
ar
X

iv
:1

01
1.

34
57

v3
  [

m
at

h.
Q

A
] 

 2
6 

Ju
l 2

01
2

ON THE STRUCTURE OF (CO-FROBENIUS) HOPF

ALGEBRAS

NICOLÁS ANDRUSKIEWITSCH, JUAN CUADRA

Abstract. We introduce a new filtration on Hopf algebras, the stan-

dard filtration, generalizing the coradical filtration. Its zeroth term,

called the Hopf coradical, is the subalgebra generated by the coradical.

We give a structure theorem: any Hopf algebra with injective antipode is

a deformation of the bosonization of the Hopf coradical by its diagram, a

connected graded Hopf algebra in the category of Yetter-Drinfeld mod-

ules over the latter. We discuss the steps needed to classify Hopf algebras

in suitable classes accordingly. For the class of co-Frobenius Hopf alge-

bras, we prove that a Hopf algebra is co-Frobenius if and only if its Hopf

coradical is so and the diagram is finite dimensional. We also prove that

the standard filtration of such Hopf algebras is finite. Finally, we show

that extensions of co-Frobenius (resp. cosemisimple) Hopf algebras are

co-Frobenius (resp. cosemisimple).

Introduction

There are few general techniques to deal with the classification of Hopf
algebras; one of them is the so-called Lifting Method [AS2] under the as-
sumption that the coradical is a subalgebra. In the present paper we pro-
pose to extend this technique by considering the subalgebra generated by
the coradical, called the Hopf coradical, and the related standard filtration,
that is a generalization of the coradical filtration. Its zeroth term is the Hopf
coradical while the remaining ones are iterative wedge operations of it. The
standard filtration of a Hopf algebra H is always a Hopf algebra filtration,
provided that the antipode is injective, and we can consider its associated
graded Hopf algebra grH. The latter is a bosonization of the Hopf coradical
H[0] by a connected graded Hopf algebra R in the category of Yetter-Drinfeld
H[0]-modules (the diagram of H). Then H is a deformation or quantization
of grH for a suitable cohomology theory. We summarize our considerations
in Theorem 1.3, that can be thought of either as a structure theorem for
Hopf algebras with injective antipode, or as a proposal for the classification
of Hopf algebras in suitable classes (e.g., those of finite dimensional, or co-
Frobenius, or finite Gelfand-Kirillov dimension Hopf algebras). We discuss
the different problems to be solved for the success of this proposal in Section
1.
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In Section 2 we focus on the class of co-Frobenius Hopf algebras with the
techniques just introduced. These are Hopf algebras having nonzero inte-
gral and there exist relevant examples of them: either finite dimensional or
cosemisimple Hopf algebras, coordinate algebras of certain algebraic groups
[Su] or more generally group schemes [Do2], families of quantum groups at a
root of one [APW, AD], and quantum groups attached to some Hecke syme-
tries [H]. This notion can be rephrased in representation theoretic terms: a
Hopf algebra is co-Frobenius iff the injective hulls of the simple comodules
are finite dimensional iff the projective cover of any comodule do exist.

Our second main result, Theorem 2.5, particularizes the previous struc-
ture theorem as follows: a Hopf algebra is co-Frobenius if and only if its
Hopf coradical is so and the diagram is finite dimensional. This reduces
the classification in this class to those which are generated by cosemisim-
ple coalgebras and the finite dimensional graded connected Hopf algebras
in the corresponding categories of Yetter-Drinfeld modules. It is natural to
investigate cosemisimple Hopf algebras as part of this program. Towards
this end, we study extensions of co-Frobenius Hopf algebras. Given an ex-
tension of Hopf algebras 1 → A → B → C → 1 with B faithfully coflat
as a C-comodule, Theorem 2.10 asserts that B is co-Frobenius if and only
if A and C are co-Frobenius. This result is used to detect all co-Frobenius
quotients of quantized coordinate algebras of simple algebraic groups at root
of one, Examples 2.11. In our last main result, Theorem 2.13, we prove that
B has a nonzero left integral that restricted to A is nonzero if and only if
A is co-Frobenius and C is cosemisimple. We derive from this that B is
cosemisimple if and only if A and C so are. New characterizations of co-
Frobenius Hopf algebras are established to achieve these results, Theorems
2.3 and 2.8.

A conjecture posed in [AD] states that a co-Frobenius Hopf algebra has
finite coradical filtration. Related to this problem, in Theorem 2.5 we also
show that a Hopf algebra is co-Frobenius if and only if the Hopf coradical
is so and its standard filtration is finite. After acceptance of the present
paper, it was proved in [ACE, Theorem 1.2] that the conjecture is true.

Contents of Section 1 were presented by N. Andruskiewitsch at the meet-
ings “Conference in Hopf algebras and Noncommutative Algebra”, Sde-
Boker (Israel), May 24-27, 2010 and ”XXI Escola de Algebra”, Brasilia
(Brazil), July 25-31, 2010. Main results of Section 2 were expounded by J.
Cuadra at the conference “Quantum groups: Galois and integration tech-
niques”, Clermont-Ferrand (France), August 30-September 3, 2010.

Conventions and notations. Our main references for the theory of Hopf
algebras are [Mo, Sw1]. We shall work over a ground field k. Let C be a
coalgebra with comultiplication ∆ and counit ε. For subspaces D,E ⊂ C
recall from [Sw1, Proposition 9.0.0] that the wedge of D and E is defined to
be D ∧ E = {c ∈ C : ∆(c) ∈ D ⊗ C + C ⊗ E}. Using the dual algebra C∗,
it is D ∧ E = (D⊥E⊥)⊥, where ⊥ stands for the annihilator subspace (in
C∗ and C). We inductively define ∧0D = D and ∧n+1D = (∧nD) ∧D for
n > 0.
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We denote by S the antipode of any Hopf algebra H and by H+ the kernel
of the counit. We shall use that S(D ∧ E) ⊆ S(E) ∧ S(D) and that this is
an equality when S is bijective.

1. The standard filtration

Let H be a Hopf algebra. We shall consider several invariants of H. The
first one, already present in [Sw1], is the coradical filtration {Hn}n≥0, whose
terms are defined as follows:

• H0 is the coradical, i.e., the sum of all simple subcoalgebras of H.
• Hn = ∧n+1H0.

These are coalgebra versions of the Jacobson radical and its powers; indeed,
H0 = J⊥ and Hn = (Jn+1)⊥, where J denotes the Jacobson radical of H∗.
The coradical filtration is a coalgebra filtration. Furthermore, if H0 is a
Hopf subalgebra, then it is also an algebra filtration [Mo, Lemma 5.2.8],
and its associated graded coalgebra grH = ⊕n≥0Hn/Hn−1 is a graded Hopf
algebra (H−1 = 0). Let π : grH → H0 be the homogeneous projection;
since it splits the inclusion of H0 in grH, the diagram

R = (grH)co π = {x ∈ grH : (id⊗π)∆(x) = x⊗ 1}

turns out to be a Hopf algebra in the category H0
H0

YD of Yetter-Drinfel’d
H0-modules and grH ∼= R#H0. Here # stands for the Radford biproduct
or bosonization, see for example [AS2]. The study of the diagram is central
for the understanding of Hopf algebras whose coradical is a Hopf subalgebra.
But this is not always the case, and the main goal of this paper is to propose a
new approach in the general situation. We start by defining a new filtration,
the standard filtration {H[n]}n≥0, as follows:

• The Hopf coradical H[0] is the subalgebra generated by H0.

• H[n] = ∧n+1H[0].

By convenience, we set H[−1] = 0. Of course, H[0] = H0 just means that the
latter is a subalgebra; then it is a Hopf subalgebra and the coradical filtra-
tion coincides with the standard one. The basic properties of the standard
filtration are collected in the next result.

We assume throughout this section that S(H0) ⊆ H0; this holds, for
instance, if S is injective. Actually, we are mostly interested in Hopf algebras
with bijective antipode.

Lemma 1.1. With notation as above:

(i) H[0] is a Hopf subalgebra of H and its coradical is H0.

(ii) Hn ⊆ H[n] and {H[n]}n≥0 is a Hopf algebra filtration of H.

(iii) If S is bijective, then S(H[n]) = H[n].

Proof. (i) We know that H[0] =
⋃

r≥0H
(r)
0 , where H

(r)
0 = H0

r... H0 for r > 0

and H
(0)
0 = k. Then H[0] is a subcoalgebra of H because each H

(r)
0 is so.

Since S(H0) ⊆ H0 by assumption, S(H
(r)
0 ) ⊆ H

(r)
0 and thus S(H[0]) ⊆ H[0].

For the second statement, the coradical of H[0] is H[0] ∩H0 = H0.
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(ii) This can be similarly proved as [Mo, Lemma 5.2.8]; we include the

proof for the sake of completeness. Each H[n] is a subcoalgebra ofH, because

it is defined as an iterative wedge of subcoalgebras, and H[n] ⊆ H[n+1], [Sw1,

Proposition 9.0.0(i)]. Moreover, from Hn = ∧n+1H0 ⊆ ∧n+1H[0] = H[n] and

H =
⋃

n≥0Hn we obtain H =
⋃

n≥0H[n]. Since H[n] = ∧n+1H[0], by [Sw1,

Theorem 9.1.6], ∆(H[n]) ⊆
∑n

i=0H[i] ⊗H[n−i], showing that {H[n]}n≥0 is a

coalgebra filtration. We now prove that it is an algebra filtration, that is,

H[n]H[m] ⊆ H[n+m] for all n,m ≥ 0. For n = 0, it follows by induction on m

and the following computation:

∆(H[0]H[m]) ⊆ (H[0] ⊗H[0])(H[0] ⊗H[m] +H[m] ⊗H[m−1])

⊆ H[0]H[0] ⊗H[0]H[m] +H[0]H[m] ⊗H[0]H[m−1]

⊆ H[0] ⊗H +H ⊗H[m−1]

Analogously, H[n]H[0] ⊆ H[n] for all n ≥ 0. To prove the general statement,

we apply induction on n and m. A computation similar to the preceding one

shows by a recursive argument that H[n]H[m] ⊆ H[n+m−1] ∧H[0] = H[n+m].

Finally, since S is an anti-coalgebra map, by induction we have

S(H[n]) = S(H[0] ∧H[n−1]) ⊆ S(H[n−1]) ∧ S(H[0]) ⊆ H[n−1] ∧H[0] = H[n].

(iii) Use that for S bijective, S(D ∧ E) = S(E) ∧ S(D) for any pair of

subspaces D,E of H. �

Thanks to the previous lemma, we may consider the graded Hopf algebra

grH = ⊕n≥0H[n]/H[n−1] associated with the standard filtration. As before,
if π : grH → H[0] is the homogeneous projection, that splits the inclusion
of H[0] in grH, then the diagram R = (grH)co π is a Hopf algebra in the

category
H[0]

H[0]
YD of Yetter-Drinfel’d H[0]-modules and

(1) grH ∼= R#H[0].

For n ≥ 0 set grn H = H[n]/H[n−1], the homogenous component of degree
n in grH. We are going to see that the filtration of grH associated with
the grading and the standard filtration of grH coincide.

Proposition 1.2. (grH)[n] = ⊕i≤n gr
i H for all n ≥ 0.

Proof. The proof is similar to that of [AS1, Lemma 2.3], where this result

is established when H0 is a subalgebra. We proceed by induction on n.

The filtration attached to the grading is a coalgebra filtration. By [Sw1,

Proposition 11.1.1], (grH)0 ⊆ gr0H = H[0]. From here, (grH)[0] ⊆ H[0]. On

the other hand,H0 is a cosemisimple subcoalgebra of grH (as a subcoalgebra

of H[0]). Hence H0 ⊆ (grH)0 and consequently gr0 H = H[0] ⊆ (grH)[0].
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The following computation shows that ⊕i≤n gr
i H ⊆ (grH)[n] :

∆(grnH) ⊆ ⊕n
l=0 gr

l H ⊗ grn−l H

⊆ gr0 H ⊗ grH + grH ⊗ (⊕i≤n−1 gr
iH)

= (grH)[0] ⊗ grH + grH ⊗ (grH)[n−1].

To prove the other inclusion, we observe that (grH)[n] is a graded sub-

space, that is, (grH)[n] = ⊕m≥0(gr
mH ∩(grH)[n]); the wedge of two graded

subspaces is graded. Thus, it suffices to check that grmH ∩ (grH)[n] = 0

for m > n. Pick 0 6= h ∈ H[m]/H[m−1] and write ∆(h) = x + y + z with

x ∈
∑n−1

i=0 H[i]⊗H[m−i], y ∈ H[m]⊗H[0] and z ∈
∑m−1

i=n H[i]⊗H[m−i]. Apply-

ing the corresponding projections defining the comultiplication of grH [Sw1,

page 229] we can write ∆(h) = x̄ + ȳ + z̄ with x̄ ∈ ⊕n−1
i=0 griH ⊗ grm−i H,

ȳ ∈ grmH ⊗ gr0 H and z̄ ∈ ⊕m−1
i=n griH ⊗ grm−i H. We claim that z̄ 6= 0.

Otherwise, z ∈
∑m−1

i=n H[i] ⊗H[m−1−i] and hence

∆(h) ∈ H[n−1] ⊗H[m] +H[m] ⊗H[m−n−1].

This yields h ∈ H[n−1] ∧H[m−n−1] = H[m−1] and hence h̄ = 0, a contradic-

tion. Since z̄ 6= 0, we get that ∆(h) /∈ (grH)[n−1] ⊗ grH + grH ⊗ (grH)[0].

Therefore, h̄ /∈ (grH)[n]. �

From the preceding, we deduce that (grH)n ⊆ ⊕i≤n gr
nH. But the latter

is not an equality in general; in other words, grH is not coradically graded.

The diagram inherits the grading from grH, that is, R = ⊕n≥0R
n where

Rn = R ∩ grnH. With respect to this grading, R is a graded Hopf algebra

in
H[0]

H[0]
YD, griH = Ri#H[0] for every i ≥ 0 and R0 = R0 = k1, see [AS1,

Lemma 2.1]. Furthermore, R1 ⊆ P (R) as in the proof of [AS1, Lemma 2.4].

To sum up this discussion, we have the following structure theorem.

Theorem 1.3. Any Hopf algebra with injective antipode is a deformation of

the bosonization of a Hopf algebra generated by a cosemisimple coalgebra by

a connected graded Hopf algebra in the category of Yetter-Drinfeld modules

over the latter. �

To provide significance to this result, we should address some fundamental
questions. Suppose that we aim to classify all Hopf algebras H in a class C,
that is suitable in the following sense:

(1) H belongs to C iff grH belongs to C;

(2) If H belongs to C, then H[0] belongs to C.

Typically, the classes of finite dimensional, or with finite Gelfand-Kirillov
dimension, or co-Frobenius Hopf algebras are suitable. See Section 2 for the
latter class.

Question I. Let C be a cosemisimple coalgebra compatible with the class in

the appropriate sense and S : C → C an injective anti-coalgebra morphism
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(in the typical examples, one should assume S bijective). Classify all Hopf

algebras L generated by C, belonging to the class C, and such that S|C = S.

Question II. Given L as in the previous item, classify all connected graded

Hopf algebras R in L
LYD such that R#L belongs to C.

Question III. Given L and R as in previous items, classify all deformations

or liftings, that is, classify all Hopf algebras H such that grH ∼= R#L.

Remark 1.4. There is an alternative dual approach to the one shown before.

Namely, let H be a Hopf algebra with surjective antipode and let J denote

its Jacobson radical. Let us consider

Jω =
⋂

m≥0

∧mJ.

This the largest Hopf ideal contained in J . In the finite dimensional case, Jω

was studied in [CH]. Consider the filtration by Hopf ideals (Jn
ω )n≥0 and the

associated graded Hopf algebra grH = ⊕n≥0J
n
ω/J

n+1
ω , where J0

ω = H. If H

is finite dimensional, then (grH)∗ ∼= gr(H∗). However, this setting might

be more convenient for the classification of quasi-Hopf algebras, [EG, An].

1.1. Hopf algebras generated by cosemisimple coalgebras. In this
subsection, we assume that k is an algebraically closed field of characteristic
0. We discuss what is known about the Question I. Notice that this question
contains the classification of all semisimple Hopf algebras, that is largely
open, except for some dimensions.

It is convenient to use the following terminology.

Definition 1.5. A basis (eij)1≤i,j≤m of a coalgebra C will be called a mul-

tiplicative matrix if ∆(eij) =
∑m

p=1 eip ⊗ epj and ε(eij) = δij , the Kronecker

symbol.

We recall now a remarkable result of Ştefan, used in classification results
of low dimensional Hopf algebras [St, N, GaV].

Theorem 1.6. [St, Theorem 1.5] Let H be a Hopf algebra and C an S-

invariant 4-dimensional simple subcoalgebra. If 1 < ord(S| 2
C
) = n < ∞,

then there are a root of unity ω and a multiplicative matrix (eij)1≤i,j≤2 such

that ord(w2) = n and eij satisfy all relations defining O√
−ω(SL2(k)). In

particular, there is a Hopf algebra morphism O√
−ω(SL2(k)) → H, which is

surjective if C generates H as an algebra. �

This raises the question of classifying all quantum subgroups of the quan-
tum group SL2, that is, the quotient Hopf algebras of Oq(SL2(k)). This
problem was considered in [P]. The determination of all quantum subgroups
of a quantum group at a root of one or, in equivalent terms, to determine
all Hopf algebra quotients of a quantized coordinate algebra at a root of
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one (over C), was accomplished in [Mü], for finite dimensional quotients
of the quantum group SLN , and in [AG], for quantum versions of simple
groups. At the present moment, there is no intrinsic condition describing
these quotients, as in the beautiful result of Ştefan for SL2.

Definition 1.7. [R2, Lemma 2] Let C be a coalgebra and S ∈ GL(C) an

anti-coalgebra map. The algebra

H(S) := T (C)/〈c(1)S(c(2))− ε(c), S(c(1))c(2) − ε(c) : c ∈ C〉

is a Hopf algebra, with comultiplication induced by that of C and antipode

induced by S, which satisfies the following universal property: if K is a

Hopf algebra with antipode SK and f : C → K is a coalgebra map such

that SKf = fS, then there is a unique Hopf algebra map f̃ : H(S) → K

such that f̃ |C = f .

Given s ∈ N, let 1 < d1 < · · · < ds and n1, . . . , ns be natural numbers.
For 1 ≤ r ≤ s, let Fr ∈ GLdr (k). We consider the coalgebras

Dr = (Cdr )
nr , C = ⊕s

r=1Dr,

where Cdr is a comatrix coalgebra of dimension d2r . Fix (er,kij )1≤i,j≤dr a
multiplicative matrix of the k-th copy of Cdr in Dr, for any k, and define
Sr ∈ GL(Dr) by

Sr(e
r,k
ij ) =

{

er,k+1
ji , 1 ≤ k < nr;

aij, k = nr.

where A = (aij) is given by A = Fr(e
r,1
ji )F

−1
r . Let S = ⊕s

r=1Sr ∈ GL(C).

We denote H(Fr, nr)1≤r≤s = H(S). This definition is a generalization of
the one in [Bi]; a similar construction in the setting of Hopf C∗-algebras was
introduced in [W]. See also [VDW, BB, BiN] for variations and applications.

Question IV. Compute the Hopf algebra quotients of H(Fr, nr)1≤r≤s in

suitable classes (e.g., finite dimensional, or with finite Gelfand-Kirillov di-

mension, or co-Frobenius).

1.2. Connected braided Hopf algebras. We point out here the connec-
tion of Question II with Nichols algebras. Let L be a Hopf algebra generated
by a cosemisimple coalgebra in our class C and let CL be the class of con-
nected braided Hopf algebras R in L

LYD such that R#L ∈ C.

The most relevant examples of connected braided Hopf algebras in L
LYD

are the Nichols algebras: given V ∈ L
LYD, there exists a unique (up to

isomorphisms) connected braided Hopf algebra B(V ) = ⊕n≥0B
n(V ) with

the properties

V ∼= B1(V ) = P (B(V )) and V generates B(V ) as an algebra.

If R is a connected braided Hopf algebra in L
LYD, then there is a canonical

subquotient Nichols algebra B(V ), namely V = R1. Therefore, if the class
CL is closed under subquotients, then it would be important to solve the
following problem.
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Question V. Given L as above, classify all Nichols algebras in CL.

It would be interesting to understand how to construct any braided con-
nected Hopf algebra as a suitable extension of Nichols algebras. For gener-
alities on extensions in categories of Yetter-Drinfeld modules, see [Be, BeD].

1.3. Liftings or deformations. As for Question III, the classification of
all Hopf algebras H such that grH ∼= R#L, with R and L as above, is a
particular instance of the general problem of detecting all filtered objects
with a fixed graded object G. These objects are usually called deformations

or quantizations of G, and they are controlled with a suitable cohomology
theory. In the Hopf algebra case, they are called liftings [AS2] and the
pertinent cohomology theory is that of [GeS1, GeS2], see [DuCY, MaW].

2. Co-Frobenius Hopf algebras

Let H be a Hopf algebra. We will denote the category of left (resp.
right) H-comodules by HM (resp. MH). Given M ∈ HM, throughout this
section, EH(M) stands for the injective hull of M . If S ∈ HM is simple,
we can always take EH(S) as a left coideal of H, see [Gr, 1.5g] or [DNR,
Corollary 2.4.15]. Recall that a left integral for H is a linear map

∫

: H → k
such that α·

∫

= α(1H )
∫

for all α ∈ H∗. Equivalently,
∫

(h(2))h(1) =
∫

(h)1H
for all h ∈ H. This is just saying that

∫

: H → k is a left H-comodule map.
Let Rat(H∗) denote the maximal rational submodule of H∗, as left H∗-
module.

Theorem 2.1. The following statements are equivalent:

(i) H has a nonzero left integral.

(ii) Rat(H∗) 6= 0.

(iii) EH(S) is finite dimensional for every S ∈ HM simple.

(iv) EH(k) is finite dimensional.

(v) HM has a nonzero finite dimensional injective object.

Proof. (i) ⇔ (ii) ⇔ (iii) is [L, Theorem 3], cf. also [Sw2, 2.10]. (iii) ⇒ (iv),

(iv) ⇒ (v) are evident.1 (v) ⇒ (i) is [DN, Proposition 2.3]. �

A Hopf algebra satisfying any of these statements is called co-Frobenius.
Other characterizations may be found in [DNR, Theorem 5.3.2]; some new
ones are given in Theorems 2.3 and 2.8. All these characterizations are
equivalent to their right versions, that will be used but not explicitly stated.

2.1. The standard filtration of co-Frobenius Hopf algebras. In [R1,
Corollary 2] Radford showed that if H is a co-Frobenius Hopf algebra whose
coradical H0 is a subalgebra, then H has finite coradical filtration. This is
a consequence of his beautiful result:

Theorem 2.2. [R1, Proposition 4] Let H be a co-Frobenius Hopf algebra.

Then H = H0EH(k). �

1Direct proof of (iv) ⇒ (iii): if S ∈ HM is simple, then S ⊗ EH(k) is injective and

contains S, so EH(S) is a subcomodule of S⊗EH(k) and consequently finite dimensional.
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As H0 is a subalgebra the coradical filtration {Hn}n≥0 is an algebra fil-
tration. Since EH(k) is finite dimensional, it embeds in Hm for some m and
hence H = H0EH(k) ⊆ H0Hm ⊆ Hm. Note also that H is finitely gener-
ated as a left H0-module. In [AD] the relation between co-Frobenius Hopf
algebras and the finiteness of the coradical filtration was again analyzed. In
that paper, an alternative proof of this fact was provided, it was proved that
a Hopf algebra with finite coradical filtration is co-Frobenius [AD, Theorem
2.1] and the following conjecture was posed:

Conjecture 1. [AD, page 153] The coradical filtration of a co-Frobenius

Hopf algebra is finite.2

In this subsection we generalize the above-mentioned results by proving
that a Hopf algebra H is co-Frobenius if and only if the Hopf coradical H[0]

is co-Frobenius and the standard filtration is finite. We will also show that
this finiteness condition is reflected in the fact that the diagram R in (1) is
finite dimensional. In the proof of these results we will need the following
new characterization of co-Frobenius Hopf algebras.

Theorem 2.3. The following assertions are equivalent:

(i) H is co-Frobenius.

(ii) Every nonzero H-comodule has a nonzero finite dimensional quo-

tient.

(iii) Every nonzero injective H-comodule has a nonzero finite dimensional

quotient.

(iv) There is an injective H-comodule which has a nonzero finite dimen-

sional quotient.

Proof. (i) ⇒ (ii) Let 0 6= M ∈ HM. Then EH(M) ∼= ⊕i∈IEH(Si) where

{Si}i∈I is a set of simple subcomodules of M [Gr, 1.5h]. By hypothesis,

dimEH(Si) < ∞ for every i ∈ I. Fix j ∈ I and set N = ⊕i∈I−{j}EH(Si).

Then 0 6= EH(M)/N ∼= EH(Sj) is finite dimensional, hence M/M ∩ N

too. We show that M/M ∩ N 6= 0. If M ∩ N = M , then M ∩ EH(Sj) =

M ∩N ∩EH(Sj) = 0, contradicting the fact that M is essential in EH(M).

(ii) ⇒ (iii) and (iii) ⇒ (iv) are obvious.

(iv) ⇒ (i) Let M ∈ HM be such injective comodule and g : M → P a

surjective comodule map with 0 6= P of finite dimension. We know that

M ∼= ⊕i∈IEH(Si) for a set {Si}i∈I of simple subcomodules of M [Gr, 1.5h].

There is j ∈ I such that g|EH (Sj) : EH(Sj) → P is nonzero. Composing

the canonical projection πj : H → EH(Sj) with this map, we obtain that

its image N is a nonzero finite dimensional quotient comodule of H. By

dualizing, N∗ is a finite dimensional left ideal of H∗. Then 0 6= N∗ ⊆

Rat(H∗) and by Theorem 2.1, H is co-Frobenius. �

2As of February 2012, it is known that the conjecture is true, see [ACE, Theorem 1.2].
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Remark 2.4. The equivalence between (i) and (iv) is formulated in [Do1,

page 223] for group schemes although its proof is completely different and

strongly uses results and tools of group scheme theory. That Rat(H∗) 6= 0

implies H co-Frobenius is the key fact that allows us to prove this result in

a much simpler manner. This must be seen as another instance of the power

of the Fundamental Theorem of Hopf Modules.

We are now in a position to prove our second main result:

Theorem 2.5. The following assertions are equivalent:

(i) H is co-Frobenius.

(ii) H[0] is co-Frobenius and H is finitely generated as a left H[0]-module.

(iii) H[0] is co-Frobenius and the standard filtration is finite.

(iv) The associated graded Hopf algebra grH is co-Frobenius.

(v) H[0] is co-Frobenius and the diagram R of H is finite dimensional.

Moreover, if H[0] is co-Frobenius, then H[0] = H0
m... H0 for some m ≥ 0.

Proof. (i)⇒ (ii) SinceH is co-Frobenius, its antipode is bijective [R1, Propo-

sition 2] and hence S(H0) = H0. By Lemma 1.1, H[0] is a Hopf subalgebra

of H; it is co-Frobenius because Hopf subalgebras inherit such a property

[Su, Theorem 2.15]. By Theorem 2.2, H = H0EH(k) ⊆ H[0]EH(k) ⊆ H.

(ii) ⇒ (iii) Let h1, ..., hr ∈ H be such that H = H[0]h1 + ... + H[0]hr.

There is m ≥ 0 such that h1, ..., hr ∈ H[m]. Then H = H[0]h1+ ...+H[0]hr ⊆

H[0]H[m] = H[m] by Lemma 1.1. 3

(iii) ⇒ (i) Let m ≥ 0 be minimal such that H = H[m]. Since H[0] is

co-Frobenius, the right H[0]-comodule H/H[m−1] = H[m]/H[m−1] has a finite

dimensional quotient H[0]-comodule M 6= 0 by Theorem 2.3. Then M is a

quotient H-comodule of H. Since H is injective, Theorem 2.3 applies.

(iii) ⇒ (iv) By hypothesis, (grH)[0] = H[0] is co-Frobenius and the stan-

dard filtration of H is finite. In view of Proposition 1.2 the standard filtra-

tion of grH is finite. By (iii) ⇒ (i), grH is co-Frobenius.

(iv) ⇒ (iii) Since H[0] is a Hopf subalgebra of grH, we have that H[0] is

co-Frobenius. On the other hand, the standard filtration of grH is finite

by (i) ⇒ (iii) applied to grH. From Proposition 1.2, it follows that the

standard filtration of H is finite.

(iv) ⇔ (v) The proof of this equivalence given in [AD, page 148] when

H0 is a subalgebra is also valid in this setting. The argument is as follows.

3The hypothesis S(H0) ⊆ H0 assumed in Lemma 1.1 is not needed here. Neverthe-

less, S(H0) ⊆ H0 holds. Since H[0] is co-Frobenius, S|H[0]
is bijective and consequently

S((H[0])0) = (H[0])0. Recall now that (H[0])0 = H0.
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For r ∈ R write ∆R(r) = r(1) ⊗ r(2) ∈ R ⊗ R. Denoting the H[0]-comodule

structure map of R by λ : R → H[0]⊗R, set λ(r) = r(−1)⊗r(0). The comulti-

plication of R#H[0] is given by ∆(r#h) = (r(1)#r(2)(−1)h(1))⊗(r(2)(0)#h(2))

for r#h ∈ R#H[0]. Notice that if K is a left coideal of H[0], then R#K is a

left coideal of R#H[0].

By Proposition 1.2, (grH)0 = (H[0])0 = H0. Under the Hopf algebra iso-

morphism grH ∼= R#H[0], the coradical (grH)0 corresponds to R0#H0 =

k#H0. In other words, there is a bijective correspondence between the

set of isomorphism classes of simple H-comodules and the set of isomor-

phism classes of simple grH-comodules. Take {Si}i∈I a set of simple left

coideals of H such that grH = ⊕i∈IEgrH(Si) and H[0] = ⊕i∈IEH[0]
(Si).

Then R#H[0] = ⊕i∈IR#EH[0]
(Si) as left comodules. This implies that

R#EH[0]
(Si) is an injective left coideal of R#H[0] containing k#Si. Ob-

serve that k#Si is the only simple left coideal contained in R#EH[0]
(Si): if

S ⊂ R#EH[0]
(Si) is another one, then S ⊂ (R#EH[0]

(Si)) ∩ (R#H[0])0 ⊂

k#Si, hence S = k#Si. Then EgrH(Si) ∼= R#EH[0]
(Si). The claim now

follows:

grH is co-Frobenius ⇐⇒ dimEgrH(k) < ∞ ⇐⇒ dimR < ∞ and

dimEH[0]
(k) < ∞ ⇐⇒ dimR < ∞ and H[0] is co-Frobenius.

Finally, if H[0] is co-Frobenius, then H[0] = (H[0])0EH[0]
(k) by Theorem

2.2. Recall from Lemma 1.1 that H[0] =
⋃

r≥0H
(r)
0 . Since dimEH[0]

(k) < ∞,

there is t ≥ 0 such that EH[0]
(k) ⊆ H

(t)
0 . Then H[0] = (H[0])0EH[0]

(k) ⊆

H0H
(t)
0 = H

(t+1)
0 . �

Remark 2.6. Notice that our proof of (i) ⇔ (iv) in Theorem 2.5 is different

to that in [AD] when H0 is a subalgebra. Given a simple left H-comodule S,

a grH-comodule grEH(S) attached to EH(S) is constructed as grEH(S) =

⊕i≥0 gr
i EH(S) with griEH(S) = (EH(S)∩Hi)/(EH(S)∩Hi−1). It is proved

then there that grEH(S) ∼= EgrH(S).

2.2. Exact sequences of co-Frobenius Hopf algebras. In this subsec-
tion we will prove that the central term B in an extension of Hopf algebras
k → A → B → C → k is co-Frobenius if and only if A and C are co-
Frobenius. We will also show that B possesses a nonzero left integral

∫

such
that

∫

|
A
6= 0 if and only if A is co-Frobenius and C is cosemisimple. We

will derive from this that B is cosemisimple if and only if A and C so are.

The first result mentioned will be obtained as a consequence of Theorem
2.3 and another new characterization of co-Frobenius Hopf algebras that we
present next. We will need the following description of the cotensor product.

Lemma 2.7. [S1, Lemma 3.1] Let M be a right H-comodule and X be a

left H-comodule. Let X• denote X but viewed as a right comodule via the

antipode. Then M✷HX = (M ⊗X•)coH . �
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A homological condition characterizing co-Frobenius Hopf algebras is that
the category of right (resp. left) comodules has enough projective objects,
[L, Theorems 3 and 10]. In the particular case of the coordinate algebra of
a group scheme, Donkin showed that the existence of a nonzero projective
object suffices to characterize such Hopf algebras, [Do2, Lemma 1]. We
observe that Donkin’s result easily extends to arbitrary Hopf algebras.

Theorem 2.8. The following statements are equivalent:

(i) H is co-Frobenius.

(ii) MH posseses a nonzero projective object.

(iii) Every injective right H-comodule is projective.

Proof. (i) ⇒ (ii) By [L], as said above.

(ii) ⇒ (iii) First we prove that every projective right H-comodule M is

injective. For N,X, Y ∈ MH with X of finite dimension there is a natural

isomorphism HomH(N ⊗X,Y ) ∼= HomH(N,Y ⊗X∗), where X∗ is the left

dual of X constructed using the antipode. Then N ⊗X is projective if N

is so. To show that M is injective we must check that for an epimorphism

g : Z → X of finite dimensional left H-comodules, the map idM ✷Hg =

(idM ⊗g)|M✷HZ : M✷HZ → M✷HX is surjective. It is known that the

notions of injective and coflat are equivalent in the category of comodules

over a coalgebra, [T1, Appendix, 2.1]. Since M ⊗X• is projective, the map

idM ⊗g : M ⊗ Z• → M ⊗ X• splits, so there exists a right H-comodule

map θ : M ⊗ X• → M ⊗ Z• such that (idM ⊗g)θ = idM⊗X• . Taking

into account the inclusions (idM ⊗g)((M ⊗ Z•)coH) ⊆ (M ⊗ X•)coH and

θ((M ⊗X•)coH) ⊆ (M ⊗Z•)coH and Lemma 2.7, id✷Hg splits and then it

is surjective. Hence M is injective.

Let P ∈ MH be a nonzero projective and Q a nonzero finite dimensional

subcomodule of P . Consider the canonical map k → Q⊗Q∗. Let S ∈ MH

be simple. We have an injective comodule map S → Q⊗Q∗⊗S → P⊗Q∗⊗S.

The latter is projective, so it is injective by the previous paragraph. Then

EH(S) is a direct summand of P ⊗Q∗ ⊗ S. Since P ⊗Q∗ ⊗ S is projective,

EH(S) is projective. Finally, every injective in MH is isomorphic to a direct

sum of injective hulls of simple comodules, thus it is projective.

(iii) ⇒ (i) By hypothesis, EH(k) is projective. It is known that a projec-

tive indecomposable comodule is finite dimensional, [GN, Lemma 1.2]. �

We give an application of the previous theorem addressed to prove the
announced result on exact sequences of Hopf algebras. Recall that a right
H-comodule M is said to be finitely cogenerated if there is a monomorphism
of right H-comodules from M into Hn for some n ∈ N.

Corollary 2.9. Let g : H → K be a Hopf algebra map.
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(i) If H is co-Frobenius and H is injective as right K-comodule, then

K is co-Frobenius.

(ii) If H is finitely cogenerated as a right K-comodule and K is co-

Frobenius, then H is co-Frobenius.

Proof. Let Res : HM → KM and Ind := H✷K− : KM → HM be the

restriction and induction functors respectively. We know that Res is left

adjoint to Ind . If H is injective as a right K-comodule, then Ind is exact,

and hence Res preserves projectives. On the other hand, Ind preserves

injectives because Res is always exact.

(i) By hypothesis and Theorem 2.8, there is a nonzero projective object

P ∈ HM. Then ResP is a nonzero projective object in MK and, using

again Theorem 2.8, K is co-Frobenius.

(ii) Let f : H → Kn be the monomorphism of K-comodules given by

hypothesis. Take M ∈ KM finite dimensional. We have a monomorphism

of vector spaces f✷K idM : H✷KM → Kn
✷KM ∼= Mn. From here, IndM =

H✷KM is finite dimensional. Since K is co-Frobenius, IndEK(k) is a finite

dimensional injective in HM. Moreover, Ind (EK(k)) 6= 0 because it contains

Indk = H✷Kk = (H ⊗ k•)coK ∼= HcoK 6= 0. By Theorem 2.8, H is co-

Frobenius. �

Recall from [ADe] that a sequence of morphisms of Hopf algebras

k // A
ι

// B
π

// C // k

is exact if ι is injective, π is surjective,

kerπ = BA+ and(2)

BcoC = A.(3)

There are some simplifications of this definition, see [ADe, S3, T2]:

• If A is stable under the adjoint action of B (i.e., A is normal) and
B is faithfully flat as an A-module, then (2) implies (3).

• If C is a quotient comodule of B under the adjoint coaction (i.e.,
C is conormal) and B is faithfully coflat as a C-comodule, then (3)
implies (2).

• A is a normal Hopf subalgebra of B and B is faithfully flat as an

A-module is equivalent to B is faithfully coflat as a C-comodule and

C is a conormal quotient Hopf algebra of B.

We are now ready to prove the announced result:

Theorem 2.10. Let k → A → B → C → k be an exact sequence of Hopf

algebras with B faithfully coflat as a C-comodule. Then, B is co-Frobenius

if and only if A and C are co-Frobenius.
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Proof. Assume that A and C are co-Frobenius. The functor Ind := B✷C− :
CM → BM is exact because B is injective as a right C-comodule. A nonzero

left integral
∫ C

: C → k for C is a surjective map of left C-comodules.

Then Ind
∫ C

: IndC → Indk in BM is surjective. Clearly IndC ∼= B,

and Indk = B✷Ck = (B ⊗ k•)coC ∼= BcoC = A. So A is a quotient of

B as a left B-comodule. Since A is co-Frobenius, A has a nonzero finite

dimensional quotient left A-comodule (and hence B-comodule). Therefore

B has a nonzero finite dimensional quotient left B-comodule and by Theorem

2.3, B is co-Frobenius.

Conversely, if B is co-Frobenius, then A is co-Frobenius by [Su, Theo-

rem 2.15]. That C is co-Frobenius follows from Corollary 2.9(i) since B is

injective as a right C-comodule. �

Examples 2.11. (1) For commutative Hopf algebras, Sullivan proved The-

orem 2.10 by totally different methods in [Su, Theorem 2.20].

(2) If the exact sequence k → A → B → C → k is cleft, then B is a

bicrossproduct of A and C. It is shown in [BDGN, Proposition 5.2] that B

is co-Frobenius if A,C are so by checking that
∫ A

⊗
∫ C

is a nonzero integral

for B where
∫ A

,
∫ C

are nonzero integrals for A and C respectively.

In the next examples k is an algebraically closed field of characteristic

zero.

(3) Let G be a connected, simply connected, simple complex algebraic

group and let ǫ be a primitive ℓ-th root of 1, ℓ odd and 3 ∤ ℓ if G is of

type G2. It was shown in [AD, Example 4.1] using the Hopf socle that the

quantum group Oǫ(G) is co-Frobenius. An alternative proof follows from

Theorem 2.10. For, Oǫ(G) is noetherian and fits into an exact sequence

k → O(G) → Oǫ(G) → H̄ → k, where dim H̄ < ∞ and O(G) is central in

Oǫ(G). Hence Oǫ(G) is faithfully flat over O(G) by [S3, Theorem 3.3].

(4) Let D = (I+, I−, N,Γ, σ, δ) be a subgroup datum as in [AG, Definition

1.1] and let AD be the Hopf algebra (quotient of Oǫ(G)) constructed in [AG,

§2]. Then AD is co-Frobenius iff the algebraic group Γ is reductive. By

[AG, Theorem 2.17], AD fits into the following diagram with exact rows and

surjective vertical maps

k // O(G) //

��
��

Oǫ(G)

��
��

// H̄

��
��

// k

k // O(Γ) // AD // H // k
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Hence AD is noetherian, O(Γ) is central and dimH < ∞; thus AD is faith-

fully flat over O(Γ) again by [S3, Theorem 3.3]. It is known that O(Γ) is

co-Frobenius iff Γ is reductive [Su, Theorem 3]. Then Theorem 2.10 applies.

(5) IfH is a co-Frobenius Hopf algebra and σ : H⊗H → k is a convolution

invertible 2-cocycle, then the twisted algebra Hσ is again co-Frobenius, since

the coalgebra structure remains unchanged, see [DT] for details. In this

way, many algebras of functions on multiparametric quantum groups are

co-Frobenius, like those studied in [AST], which are twistings of Oǫ(GL(n)).

However, there are multiparametric quantum groups that do not arise as

twistings as we point out next. Also, the twisting operation does not preserve

quotient Hopf algebras.

(6) Let ℓ be an odd natural number such that α−1β is a primitive ℓ-th root

of unity and αℓ = 1 = βℓ. The 2-parameter quantum group Oα,β(GL(n))

introduced in [T3] is co-Frobenius. For, Oα,β(GL(n)) is noetherian and fits

into an exact sequence k → O(GL(n)) → Oα,β(GL(n)) → H̄ → k, where

dim H̄ = ℓn
2
and O(GL(n)) is central in Oα,β(GL(n)), see [Ga, 5.1 and 5.3].

Then Theorem 2.10 applies. Notice that these 2-parameter quantum groups

are not twistings of the quantum GL(n) discussed above, see [Ga, Remark

3.2(b)] and [T4, Theorem 2.6].

(7) Let D = (I+, I−, N,Γ, σ, δ) be a subgroup datum as in [Ga, Defini-

tion 1.1] and let AD be the Hopf algebra constructed in [Ga, Section 5.3]

(different to the mentioned above from [AG]). Then AD is co-Frobenius iff

the algebraic group Γ is reductive. By [Ga, Theorem 5.23], AD fits into the

following diagram with exact rows and surjective vertical maps

k // O(GL(n)) //

��
��

Oα,β(GL(n))

��
��

// H̄

��
��

// k

k // O(Γ) // AD // H // k

Then Theorem 2.10 applies.

There is another result of Sullivan, [Su, Theorem 1.5] (whose proof was
apparently never published), stating that if A ⊂ B are commutative Hopf
algebras, then B has a left (right) integral

∫

such that
∫

|
A

6= 0 if and

only if A has a nonzero integral and the quotient Hopf algebra B/BA+ is
cosemisimple. We next prove this theorem for exact sequences of arbitrary
Hopf algebras. The following technical result will be needed:

Lemma 2.12. Let H be a co-Frobenius Hopf algebra with nonzero left in-

tegral
∫

. Then:

(i) EH(k) ∈ MH has a unique maximal subcomodule M .

(ii)
∫

|
EH (k)

6= 0 and
∫

|
M

= 0.
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Proof. (i) Let M := RadEH(k) be the radical of EH(k), i.e., the intersection

of all its maximal subcomodules. Let g ∈ H be the distinguished group-like

element. By [Cu, Theorem 5.2], EH(k)/RadEH(k) ∼= kg. Since kg is simple,

M is the unique maximal subcomodule of EH(k).

(ii) The distinguished group-like element satisfies
∫

(h(1))h(2) =
∫

(h)g

for all h ∈ H. Hence f : H → kg, h 7→
∫

(h)g is a morphism in MH .

Decompose H = EH(k) ⊕ P as a right H-comodule. Then
∫

(h(2))h(1) =
∫

(h)1H ∈ EH(k)∩P for all h ∈ P . Hence
∫

|
P
= 0. Since

∫

6= 0, it must be
∫

|
EH(k)

6= 0. Thus, f |
EH(k)

: EH(k) → kg is a nonzero morphism in MH .

Its kernel coincides with M by (i) and so
∫

|
M

= 0. �

An extension of semisimple Hopf algebras is semisimple by [BM, Theorem
2.6(2)] and [S2, Theorem 2.2], see also [A, Proposition 3.1.18]. Item (ii) of
the next result extends this fact to cosemisimple Hopf algebras.

Theorem 2.13. Let k → A → B → C → k be an exact sequence of Hopf

algebras with B faithfully coflat as a C-comodule.

(i) There is a nonzero left integral
∫

for B such that
∫

|
A

6= 0 if and

only if A is co-Frobenius and C is cosemisimple.

(ii) The Hopf algebra B is cosemisimple if and only if A and C so are.

Proof. Let notation be as in the proof of Theorem 2.10.

(i) Assume that A is co-Frobenius and C is cosemisimple. We may choose
∫ C

: C → k splitting the inclusion map i : k → C. Then the map of left

B-comodules Ind
∫ C

: B → A splits Ind i : A → B. Under the previous

isomorphisms Ind k ∼= A and IndC ∼= B, the map Ind i corresponds to the

inclusion map of A into B. So A is isomorphic to a direct summand of B as a

left B-comodule. Set B ∼= A⊕Q for some Q ∈ BM. Since A is co-Frobenius,

there is a nonzero left integral
∫ A

: A → k (i.e., a map of left A-comodules).

Then it is also a map of left B-comodules. The map
∫ B

: B → k defined by
∫ B

|
A
=

∫ A
and

∫ B
|
Q
= 0 is a nonzero left integral for B.

Conversely, it is clear that A is co-Frobenius. We prove that C is cosemi-

simple. We can take the injective hull EA(k) as a B-subcomodule of EB(k)

(viewing EA(k) as a B-comodule). Suppose that EA(k) 6= EB(k). Then

EA(k) ⊆ M , with M the unique maximal subcomodule of EB(k). From

the hypothesis and the precedent lemma, we have 0 6=
∫

|
A
(EA(k)) =

∫

(EA(k)) ⊆
∫

(M) = 0, a contradiction. Therefore EA(k) = EB(k). This

means that EA(k) is injective when viewed as a right B-comodule. If

S ∈ MA is simple, we know that EA(S) is a direct summand of S⊗EA(k) as

an A-comodule (hence as a B-comodule either). Since the latter is injective

as a B-comodule, EA(S) so is. This implies that A is injective as a right B-

comodule. There is a right B-comodule Q such that B ∼= A⊕Q. Applying
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the restriction functor Res : MB → MC , we get ResB ∼= ResA ⊕ ResQ.

Taking into account that BcoC = A, we have that ResA is isomorphic to a

direct sum of copies of k. As ResB is injective, from the above, k is injective

as a C-comodule, and so C is cosemisimple.

(ii) If B is cosemisimple, a nonzero left integral
∫

for B satisfies
∫

(1B) 6= 0.

Then
∫

|
A
(1A) 6= 0, giving that A and C are cosemisimple. Finally, if A and

C are cosemisimple, by (i), there exists a left integral
∫

for B such that
∫

|
A
6= 0. Since A is cosemisimple, 0 6=

∫

|
A
(1A) =

∫

(1B). From this, B is

cosemisimple. �

Remark 2.14. Notice that the hypothesis of B being faithfully coflat as a

C-comodule was not used in the proof of the implication from right to left

in both statements.

2.3. Finite dual co-Frobenius Hopf algebras. In this last subsection
we give one more application of Theorem 2.8. We obtain a result dual to
Corollary 2.9 for finite dual Hopf algebras. We previously need the dual
version of Lemma 2.7 that appears in [S1, Lemma 4.1].

Let K be a Hopf algebra. Given a right K-module M denote the quotient
vector space M/MK+ by M .

Lemma 2.15. Let M and X be right and left K-modules respectively. Let

X• denote X but viewed as a right module via the antipode. Then M ⊗X• ∼=

M ⊗K X. �

As usual H0 denotes the finite or Sweedler dual of H, i.e., the subspace of
H∗ spanned by the matrix coefficients of all finite dimensional H-modules.

Proposition 2.16. Let g : K → H be a Hopf algebra map. Assume that H

is finitely generated as a right K-module. Then

(i) If K0 is co-Frobenius, then H0 is co-Frobenius.

(ii) If H0 is co-Frobenius and H is flat as a right K-module, then K0 is

co-Frobenius.

Proof. Let KMf and HMf denote the categories of finite dimensional left

K-modules and H-modules respectively. We may identify KMf as the full

subcategory of finite dimensional objects in MK0
.

Since HK is finitely generated, there is an epimorphism of right K-

modules g : Kn → H for some n ∈ N. If M ∈ KMf , then the induced

linear map g⊗K idM : Mn ∼= Kn ⊗K M → H ⊗K M is surjective and hence

H ⊗K M is finite dimensional. Thus we may consider the induction and re-

striction functors Ind = H ⊗K − :KMf → HMf and Res :HMf → KMf . We

know that Res is right adjoint to Ind . The functor Ind preserves projectives

because Res is exact.
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(i) The projective cover P (k) of k in MK0
belongs to KMf , see [L, Theo-

rem 10, Lemma 15]. Then IndP (k) ∈ HMf is projective. It will be nonzero if

we show that its quotient Indk is nonzero. For, we apply Lemma 2.15 to ob-

tain Indk = H ⊗K k ∼= H ⊗ k• ∼= H = H/HK+. The latter is nonzero since

1H /∈ HK+. The projectives in HMf coincide with the finite dimensional

projectives in MH0
(this follows from the local finiteness of comodules). By

Theorem 2.8, H0 is co-Frobenius.

(ii) As H is flat as a right K-module, Ind is exact and so Res preserves in-

jectives. If H0 is co-Frobenius, there is a nonzero finite dimensional injective

Q ∈ MH0
by Theorem 2.8. So ResQ is injective in KMf . Taking into ac-

count that the injectives in KMf are exactly the finite dimensional injectives

in MK0
, and using once again Theorem 2.8, K0 is co-Frobenius. �

Examples of co-Frobenius (indeed cosemisimple) Hopf algebras were con-
structed in [Cu, Corollary 3.3] as finite dual Hopf algebras of group algebras
of locally finite groups whose elements have order not divisible by char(k).
More generally, it was shown there that if H is a Hopf algebra that is Von
Neumann regular as an algebra, then H0 is cosemisimple.

ACKNOWLEDGMENT

N. A. was partially supported by ANPCyT-Foncyt, CONICET,Ministerio
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de Córdoba. CIEM – CONICET. Medina Allende s/n (5000) Ciudad Universi-
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