬁ <l >, §dim(e;ei)ki>H = Ajte-
=1 P

Step 3. Let R be the algebra presented by generators U, X and 4;,i = 1,...,s, with
defining relations ([B.5]). By Steps [Il and 2] we have a surjective algebra morphism
@ : R — D. The set

(XIU'AT AT [ 0< 7 <n, 0<t <m, 0< ¢} <pj}

spans R and has |G|n elements. Indeed, the span of this set is a left ideal of R and
contains 1. Therefore, ¢ is an isomorphism.

We now proceed to establish the formulae for the comultiplication, counit, and
antipode. The comultiplication at U and X determines the values of the counit and
antipode at them, so we can skip their computations.

Step 4. A(U)=U®U.

’

(A, (27u'a®) ® (27w’ a®)) = (U, (z7ua®) (27 u" a®)) = 07 (U, 2717 u! T 0o te').

Let [ + j'] be the residue class of j + j' modulo n. We distinguish three cases:

tj,(U, aw[j-i—j’}(l _ gn)ut+t’ae+e’> —0.

tj,(U, Oc(l . gn)ut+t’ae+e’>

jH+i>n= ntj,(U, xj+jlut+t,ae+e,> =

. . -/ Y / /
j +]/ =n = nt] (U, x]Jr] ut+t ae+e > —

S 3

t+t

I
Q

7 (=) = 0.
j +]l <n= nt] <U, xj-i—j ut+t ae+e > _ nt] 77t+t 5j+j’,0 _ 77t+t 5]'705]./70.
On the other hand,

(U U, (xjutae) & (xj/ut/ae/» = (U, xjutae>(U, xj/ut/ae/> = nt+t/5j,06j/,0.

Step 5. A(X)=UX+X®L

Proceeding as in Step 4 one can easily check that
n'if (4,5) = (0,1),
it (]uyl) = (170)7

0 otherwise.

—(U®X+X o1, (2ula®) @ (a7 u a)).

/

(A(X), (x7ula®) ® (acjlut,ae ) =
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Step 6. A(A4;) is given by (B.0).
We start evaluating the left-hand side of (3.0) at a basis element:
(A(Ai),xjutae ® leutlael> = (A, (x]utae)(xj,utlae,» = ntj,(A AR and e+e,>.
Again, we distinguish the three possible cases for j + j':
j+i>n= ntj/<Ai’xj+j’ut+t/ae+e/> _ ntj/<Ai,ax[j+j/}(1 _ gn)ut+t’ae+e’> —0.
j+j <n= ntj’<Ai’1.j+j’ut+t’ae+e’> _ ntj’gdi(ﬁi(t+t’)+m(ei+e;))5j705j/70.
j+j =n= ntj’<Ai’xj+j’ut+t’ae+e’> _ ntj’<Ai7a(1 _ gn)ut+t’ae+e’>
_ ntj’a<<Ai ut e ey — (4, ut+t’a€+e+e’>)
— gt gliOi(tHt ) rmeited) (] _ gdimbiy

= /mt] é‘di (0 (t+t")+m(eite;))

We wrote pu = a(1 — £4%™) for short. We next evaluate the right-hand side of (3.6))
at the same basis element:

!

Ai®A; +,uz X" FURA; @ XP A, (ula®) @ (27 ul o)) =

= <Ai,x3u a ><A e ut a®)

—{—,uz (X" FUR Ay 29 uta®) (XFE Ay 29 ut o)

B 4, (0;t+me;) ¢di (0:t' +me’

— 5d2(91t+ 7,)gd%(elt + Z)(S ) O(Sj’,O
Ty Z gd i (0; t—l—me,) tk (n B k)!w(sj,nfkfdi(gnl-i_me;)(k)!w(sj’,k
0 ifj+5 >n

= { gttt ) tmleited) 5, 050 o if 545 <n

Iuntjlédi(Gi(t+t')+m(ei+e;)) if j +j, —-n
Finally, we obtain the formulae ([B7) of the counit and antipode for A;. Clearly,
e(A;) = 1. Since ALG‘ = Afidim = U%4m = 1 we have ALGFI = AfFlUm_ei. Then
(8(Ay), wluta®) = (A, u~ta=¢)d; o = £~ 40ittmeds, | — (ALG‘_l,xjutae>.
O

3.3. A new family of co-Frobenius Hopf algebras. Our main construction is
an infinite version of D(G, g, x, a) obtained by removing the relation A" = U% in
(B3) and replacing £%0+mfi) in A; X = ¢4@+mfi) X A; by an arbitrary ¢; € k*,
and ¢4%™ in ([@0) by ¢ Indeed, D(G,g, x, ) fits into the cleft exact sequence

k%H(Cn’L7g7X7O) _>D(G797X7a) —)ﬂ((Cpl@@Cps) —k
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The proposed changes mean replacing each C),, by Z in the cokernel and lifting the
dual cocycle k(Cp, & -+ @ Cp,) = H(Chy,9,x,0) ® H(Cpy,g,x,0) involved in the
comultiplication. Finite dimensionality is lost but not the co-Frobenius property
because the Hopf algebra is an extension of a finite dimensional by a cosemisim-
ple. Finiteness over the Hopf socle depends on the parameters ¢;, as we will see in
Theorem [B.71

Let 1 # n,m € N be such that n divides m. Assume that k contains a primitive
n-th root of unity w. Let I be a non-empty set and take ¢; € k™ for each i € I. Pick
now « € k. Consider the k-algebra D = D(m,w, (¢;)icr, &) presented by generators

u,x,a (i € T) and defining relations

(3.10) um =1, 2" =0, alaf!t =1, uac = wzu,
ua; = a;u, ;T = q; Ty, a;a; = A;jGq, 1,] € I.

Fix a total order < in I. For r > 1 set Il = {(i1,...,4,) € I" 1 iy < --- < i,} and
10 = 79 = {0}. Given F = (iy,...,i,) € [l and E = (ey,...,e,) € Z" we write
(3.11) af = agl...ag’, ¢k = a4 ad =1, g = 1.

Thus ¢ = ¢ ... ¢!, Put Z° = Z\{0} and (Z")° = (Z°)". Let T' = {J,5, I x
(Z")°. Let Cy, = (u) be a cyclic group of order m and let x € Cy, given by x(u) = w.
Then ZY) acts on H(Cyn,u,x,0) by a; -z = ¢z, a; - u = u, i € I; clearly, D ~
H(Cy,u, x, 0)#kZU) . Hence the set

(3.12) B={z%u'af:0<s<n,0<t<m, (F,E)eTU{(0,0)}}

is a basis of D. Alternatively, this can be shown by applying the Diamond Lemma.

Suppose that m = n when o # 0; compare with ([34]). If k is algebraically closed,
for our purposes, we can take « in the set {0, 1}.

Theorem 3.4. The algebra D bears a Hopf algebra structure uniquely defined by
Au) =u® u, Alz)=u®@zr+zr®1,

n—1
1
Al =o' @ ot + a(1 — g™ = "Rkt @ aFatt,
(3.13) @7) = ‘ ( ' )kzl (k) (n — k), i ‘
e(u) =1, e(z) =0, e(afh) =1,
S(u) = u™ !, 8(x) = —u™ ', 8(af!) = af, iel.

We split the proof into three steps.

Step 1. The definitions above give rise to algebra morphisms A : D - D ® D,
€:D — k and to an algebra antimorphism 8§ : D — D.

Proof. We must verify that these maps respect the relations (3.I0) defining D. We
leave to the reader the verification for € and §. The relations «™ = 1, 2" = 0, and
ur = wzu are respected by A, € and 8, as a particular case of the Hopf algebras
defined in the previous section. The computation for the relations involving the a;’s
is more involved:
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n—1
1
Aai)A(a;h) = <az ® a; +a(l — ¢ GO T a,>
k=1 W w
1 1 -n = 1 n—I
X az ®az +a(1_qz ) (l)' (’I’L—l)' Rxa :&

The tensorand 2" % @ ¥ in the first expression multiplies 2" ! ® 2! in the second

expression. This product is always zero when k =n — 1. For k£ < n — 1 the product

xF2! is nonzero only for I = 1,...,n — (k+1). But 2" *z"~! = 0 for these values of
[. Hence the product of the two big sums is zero. Then

n—1
1
* = ® a;a + (X(l — ql ) Z Wg? kl'n kukal ® qz DU a;a 1
k=1 ’
n—1
all — g Z :U”_kukaZ '@ afaa;t = A(1).
k:l L
Similarly, A(ai_l)A(ai) = A(1). Now
n—1 1
A(u)A(al) = ua;  ua; + 04(1 —dq; ) l; m’u,xn_kukai & ’U/I'kai
n—1 1
= a;u ® a;u+ a(l —q}) mwn kan—kuk g @ whaFau
k=1
= A(a;)A(u);
Afai)A(z) =
n—1 1
= <al ®a; +a(l — g} Z —'xn_kukai ® xkai> (uRr+x®1)
k:l k), (n — k)l
= a;u ® a;x + (JL,OU@@Z
all — g Z ( "kyFau @ aFaz + 2" FuFar @ © al)
k:l o
n—1 gi
= au® a;x + a;x ® a; + ol —q}') 2 = 1)!w(n2_ = 1)!wxn Bk @ oa;
n—1 qwk
+a(l—q " R @ 2
( Z)kzzz(k)!w(n—k)!w ’
= a;u R a;x + a;x K a;
n—1 1
a(l — n—ktl ko ko _
qa %Z( N )!w—i_(k—l)!w(n—k-i-l)!w)x ua;,Qx"a; = M

k=2
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Observe that
wk N 1 B 1 N wnkarl
K)lon—k)lw  (k=Dln—k+1l,  F)lun—Fkl, (F-Duh—k+1)L
Then
= qua; Q@ xa; + gira; D a;
= 1 wn A k+1, k k
1— g n— . .
Fall—a )qszQ <(l<:)!w(n oL T DL k+ 1)!w>x WO
n—1
_q,ua,®xa,+q,ma,®al+a1—ql q,Z - gnkH ka ®x a;
k:2 o
= Wk k, k+1 k1
nN .. n— . .
+o(l —q)a kz_l DR ®x " ay
= q;ua; Q ra; + gGra; Q a;
n—1 1
+ qia(1 —q") (2" ke @ 2P a; + ur M uFa; @ 2Fay)
1 7 kZ:l (/{;)!w(n - k)!w 1 1 1 1
n—1
=¢u@r+r®1l) <a2®al—|—a 1—4q}) Z x"kukai@)xkai)
k:l o
= ¢;A(z)A(a;).
Finally,
n—1
Aa;)A(aj) = (a, ®a; +a(l —q) Z x"*kukai ® xkai>
k:l 2
n—1
<a] ®aj +a(l —qj) Z =) m”_lulaj ® mlaj)
=1
- n—1
_alaj®alaj+a1—q] n—l » qln L= lulaa]®qlxaza]
=1
n—1 1
k, k
+ 04(1 —dq; ) mx" U a;a; ® x a;Q;
k=1

n—1

= a;aj ® a;Q + Oé(l - (QZQJ
l 1
= Alay)A(ar).

O: The product of the two big sums is 0 as in the proof of A(a;)A(a;!)
0: A(a;)A(a;) equals the upper line with subindexes 4, j interchanged.

Jw(n =Dl

1 11

" uaa; ® xlaiaj

A(1).

0
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The second step is to give a formula for A evaluated at any basis element of D,
needed in Step 3 to check the coassociativity. Recall the notation af in ([BII).

Step 2. For s € N, F = (iy,...,i,) € Il and E = (e1,...,e,) € Z", we have

S
A(msutag) Z <?> xlusthag ® xsflutag
=0 w
(3.14) o 1
+ () a(l _an " k—l—suk—I—t E®xkuta

(s)wal F )k:;q (K)lw(n —Ek+ ), F

As a consequence, A(a%) = ag ® afj: if and only if either @ = 0 or q?;E =1

Proof. Since A is multiplicative and u* € G(D) commutes with ag, it is enough to
establish the formula for x*® ag. We proceed by induction on s, r and the exponents in
E. Suppose that s = 0. We leave the case r = 1 for the reader. Let F € It E ¢
7'+l Set F' = (i1,...,i,) and E' = (eq,...,e,). We check the case e,1 > 0, the
other one being analogous.

A(af) = Alag)A(a )

lr4+1
n—1 1
E’ E’ E' k, k FE k_E'
= (aF/ ®GF/ +C¥(1 - q%/ )Z m%’n U Qg X aF,>
k=1 """ i
n—1 1
ert1 ert1 nert1 Llaf ' @ glaSrtt
x (az Heal tal-alM) mro oot Y 8T ,TH)
=1
. n—1 1
E E ner E' 1 er [ er
=ap®@ap+a(l—g ) Z mapx" ua; T ® atx a;" "
=1 ¢ v
n—1 1
+o(l =g — "Mk @ akak
— (K)lw(n — k),
n—1 q
:aF®aF+oz1—ani’"l“ Z 5/—l 2" lal @ 2lak
=
n—1 1
+a(l—g¥)y —————— " Rl @ ko
—1 (k)lw(n — k)L,
n—1
=aZ@dl +a(l - }F Z Bl "kl @ 2kl
1 L

O: The product of the two big sums is 0 as in the proof of A(a;)A(a; ') = A(1).
Assume finally that the statement is proved for s > 0. Then

A(wsﬂag) = A(w)A(wsag)

s s
S _ S _ _
— <l> wlxlus l+1 E E® 8 H—lag + < > xl—l—lus lag ® z° lag
=0 w 0 w
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n—1
1
+ (9)wa(l — %) >
] _ ]
Nt (K)lw(n —k+ ),
% (wn kets pn—k+s, k+1 E®xk+1 g_i_xnkarerl ka ®xkag>

1,E 1 E 1 E . E
uap @ 25 lap + 2° ek ® af

s,
S S _ _

anf nohts kts, k+1 E o k1l E
+ (8)lya(l — g% < " TFTN T e R @ a>
( )UJ ( F ) kzzs;rl (k:)'w(n—k:—{—s) F F
n—1 1
+ (), a(l — an ( xnfk+s+1 ka ®xkaE>
( )w ( F ) ng;Q (k‘)'w(n—k:—i—s)'w F

s+1 s+ 1
= Z ( l ) st E @ o GE | (s)a(l — ¢bF)
1=0 w

= W k+st+1 1 —_ i
X ks
k—s+2<<k —DWo(n—k+s+ 1)k " (k)lw(n—k+ s)!w>x ap ® a*af
+1
g SZ <s + 1> syl E @ g1l E
l
=0 w
n—1 1
Dla(l—g3” n—k+s+1,k kB
+(s+D)la(l—gi") > o — kst DL° aE@akal
k=s+2
0O: We have
W k+s+1 1 (s 41),

- Dm—Ftst Db Bom—Ftsy (o —Fk+s+ 1L

Step 3. The maps A, ¢ and 8 defined in ([BI3)) equip D with a Hopf algebra structure.

Proof. We first prove that (D, A, ¢) is a coalgebra. Since A and e are algebra mor-
phisms it suffices to check the coassociativity and counit axioms for the generators
u, T, a L. Clearly, it holds for u,z because the algebra they generate is a particular
case of the Hopf algebras discussed in the previous subsection. So, we only must
check them for a For a = 0 the verification is straightforward. We assume that

a # 0. Using (Bﬂl), we compute:
(A ®id)A(a;) = Ala;) ® a; + a1 Z —A(z" M) @ e

w UJ

n—1

— 1
:ai®ai®ai+a(1—ql)g WQT
=1

"lyta; @ 2ta; ® a;
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n—1n—k
n 1 n—=k . e
(1) +a(1_Qi)kle:m< ] >xlu la; ® 2"k a; @ oFa;
=11=0 w
(2)

1
1 o qz 2 Z Z 2n — k)' 2n—U—kuU+kai®xvukai®xkai
k=1v=n— k-‘,—l o w

Consider the sum in (). Take out the part corresponding to I = 0. Observe now that
[ takes all values from 1 to n—1 when k runs. For [ = j the tensorand accompanying
2?u"Ia; in () is:

n—j
n 1 n—k n—k—j k k
k=1 w

Set | = v+ k—nin @). Notice that u® = 1 and u’* = u"H=kF = 4! because
we are assuming m = n for a # 0. We continue our computation by making these
substitutions:

=a;®a; ®a; +a(l—q") Z x”*kukai®xka,~®ai
— w
n—1 -
+a(l —q) 2 =) a; @ 2" *uFa; © aFa;

n—1 n—I

(3) +ao(l —q;) 2.2 m <n ; k>wxlu"_lai ® 2" * ke @ 2Fay

n—1k—1 1
(4) +(a(1 - qy)):l 2. DR RN 2" la; @ 2" ka0 2Fa;.

In @) put t =n — . In (@) observe that [ takes all values from 1 to n — 2 when k
runs and for [ = j the tensorand accompanying z" 7u’a; is:
n—2

1 n—k+j, k k
E ; — ua; Qra;.
W Bl =k 4 jlu(n = )k ' '

Making these two substitutions we have:

=a;®a; ®a; +a(l —q') Z Ay = "M @ aba; @ ay
k;: UJ W
n—1
+a(l—¢")y  —————a; @ 2" Fua; @ 2,
! P (k)lw(n — k), ’ ’
n—1 t 1 n—k
(5) +a(l —g') Z W (n B t) 2" uta; @ 2t Fuka; @ aba;
[ o '
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n—1 n—1
(l)"" n—l1 1 n—k+1 k k
R E::; SR Dl DL, T e

In (@) put [ = ¢ — k. We obtain:

n—1
=a;®a; ®a; +a(l—q) Z al®x" kuka; @ 2Fa;
k:l L
n—1 1
6 1—qg? - nk k. k. A
(6) +af qz)k:1 DI a; ® 2%a; @ a;
n—1t—1
1 n—t+1 _
7 4all —qgt < )x" tuta; @ vt la; @ 2t ey
(7) Fal QZ);;(t—l)!w(n—t+l)!w n—t ) i i
n—1 n—1 (k‘)'
1 — g™))2 ‘W n—k, k n—Il+k, 1 I .
+(af q;')) k_”_zk;rl (l)!w(n—l+k)!w(n—k:)!w(k)!wx U a;Qx U a;Qx a;

We rewrite the coefficient in (7)):

(t— l)!w(nl— t+ D)l (n;i l>w - m@

Observe that the formula obtained in (8) gives (@) for | = k:

:ai®ai®ai+a(1—q?)2m
k=17 et

a; @ 2" FuFa; @ 2Fa;

n—1 k
n 1 k n—k, k 1, k—I k—l
k=11=0 w
n—1 n—1
ol - ¢)*S Z (k)L 2Pk 2 ola @ rlas
i I (n— K)o (Dlw(n — 1+ B)L,
k=1l= k+1
n—1
n 1 n—
=a; @ Ala;) + a(l —gq}') Z mm kukai ® A(mkal)
=1 W W
= (id ®A)A(a;).

It follows at once that (A ®id)A(a; ') = (id ®A)A(a; ). We leave to the reader to
check the counit axiom. We finally prove that 8 is the inverse of 1d for the convolution
product; it is enough to check the axioms for the generators a . We compute:

n—1
. 1
(8 xid)(a;) = 8(a;)a; + a(l — q}') l; [CIRCED k)!WS(xn Fubay)aba;
n—1 _(n=k=1)(n=k)
1 n—k
_ a;lai—i—a(l an) ( ) W 2 aflun—kun—n—kkxn—kxkai

— (K=K i
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n—1 _(n=k=1)(n=Fk)
1)k B
=14 a(l — q:l) ) ln — k) a; 1.%'"04‘ = 8(0,2‘).
k=1
n—1 1
(id * 8)(a;) = a;iS(a;) + a(l — ) Y mxn_kukais(xkai)
k=1
n—1 (k=Dk
(—Dkw="2 1 o
= a;a; Lia(l—¢Y —(k‘)!w(n sy " kukaiai Lyn=h ok
k=1
n—1 (k=Dk
(—1D)kw= 2
=14+a(l—g* " =¢e(a
( QZ)k:1 (k:)'w(n—k:)'w ( l)
The computation for ai_1 is the same replacing a; by ai_1 and ¢ by ¢; " ]

Remark 3.5. Consider the example in the above family corresponding to n = m = 2

and |I| = 1. Write g instead of ¢;. If we take a = (2(1 —¢q))~! and make ¢ to tend to

1, we recover the example of Subsection Bl A similar example can be constructed

by taking n = m,q; = q for all i € I,a = (n(1 — ¢))~! and making ¢ to tend to 1.

The defining relations, comultiplication, counit, and antipode in this case read as:
u" =1, " =0, ur = wru,  ailail =1,

ua; = a;u, a;r = Trag, a;a; = a;a;,

A(u) = u® u, Alz)=u®@zr+z®1,

n—1
1
Al =a!' @af' £y —————— 2" FufeF! @ 2Fa?,
i i ; ol — k) i i
e(u) =1, e(z) =0, e(af!) =1,
S(u) = u" L, 8(x) = —u""a, 8(ai!) = !, i,j €1

3.4. Finiteness over the Hopf socle. The chosen basis B of D (B12) yields a
coalgebra decomposition D = Vg ) ® (@(F,E)el‘ V(F,E)), where V(. ) is the subspace
spanned by xsutag with 0 < s <n, 0 <t < m. Observe that V(g ) is a subcoalgebra
by (BI4]). This decomposition will be needed to characterize when D is of finite type
over its Hopf socle Dgyc, being the next result the essential point of the proof in the

case o # 0.

Proposition 3.6. Assume that o # 0.
(i) If ¢*F =1, then Virp) = Th(w) as coalgebras.
(ii) If ¢#F # 1, then Vir,gy = MJ(k) as coalgebras.

Proof. (i) In view of (3I4)), a% is group-like in this case. Since the multiplication by
a group-like is a coalgebra automorphism, Vg gy = Ty (w)ak ~ T, (w) as coalgebras.

(ii) For convenience, we abbreviate through the proof u = a(1 —¢%¥) and a = a%.

Let {cst}1<s,t<n be the canonical basis of the matrix coalgebra M (k). We will prove



24 ANDRUSKIEWITSCH, CUADRA, ETINGOF

that the map @ : My (k) — V(g g) defined by

-1
(S > "l if s >t,
t—1),
Cgt >
1 (s = Dl 2" if s <t
(t—Dly(n+s—1t), ’

is a coalgebra isomorphism. Clearly, ® is bijective and ®(cs) = e(cst). To show
that ® is comultiplicative we must distinguish three cases:

(a) Assume that s = t:

s—1 n
(@@ ®)A(css) = Z P(csr) @ Pcgs) + Pless) @ P(ess) + Z P(csr) @ P(cxs)
k=1 k=s+1
s—1
s—1 o (k—1)! e s
1 — s—k, k—1 w n+k—s, s—1
W kzz:1<k_1>wx ¢ a®u(5_1)!W(n+k_5)!wx ‘e
+u la®ula
- (s =Dk sk, k-1 E—=1\ s o1
2 n-—-+s S,,S
@ +k:§rl’u(/€—1)!w(n+s—k)!wx woeelsog) o

Put s —k =wvin () and k — s = v in (). Taking into account these changes, we
rewrite the w-coefficients occurring here:

s—1 (k — 1)L, B 1
<k - 1>w (s =D +k -9 (V) —0v)l

(s — 1)L, k-1 1
(k—=Dly(n+s—k), <s — 1>w  ()lw(n =),

Substituting all this in the previous equality we have:

s—1
1
DR P)A(css) = v ta®ut T a+ — TV el
( JA(ess) M; ()l (n —v)ly
n—s
+ MZ ;xnfvqursfla ® xvusfla
— (V)lw(n —v)l,
. n—1 1
= usfla ® u® la + M Z xnfkukdrsfla@xkusfla
| _ |
k=n—s+1 (k)w(n k) w
n—s
+ MZ 1 2" Rl @ et la
= (K)lw(n — k),
n—1
_u5—1a®us 1a_|_ Z 1 xn—kuk—l—s 1a®xku5 1a
- M (= R,
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=A@ ™a) by BI4)
= AD(cqs).
O: Put v = n — k in the first sum and v = k in the second.

(b) Assume that s < t:

t—1 n
(® @ ®)A(cy) Zq) (csk) @ D(epr) + Y Dlesk) @ D) + > (ear) ® D(ckr)
k=1 k=s+1 k=t
s—1 (k=1 ¢ e
1 _ Yo P w pHh—t =1,
(1) ;<k—1>w e D+ k— )l
(2) + Z M S_ 1) xn-{—s—kuk—la
! E—1Dly(n+s—k),
(k - 1)'w n+k—t, t—1
®,U(t_1)| (n—l—k—t)!wx ua
(s =1, k—1
3 n+s—k, k—1 k—t, t—1
(3) +Z,U Y n—i—s—k)'wx U ra® P wx u'a

Set s—k=vin ), k—s=wvin @), and £k — ¢t = v in @)). Next we rewrite the
w-coefficients appearing in the previous equality:

Coefficient in (II):

G2 e e = ().

Coefficient in (2):

(s — 1), (k—1)l, (s—=1Dl 1
E—=Dlyn+s—k)l, t-—Dn+k—1t), (E—1D(n—v)lu(n+v+s—1),

Coefficient in (3):

o 00 e ).

Substituting all this in our previous computation we get:

-1
_ (S B 1)'0-1 \ n+s—t v, n—v+s—1 n—v+s—t, t—1
DL e L2\ )T e

2(8 1)wt — 1 n—uv, v+s—1 n+v+s—t, t—1
@ T, Z m—oLntots—DL. © o7 v
w

t
(s =1l ~— (n+s—t _
5 E nv+stv+t1 v, t—1
5) +’u(t—l) (n+s—1), v v w cETu A
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Set k=n+v+s—tin @) and l =n—v+s—tin (@). Replacing this in the
preceding equality we obtain:

~1
_ (8 - 1)'w . n+s—t I, n—l+s—1 n—l+s—t, t—1
(©) _'u(t—l)!w(n—l—s—t)!w; o)t e v

+,U2(S -1, nzzl 1 gn—kebnbs—ty kb= okt
(t—1), e (K)ly(n—k+n+s—t)l,
+s—t
(S - 1)'00 " n+s—1 I n—Il+s—1 n—Il+s—t t—1
s ey D A (R B

l=s
We join (@) and (@) in a single formula. We now have:

—+s—t
B (s —1)l, " n+s—t I n—l+s—1 n—l+s—t, t—1
_'u(t—l)!w(n—ks—t)!w Z I wxu a@x U a

=0
n—1 )
+ H n+s— t ' xn7k+n+3,tuk+t 1a® xkut 1
( ) wk:n%:prl(k)!w(n—/{?+n+3_t)!w
=Alpu (S - 1)!w LTSt t=1, by
(t—Dl(n+s—1) neE)

= Ad(cg).

(c) Assume that s > ¢

t—1 s n
(P @ P)A(cat) = Y Blcsk) @ cre) + Y Plesk) @ Rere) + > Plcsk) @ cry)
k=1 k=t k=s+1
t—1
s—1 sk k-1 (k =1, ntk—t, t—1
1 =
(1) 2 1<k 1>$ T ey T

2) <3—1> sk k1, <’Z—11> okt i1,

-1 k—1
3) N Z ('s - ﬁ Ty prts—kyk=l, o <t B 1) Pty

k=s+1

Putv=n+k—tin (III),l:s—kin @), and v = k — ¢ in ([B). We rewrite the
w-coefficients occurring here taking into account these changes:

Coefficient in (T)):
(Z:Dw(t_1)(!i(;1+)!2—t)! - (j:D (), (n(s—_vtj-s—t)

Coefficient in (2):
s—1 E—=1\  [(s—1 s—t
k—1) \t—-1), \t—1) \ 1 ),
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Coefficient in (B):
e () 00 me e

Substituting all this in our previous computation we have:

s—1 — 1
(4) — ,U'< ) (8 —t)! xnvarsftqurt 1a®xvut 1

t—1), wy;ﬂ (W)lw(n—v+s—1),

s—1\ < [s—t

+<t ~ 1>w Z ( l ) xlus—t—l-l—t—la ® xs—t—lut—la
=0 w
(5) +:U’ s—1 (S—t)' nz:t 1 xnvarsftqurt 1a®xvut la
t—1), -wvzs?tﬂ(v)!w(n_v+s—t)!w

We join ) and (B)) in a single formula. Then we obtain:

<3 - 1) — (3 - t) 1 s—t—I+t—1 s—t—1 t—1
= Z U a@x U a
t—1/, P L),

n—1

1
+ L (S _ t)' xnvarsftqurtfla ® xvutfla
i UZ;H Wk —v+s—t)l
s—1 s—t, t—1
=A p ) T e by B.14))
w

= A@(Cst).
]

We are now ready to characterize when D is of finite type over Dgye, from which
Theorem [ in the introduction will follow.

Theorem 3.7. The Hopf algebra D is co-Frobenius and Ds,. = kG(D). Moreover:
(i) If « = 0, then D is of finite type over Dsqy.
(ii) If « # 0, then D is of finite type over Dsoe if and only if there is a finite
subset J of I such that ' =1 for alli € I\J and q; is an vj-th root of unity
forall j € J.

Proof. Let A be the (finite dimensional) Hopf subalgebra of D generated by u and z.
The particular form of the chosen basis B of D ([B.12), together with ([B.14]), gives us a
coalgebra decomposition D = A @ (69( FE)er VF, E)). Viewed as a right D-comodule,
A is injective and contains k. Hence E(k) C A, so that D is co-Frobenius.

We next describe Dgoc and show that it equals kG(D). The coalgebra decompo-
sition above is inherited to the coradical, that is, Dy = kC,, & (@(F,E)EF V(FvE)o)’
where C), is generated by u. Then,

Dsoc — (]kc N Dsoc) ( ®(F E)el (Vv(F E)O N Dsoc))
(3.15) =kCn ® (®Fm)er Virm)) N Dsoc))-
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Here we used that G(D) C Dgoc.

(i) Assume that a = 0. Then u'af € G(D) for all (F,E) € ' U{(0,0)} and
0 <t < m. Setting X = {2° : 0 < s < n}, we have D = XkG(D) C XDgoe.
Thus D is of finite type over Dgoe. To see that Dgoe = kG(D), notice that the
multiplication by a group-like element establishes a coalgebra automorphism of D.
Then Vipg) = Aafj: ~ A as coalgebras. This implies VirE), = Aoafj: = @ﬁalkutafj:.
Consequently, Vi g), N Dsoc C kG (D).

(ii) Assume that o # 0. Recall that in this case n = m and A = T, (w). To

compute Dgoc we first calculate Vg g 0 and see if it is contained or not there. We

must distinguish two cases: q}éE # 1 and q?;E =1.

Case ¢ # 1. By Proposition (i), Vrp) =~ Mj(k) as coalgebras. Then
Vier)y = Urp),- Let S(r,p) be the unique (up to isomorphism) simple right D-
comodule corresponding to V(g g). From the aforementioned coalgebra decomposition
of D, we conclude that Sp ) is injective. We claim that S(p gy & Dsoc. Otherwise,
SrE) ® SFF, B) would be semisimple and injective. As it contains k, it would follow
that k is injective and therefore D would be cosemisimple. This is not possible
because T}, (w) is a non cosemisimple Hopf subalgebra of D.

Case ¢%F = 1. Here we argue as for o = 0. By [3.14)), a% € G(D). By Proposition
(i), VirE) = Ta(w) as coalgebras and, consequently, V(g ), is spanned by ulal
with t =0,...,n — 1. This implies V(FE)O C Dsoc-

Let A = {(F,E) € T : ¢ =1} U{(0,0)} and A = {(F,E) € T : ¢%F # 1}.
Our previous discussion, together with the decomposition ([BI5) of D, entails
Dsoc = O, B (F,E)eA kulaf C kG(D). Every g € G(D) must be then of the form
utag for some t and (F, FE) € A. We write Ry (r,g) for the simple right D-comodule
kutag .

0

We next proceed to prove the statement about the finite generation over Dgoc.

Suppose that there is J C I finite such that ¢' = 1 for all i € I\J and ¢; is an
vj-th root of unity for all j € J. Since q;»/j =1, in view of (B.I4]), a;/j € G(D) for all
j € J. Similarly, a; € G(D) for all i € I\J. Put J = {j1,...,i}. Consider the set

fi .

X:{xsaﬁl...ajl :0<s<n,0< f, <v,1 <k <}

We prove that D = XDg,.. It suffices to show the inclusion for elements of the form
ap. Set F = (iy,...,i,) and E = (e1,...,e.), so that af = af' ... af". We can
assume that i, € Jfork=1,...,pand iy ¢ J for k=p+1,...,r. Then q;, € G(D)
fork=p+1,...,r. Write e, = vgcp+ e with 0 < eép <y for k=1,...,p. We now

have af. = (af! ...afﬁ)(aéf;cl . a?;’c”af;:f .ai") € XG(D).

Conversely, assume that D is of finite type over Dgo.. Take a finite set Y C D
such that D = Y Dgc; then D = WDg, for the (finite dimensional) subcoalgebra W
generated by Y. We have a coalgebra decomposition

W =(WnA) @ (&Emer (WNVeg))
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inherited from that of D, see [DNR] Exercise 2.2.18 (iv)| and the proof of [M| Lemma
5.1.9]. As dimW < oo, the set Q = {(F,E) € I': W N Vg # 0} is finite. We can
express (2 as a disjoint union of Q) = {(F,E) € Q: ¢’ =1} and Qy = {(F,E) € Q:
g # 1}. Then afi € G(D) for all (F, E) € Q. For (F,E) € Qs set F = (iy,...,i,)
and E = (ey,...,e,), so that af = a;l ...a;". Remove from F those i} such that
g =1 (a;, € G(D)). In this way, Qs gives rise to a set J = {j1,...,j} such that
qj. Z1forall k=1,...,1.

Since Dsoc = kG(D), we have another coalgebra decomposition D = Syec(p)Wyg-
Let ¢ € I be such that ¢]' # 1 and consider the simple subcoalgebra Aa;, Proposition
3.6l (ii). There is g; € G(D) such that Aa; C Wg;. We know that g; ' = u’a® for
certain (F,E) € Q. Then aigi_1 is of the form utag: with q?,?l # 1 and Vipr pry =
Aa;g;t € W. Hence (F',E') € Q9 and so i € J. This shows that i € J if and only
if g # 1.

We must finally prove that g;, is an v4-th root of unity for every k € {1,...,1}.
This is clear if the ground field k is finite. Assume that k is infinite. Let e;, be

the maximum exponent, in absolute value, of a;, when occurring in the elements ag

with (F, E) € Q. Put

+f; +f;
e ay
Then D = WDgoe € XDgoe. Set P = {£f;, : 1 <k <I}. Pick 2 € Z and k €
{1,...,1} arbitraries. We write

X ={z%a 0<s<n,0< f, <ej,1<k<I}

@, =Y Aeysary, Ao €K, yo € X, as € G(D).
g

Observe that q%f" = 1 for all o. We assume that all terms yaaf:: in this sum are
distinct. A priori, ag;’ might be multiplied by a power of u, as u € G(D), but by
linear independence, this is not possible. By the same reason, no power of x occurs
in y,. Set Fpp = (i1,...,4r, )s Eo = (O051,...,00,,) and

_ Dol Yo,l
ya_ajl ...ajl y 70,15--'5’70,l€P‘

Set F! = F,\(F,NJ). Take out of ag;’ the a;’s with i € F,NJ, join them to y, and
consider the corresponding list of exponents E/ for F.. Then,

z Yo,14+00,1 Yo +051 EL
(3.16) a;, = E Actj; ay agy -
g
Here we are abusing a bit of notation because some j, could not appear in Fj
and, in such a case, we understand 6, , = 0. Moreover, 6,1,...,0,; correspond to
@i, , - - -, a; and subindices i1, . . ., %; are not necessarily equal j1, ..., j;. All monomials

in the right-hand side of (BI6) are different basis element. There must be 7 such
rkt0r rut0r

that aj-k = a;/k"“ * and a}u"‘ i j 1 for u:é k. From here, z = v, + 0, and

0r, = —7Vru- Recall that q}}fT = qin1 o Z”* =1land ¢! =1fori ¢ J. Then

is an n-th root of unity, say (. Substituting the value of the €’s just

97‘,1 er,l
o 4Gy



30 ANDRUSKIEWITSCH, CUADRA, ETINGOF

found we get:
l
A Y,
qjk - C H qju "
pn=1

The right-hand side of this equality only takes a finite number of values because the
~’s are chosen from the finite set P and ( is an n-th root of unity. However, z runs
over Z. This yields that g;, is a root of unity. O

As a consequence of Theorem [3.7] (ii), if some ¢; is not a root of unity, then D is not
of finite type over Dgoc, establishing so Theorem [B] announced in the introduction.
On the other hand, if « # 0,|I| = 1 and ¢; is not a root of unity, then Dy, is finite
dimensional. Its only elements are the group-like elements of Taft Hopf algebra.

The proof of Theorem [B7] (ii) yields that when « # 0 the set
{Rt,(F,E) 0<t< n, (F7 E) € A} U {S(F,E) : (F7E) € A}
is a full set of representatives of the simple right D-comodules. Moreover, the S(p g)’s

are injective.

Proposition 3.8. The multiplication rules for the above set are:

Ry (rp) @ Ry (71 g1y =~ Bty (FUF E+E)>

Ri(r.p) @ S(rr m) = S(rur pve) = S(r 5y @ Bi(r.p),
T (w) if ¥=F and E' = —F,
otherwise.

S(RE) ? S(F/7El) - { (TJLL‘UF/ E+E")

E'

! .
tag and u'a%, are group-like. The

Proof. The first isomorphism is clear because u
coefficient space of Ry (p gy ® S(p/ pry equals

(ku'a ) Vipr gy = (ku'al)(Ty(w)ak) = ViFUF B+ E)-
Since the latter is a simple subcoalgebra, R; (rg) ® S gry is isomorphic to r copies
of S(pur/,p4+E)- Comparing dimensions, r = 1. Similarly, Sp gy ® Ry (pp) ~
S(rurr B+Er). Assume finally that either I # F or E' # —E. Then the coeffi-
cient space of S(p gy ® S gy equals Vig py\Vipr gy = Vipup g4+E7)- Now argue as
before. In the case F/ = F and E' = —F, the coefficient space is T),(w). Observe
that S(p/ gy =~ S(},E) because 8(V(rp)) = V(p,—g). Then Sipp) ® S(pr gy contains

k. Tensoring with ku! and using the previous isomorphism, S(F,E)®S(pr ry contains

ku! for t = 0,...,n — 1. Since it is injective, it must contain a copy of the injective
hull of ku! for t = 0,...,n — 1. These are n-dimensional. Comparing dimensions, it
must contain exactly one copy of each. Hence S(p gy ® S(pr pry = Tp(w). O

4. EXAMPLES IN POSITIVE CHARACTERISTIC

In this final section we construct from group theory examples of co-Frobenius Hopf
algebras, over fields of positive characteristic, that are not of finite type over their
Hopf socles.

Let G be an infinite group and let K be a finite abelian group of order n acting
freely on G by group automorphisms. Then the group algebra kG is a left comodule



CO-FROBENIUS HOPF ALGEBRAS 31

Hopf algebra over the dual group algebra kX with coaction p : kG — k¥ ® kG,
9= D ek 0k ®(k-g). Let H = kG#kX be the smash coproduct Hopf algebra; this
is the tensor product algebra, with comultiplication and antipode given by

(417)  A(g#or) = Y (g#6) @ (t- g#0,-11),  S(g#or) = k- g #1.

teK

Suppose now that char k divides n. Then k* is co-Frobenius but not cosemisimple.
Being a cleft extension of co-Frobenius Hopf algebras, H is co-Frobenius by [BDGNI
Proposition 5.2]- see also |[AC, Theorem 2.10]- and not cosemisimple because the
Hopf subalgebra k¥ is not so.

Proposition 4.1. Let I' be a set of representatives of the orbits in G. For g € G let
g € T' denote the representative of O(g). Let kO(g) C kG be the k-vector subspace
spanned by O(g). Then:

(i) H = ®ger kO(9)#k™ as coalgebras.
(ii) kO(g)#kX ~ M¢<(k) as coalgebras for g # 1 and klg#kX ~ kX,

Proof. (i) By [@IT), kO(g)#kX is a subcoalgebra, and clearly H = @ger kO(g)#kE.

(ii) Let {ci;j}1<i j<n be the canonical basis of My (k). We write K = {k1,...,kn},
where k; = 1x. It is not difficult to show that the map ® : kO(g)#k® — M<(k),
(ki - g)#6k, v eq, with kik; = ki, is a coalgebra isomorphism. That klo#kE ~ kX
is clear. O

With notation as above, the unique (up to isomorphism) simple right Mg (k)-
comodule is k{ci; : j = 1,...,n}. Then, for g # 1g, through ®, the simple right
H-comodule corresponding to the block kO(g)#k is S; = k{g#dr, :j=1,...,n}.
Put S7; = k{lg#dy, : j = 1,...,n}, which is isomorphic to kX as a right H-
comodule. Notice that this is never simple if K is non trivial.

Theorem 4.2. The Hopf algebra H is co-Frobenius and not of finite type over Hgpc.

Proof. We show that Sy is not included in Hy for g # 1g. From Proposition @.1]
(i), each Sj is injective. If it is contained in Hgoe, then S5 ® S is semisimple. Since
S ® S5 must contain k as a direct summand, we would have that k is injective
and hence H would be cosemisimple, a contradiction. Taking into account again the
coalgebra decomposition of H in Proposition E.I], only the simple comodules of kX
could be included in Hgoe. There is a finite number of them (up to isomorphism), so
that Hgo. is finite dimensional. Since G is infinite, H cannot be of finite type over
Hsoc- 0

We just gave an indirect argument to show that Sy is not included in Hg,. for
g # 1g. However, it is possible to compute the decomposition of S5 ® Sj:
Proposition 4.3. As right H-comodules, Sz ® S}, ~ @?ZlSW. In particular, if
G, h # 1, then S; ® S;, is semisimple except when O(g) = O(h™1). Equivalently,
when either S5 ~ Sy or S, ~ S7.
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Proof. Define f : S5 ® S — ®)_ 15(1W g)h,(g#ékl) ® (h#6k,,) — (kr - g)h#&km;h
where k, = k;1k;. Clearly, f is bijective. We check that it is a comodule morphism:

(f ® id)p[(g#(SkL) ® (h#6m)] =
= o] X (o) () ()b 5, 05,0,

ij=1
= (f®id) [2(9#5&) ® (h#ékikmkfl) ® (ki - 9)((kikmk; 1) - h)#ékilkl:|

i=1

—Z k) - 9O, w1 ® ki (((k:mkl’l)-h))]#%_lkl

— Z kotky) - 9)h#y; ® [k; (kM) - g)h)]#fskj—lkm

- p(((k;mlk:l) - 9)h#,,)
= pf[(g#r) ® (h#3,, )]

The comodule S(k ) is simple except when (k;, - g)h = 1g. This happens if and
only if O(g) = O(h™!). In this case, S(k h = S1g = k' which is not semisimple.
Finally, from (.I7) and Proposition 11 (ii), it follows that S ~ S;— for h#1lg. O

We finish this paper by providing an example of a commutative infinite dimensional
co-Frobenius Hopf algebra whose Hopf socle is trivial.

Example 4.4. Assume that chark = 2. Let G = Z and K = (5 with generators x
and o respectively. Let K act on G by o-x = 2z~ !. We have O(1) = {1} and O(z*) =
{z%, 277} for 0 # z € Z. We take {z" : n > 0} as a set of representatives of the
orbits. We construct the smash coproduct Hopf algebra H = kZ#k®2. The k-vector
subspace D,, spanned by {2t"#6,: : i = 0,1} is a subcoalgebra of H isomorphic to
M5 (k). By Propositiond1] we have a coalgebra decomposition H = k“2@(®,enDy,).
The simple comodule S,, attached to D,, is spanned by {z"#d,: : i = 0,1}. The
only simple comodule of k¢ is k. Hence Hyo. = k by the proof of Theorem In
view of Proposition 4.3], the decomposition rules for the tensor product of the simple
comodules are: S, ® Sy, = Spim @ )y for m #n and S, ® S, ~ Sy, ®KkC2.
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