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Abstract

We introduce a family of three paramet@rgimensional algebras repre-
senting elements in the Brauer groBg)(k, H,) of Sweedler Hopf algebra
H, over a fieldk. They allow us to describe the mutual intersection of the
subgroups arising from a quasitriangular or coquasitiidargstructure. We
also define a new subgroup 8% (k, H4) and construct an exact sequence
relating it to the Brauer group of Nicho&dimensional Hopf algebra with
respect to the quasitriangular structure attached ta th@-matrix with 1 in
the (1, 2)-entry and zero elsewhere.

MSC:16W30, 16K50

I ntroduction

The Brauer group of a Hopf algebra is an extremely complitateariant that re-
flects many aspects of the Hopf algebra: its automorphismsgogits Hopf-Galois
theory, its second lazy cohomology group, (co)quasituidentty, etc. Itis very dif-
ficult to describe all its elements and to find their multiption rules. For the most
studied case, that of a commutative and cocommutative Hgpbea, these are
the results known so far: the first explicit computation waselby Long in[[14]
for the group algebraZ,,, wheren is square-free and algebraically closed with
char(k) 1 n; DeMeyer and Ford [12] computed it féZ, with £ a commutative
ring containing2~—!. Their result was extended by Beattie and Caenepeél in 2] fo
kZ.,,, wheren is a power of an odd prime number and some mild assumptioks on
In [4] Caenepeel achieved to compute the multiplicatioesubr a subgroup, the
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so-called split part, of the Brauer group for a faithfullyorctive commutative and
cocommutative Hopf algebrB over any commutative ring. These results were
improved in [6] and allowed him to compute the Brauer groufate-Oort alge-
bras of prime rank. For a unified exposition of these resh#gprofuse monograph
[5] is recommended.

Since the Brauer group was defined for any Hopf algebra widctie an-
tipode ([7], [8]), it was a main goal to compute it for the shaat noncommutative
noncocommutative Hopf algebra: Sweedler’s four dimeraidtopf algebraHy,
which is generated over the fiekd(char (k) # 2) by the group-likeg, the (g, 1)-
primitive elementh and relationg)®> = 1, h? = 0, gh = —hg. A first step was the
calculation in[[20] of the subgroup M (k, H4, Ry) induced by the quasitriangular
structureRy =271 (1®1+g®1+1®g—g® g). It was shown to be isomorphic
to the direct product ofk, +), the additive group ok, and BW (k), the Brauer-
Wall group ofk. It was later proved in [9] that the subgroups\ (k, Hy, R;)
and BC(k, Hy,rs) arising from all the quasitriangular structur® and the co-
guasitriangular structures of H, respectively, withs, ¢ € k, are all isomorphic.

In this paper we introduce a family of three paramefedsmensional algebras
C(a;t,s), fora,t,s € k, that represent elements BQ(k, Hy). They will allow
us to shed a ray of light on the subgroup structurd@f(k, H,) and will provide
some evidences about the difficulty of the computation & ¢gmoup. The algebra
C(a;t,s) is generated by with relation 2> = a and has aH,-Yetter-Drinfeld
module algebra structure with action and coaction:

We list the main properties of these algebras in Section 2ntha[Z2.1) and we
show thatC/(a;t, s) is Hy-Azumaya if and only if2a # st. Whens = It they
represent elements iBM (k, Hy, R;) and this subgroup is indeed generated by
the classes of'(a; 1,t) with 2a # ¢ together withBW (k), Propositior 26. The
same statement holds true fBIC (k, Hy,r;) whent = sl replacingC'(a; 1,t) by
C(a;s, 1), Propositio 2.5.

Using the description oBM (k, Hy, R;) and BC'(k, Hy, rs) in terms of these
algebras, Section 3 is devoted to analyze the intersecfitirese subgroups inside
BQ(k,H,). Leti, and.s denote the inclusion map of the former and the latter
respectively. It is known thaBW (k) is contained in any of the above subgroups.
Theoreni 3.b states that:

(1) Im(ig) N Im(es) # BW (k) iff ts = 1. Ifthis is the caselm(i;) = Im(ts);
(2) Im(iy) N Im(is) # BW (k) ifand only ift = s;
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() Im(ut) N Im(es) # BW (k) if and only ift = s.

A remarkable property of our algebras is that they repreiamtsame class in
BQ(k, Hy) if and only if they are isomorphic, Corollafy 3.4.

A morphism from the automorphism group &f; to BQ(k, Hy) was con-
structed in[[19], allowing to considér? as a subgroup aBQ(k, H4). In Section
4 we show that the subgrouBM (k, Hy, R;) is conjugated taBM (k, Hy, R;.2)
inside BQ(k, Hy), for o € k', by a suitable representative iof, Lemmd4.1.

Any H,-Azumaya algebra possesses two natérabradings: one stemming
from the action ofg and one from the coaction (after projection) of In Sec-
tion 6 we introduce the subgrouBQ,.q(k, Hs) consisting of those classes of
BQ(k, Hy) that can be represented If,-Azumaya algebras for which the two
Zo-gradings coincide. On the other hand, the Drinfeld doubl& padmits a Hopf
algebra mag” onto Nicholss-dimensional Hopf algebr&(2). This map is quasi-
triangular ag%(2) is equipped with the quasitriangular structiitg corresponding
to the2 x 2-matrix N with 1 in the (1, 2)-entry and zero elsewhere, see5.1). If we
consider the associated Brauer grasip/ (k, E(2), Ry ), then Theorern 512 claims
that7 induces a group homomorphish fitting in the following exact sequence

1 — Zy —— BM(k, E(2),Rx) —— BQgraal(k, Hy) — 1.

Soin order to comput&Q(k, H4) one should first understarélM (k, E(2), Ry ).

This new problem cannot be attacked with the available igcies for computa-
tions of groups of type BM[ [20][[10],.[11]. Those computais were achieved by
finding suitable invariants for a class by means of a Skolerathir-like theory. In
the Appendix we underline some obstacles to the applicatitimese techniques to
the computation oBM (k, E(2), Ry ): the set of elements represented by algebras
for which the action of one of the standard nilpotent gemesabf £/(2) is inner
coincides with the set of classes represente@ygraded central simple algebras
and this is not a subgroup @M (k, E(2), Ry ), Theorems 6]1, 613. Moreover,
BM(k,E(2), Ry) seems to be much more complex than the groups of type BM
treated until now since, according to Proposifion 5.3, egclup BM (k, Hy, Ry)
may be viewed as a subgroup of it.

1 Preiminaries

In this paperk is a field, H will denote a Hopf algebra ovet with bijective an-
tipode S, coproductA and counits. Tensor products will be over k& and, for
vector space¥ andW, the usual flip map isdenoted by: V@ W — W V.
We shall adopt the Sweedler-like notationgh) = h(;y ® hey and p(m) =
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m(y ® myy) for coproducts and right comodule structures respectivélgr H
coquasitriangular (resp. quasitriangular), the set af@djuasitriangular (resp. qu-
asitriangular) structures will be denoted#y(resp.7).

Yetter-Drinfeld moduled.et us recall that ifA is a left H-module with action
- and a rightH-comodule with coactiorp the two structures combine to a left
module structure for the Drinfeld double(H) = H*“P 1 H of H (cfr. [15]) if
and only if they satisfy the so-called Yetter-Drinfeld caatipility condition:

p(1-b) =l by @ lzybayS~ ' (Iny), VI € H,be A. (1.1)

Modules satisfying this condition are usually called Yetinfeld modules. IfA
is a left H-module algebra and a rigt °’-comodule algebra satisfying (1.1) we
shall call it a Yetter-Drinfeldd-module algebra.

The Brauer grougsee[[7], [8]). Suppose that is a Yetter-Drinfeldd -module
algebra. TheZ-opposite algebra od, denoted by, is the underlying vector space
of A endowed with product o ¢ = c)(c(1) - a) for everya,c € A. The same
action and coaction off on A turn A into a Yetter-Drinfeld 7-module algebra.
Given two Yetter-DrinfeldH-module algebrasi and B we can construct a new
Yetter-Drinfeld moduled# B whose underlying vector spacedsz B, with action
h-(a®b) = huy-a® hp -band with coactiom @ b +— a(g)bo) ® bryag)-
This object becomes a Yetter-Drinfeld module algebra if wavigle it with the
multiplication

(a#b)(c#d) = aco)#(cq) - b)d.

For every finite dimensional Yetter-Drinfeld modulé the algebragnd(M)
and End(M)°? can be naturally provided of a Yetter-Drinfeld module algeb
structure through_(112) and (1.3) below respectively:

(h- f)(m) = hqy - f(S(h)) - m),
p(f)(m) = f(m)) ) © S~ my) f (m) )

(h- f)(m) = hey - F(S™Hhqy) -m),
p(f)(m) = f(mo)) o) @ f(m@ey)a)yS(ma),
whereh € H, f € End(M), m € M. A finite dimensional Yetter-Drinfeld mod-

ule algebraA is called H-Azumayaf the following module algebra maps are iso-
morphisms:

(1.2)

(1.3)

F: A#A — End(A), F(a#b)(c) =

G: A A — End(4)7, Gla##b)(c) = (4
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The algebragind(M) and End(M)°P, for a finite dimensional Yetter-Drinfeld
module M, provided with the preceding structures @&feAzumaya.

The following relation~ established on the set of isomorphism classeH of
Azumaya algebras is an equivalence relatigh~ B if there exist finite dimen-
sional Yetter-Drinfeld module3/ and N such thatA#End(M) = B#End(N)
as Yetter-Drinfeld module algebra$he set of equivalence classesibfAzumaya
algebras, denoted by Q(k, H), is a group with produdtd][B] = [A#B], inverse
elementA] and identity elemeniEnd(M )] for finite dimensional Yetter-Drinfeld
modulesM. This group is called thé&ull Brauer group of H. The adjective full
is used to distinguish it from the subgroups presented tigat,receive the same
name in the literature.

Given a leftH-module algebrad with action- and a quasitriangular structure
R = RW @ R® on H, aright H°’-comodule algebra structugeon A is deter-
mined by
p(a) = (R® .a)® RV, vae A

We will call this coaction the coaction induced bgnd R. It is well-known that

(A, -, p) satisfies the Yetter-Drinfeld condition. This allows thdidigon of the
subgroupBM (k, H, R) of BQ(k, H) whose elements are equivalence classes of
H-Azumaya algebras with coaction induced BY([8l, §1.5]). To underline that a
representativel of a given class ilBQ(k, H) represents a class BM (k, H, R)

we shall say that! is an(H, R)-Azumaya algebraThe inclusion map will be de-
noted byi: BM(k,H, R) — BQ(k, H). For H finite dimensionalBQ(k, H) =

BM (k,D(H),R), whereR is the natural quasitriangular structure on the Drinfeld
doubleD(H).

Dually, given a rightH°P-comodule algebral with coactionp and a coqua-
sitriangular structure on H, a H-module algebra structureon A is determined
by

h-a=agpr(h®ay), Yae€AheH,

and (A4, -, o) becomes a Yetter-Drinfeld module algebra. We will call taction
the action induced by andr. The subseBC(k, H,r) of BQ(k, H) consist-
ing of those classes admitting a representative whosenaigtimduced by is a
subgroup ([8§1.5]). To stress that a representatief a class inBQ(k, H) rep-
resents a class iBC(k, H,r) we shall say that! is an (H, r)-Azumaya algebra
The inclusion ofBC'(k, H,r) in BQ(k, H) will be denoted by.: BC(k,H,r) —

BQ(k, H).

On Sweedler Hopf algebran the sequel we will assume theliar(k) # 2.
Let H, be Sweedler Hopf algebra, that is, the Hopf algebra évgenerated by a



grouplike elemengy and an element with relations, coproduct and antipode:
=1, h=ghthg=0, A(h)=10h+heg, S(g) =g, S(h)=gh.

The Hopf algebrai, has a family of quasitriangular (indeed triangular) stioes.
They were classified in [18] and are given by:

1 t
Ry=5(101+10g9+9®1-9g®g)+5(h®@h+h®gh+gh®gh—gh@h),

wheret € k. It is well-known thatH, is self-dual so that{, is also cotriangular.
Let{1*, ¢g*, h*, (gh)*} be the basis off; dual to{1, g, h, gh}. We will often make
use of the Hopf algebra isomorphism

¢: Hy — Hj
1 »1*+g"=¢
h b+ (gh)*
g —1"—g"
gh — h* —(gh)*.
So, the cotriangular structures &f; can be obtained applying the isomorphism
¢ ® ¢totheR,’s. They are:

Ty ‘ 1 g h gh
171 1 0 0
gl|l -1 0 O
h |0 0 t —t
ghl0 0 t t

The Drinfeld doubleD(H,) = H;“” > H, of Hy is isomorphic to the Hopf
algebra generated ky(h) < 1, ¢(g) < 1, € 1 g ande <1 h with relations:

(¢(h) > 1)* =0

(P(g) 1) =epal;

(¢(h) = 1)(p(g) > 1) + (p(g) > 1)(p(h) 1) = 0;

(e h)? =0

(exxh)(exg)+ (exg)(exih)=0;

(exg)?=exl;

(¢p(h) pa1)(e pag) + (e g)(p(h) > 1) = 0;

(¢(g) = 1)(e > h) + (e h)(p(g) 1) = 05

(e g)(d(g) 1) = (¢(g) > 1)(e > g);

(¢(h) 1) (e h) — (e h)(p(h) 1) = (¢(g) 1) — (e g)



and with coproduct induced by the coproductsHn and H,“”. Forl € H, we
will sometimes writep(1) instead ofp(1) > 1 andl instead ofl > { for simplicity.

Let us recall that a Yetter-Drinfeld ;-module M with action- and coactiorp
becomes @ (H4)-module by lettingl < [ act as! for everyl € H, and(¢(l)
1).m = mg)(¢(1)(m(yy)) for m € M. Conversely, & (H4)-module M becomes
naturally a Yetter-Drinfeld module with{4-action obtained by restriction arf,-
coaction given by

o(m) = %(¢(1+g).m®1+¢(1—g).m®g+¢(h+gh).m®h+¢(h_gh)®gh).

We will often switch from one notation to the other accordiogonvenience.

Centers and centralizerdf A is a Yetter-DrinfeldH-module algebra, and
is a Yetter-Drinfeld submodule algebra 4f the left and the right centralizer &f
in A are defined to be:

CY(B) :=={a € A|ba = a)laq)-b) ¥b € B},
Ch(B):={a€A|ab= b(o)(b(l) -a) Vb € B}.

For the particular cas® = A we have the right centef” (A) and the left center
Z'(A) of A. Both are trivial whemd is H-Azumaya, [8, Proposition 2.12].

2 Somelow dimensional representativesin BQ(k, H,)

In this section we shall introduce a family of 2-dimensionapresentatives of
classes ilBQ(k, H4) that will turn out to be easy to compute with. They appeared
for the first time in[[16] and a particular case of them is teean [1, Section 1.5].

Leta, t, s € k. The algebra’(a) generated by with relationz? = «a is acted
upon byH, by

g-1=1, g-x=—-x, h-1=0, h-xz=t,
and it is a rightH,-comodule via
ps(1) =1®1, ps(z) =r®@9g+s®h.

It is not hard to check that’(a) with this action and coaction is a lefi,-
module algebra and a righi°’-comodule algebra. We shall denote it®yq; t, s).

Lemma 2.1 Let notation be as above.



(1) C(a;t, s) is a Yetter-Drinfeld module algebra with the preceding staves.

(2) As a module algebré&'(a;t,s) = C(a’;t',s') if and only if there isv € £
such thate = o?a’ andt = at’.

(3) As acomodule algebr@(a;t,s) = C(d’;t',s") if and only if there isx € k'
such thatz = o%a’ ands = as’.

(4) As a Yetter-Drinfeld module algebra(a;t,s) = C(a’;t', s') if and only if
there existsy € k' such thatu = o2d/,t = ot/ ands = as’.

(5) The module structure ofi(a; t, s) is induced by its comodule structure and
a cotriangular structurer; if and only ift = si.

(6) The comodule structure @ti(q; t, s) is induced by its module structure and
a triangular structureR; if and only ifs = it.

(7) TheH,-opposite algebra of'(a;t, s) is C(st — a;t, s).
(8) C(a;t,s) is an Hy-Azumaya algebra if and only #u # st.

Proof: Letx andy be algebra generators @a; ¢, s) andC(d/; t', s") respectively
with 22 = a andy? = d’.

(1) We verify condition[(111) fob = = andl = h. The other cases are easier to

check.

hezy - w(0) ® h@yzayS~! (ha))
=g-2®(—gh)+g-s®(gh)(—gh) +h-1® g¢*
+h-s®gh+x®hg+s® h?
=rQR@ggh+t®1—-—x®gh
= ps(h - ).

(2) An algebra isomorphisnf: C(a;t,s) — C(a;t',s") must mapz to ay for
somea € k. Thena = 22 = (ay)? = o?d’. Besidesh.f(x) = f(h.x) implies
t'a = t. Itis easy to verify that the condition is also sufficient.

(3) In the above setupy (f(z)) = (f ® id)ps(x) impliess’a = s. Itis not hard to
check that this condition is also sufficient.

(4) 1t follows from the preceding statements.

(5) If the module structure o(a;t, s) is induced by its comodule structupg
and some; € U, thent = h - x = ari(h ® g) + sri(h ® h) = sl. Conversely, if



t = sl, then

g-1=1=1r(g®1); h-1=0=1r(h®1);
g-r=—r=2xr(9®g)+sr(g@h) =z0)r1(9 @ T(1));
h-x=t= :L"r'l(h X g) -+ srl(h X h) = l’(O)T‘l(h & 75(1))

Therefore the action is induced by the coaction gnd

(6) If the comodule structure ofi(a;t, s) is induced by the action and sonfg €
T, then

1 l
2®g+s@h = py(z) = (R? 2)o R = 5 (20@9)+5(2t@h) = 2@ g +1t@h
hences = It. Conversely, ifs = [t then

ps()=1®1=(R?.1)0 RW,
ps(x) =2 ®@g+s@h= (Rl(z) -x)@Rl(l),

so the comodule structure is induced by the action/and

(7) C(a;t, s) hasl, x as a basis antlis the unit. The action and coaction band
x are as foilC (a; t, s). By direct computationyoz = z(g-x)+s(h-x) = —a+st,
soC(a;t,s) = C(st —a;t,s).

(8) The algebraC(a;t, s) is Hy-Azumaya if and only if the map$’ and G de-
fined in [1.4) are isomorphisms. The spdt@; t, s)#C'(a;t, s) has ordered basis
1#1, 1#x, x#1, x#x while End(C(a;t, s)) has basis*®1, 1*®z, *®1, 2*®

« with the usual identificatiod’(a; ¢, s)* ® C(a; t, s) = End(C(a;t, s)). Then for
everyb, c € C(a;t, s) we have

F(b#c)(1) =be, F(b#c)(x) =bx(g-c)+ sb(h-c),
G(1#b)(c) = cb, G(z#Db)(c) = x(g-c)b+ s(h - c)b.

The matrices associated with and G with respect to the given bases are respec-
tively

1 0 0 a 10 0 a
0 1 1 0 0 1 1 0
0 st—a a 0 0 a st—a 0
1 0 0 st—a 1 0 0 st—a

whose determinants (st —2a)? and(st —2a)? are nonzero if and only #a # st.
O



We have seen so far that the algebas:; s, t) can be viewed as representa-
tives of classes iBBM (k, Hy, R;) or in BC(k, Hy, ;) for suitablel € k. Itis
known that these groups are all isomorphic(ko+) x BW k), where BW (k)
is the Brauer-Wall group of. We aim to find to which pai(s, [4]) € (k,+) X
BW (k) do the class of”(a;t, s) correspond. The grou@M (k, Hy, Ry) was
computed in[[20]. The computation &C'(k, H4, 1) follows from self-duality
of Hy. It was shown in[[9] that all group8C(k, Hs,7) (hence, dually, all
BM (k, Hy, R;)) are isomorphic. We shall use the descriptiodBai/ (k, E(1), R;)
given in [11] beause this might allow generalizations. la thentioned paper the
Brauer groupBM (k, E(n), Ry) is computed for the family of Hopf algebragn),
whereE(1) = H,. We shall recall first where do the isomorphism of the dififiére
Brauer groupsBC' and BM stem from. The notion of lazy cocycle plays a key
role here.

We recall from [3] that a lazy cocycle off is a left 2-cocycles such that
twisting H by o does not modify the product if/. In other words: for every
h,l,m e H,

O'(h(l) ® l(l))O'(h(z)l(Q) ®m) = O'(l(l) ® m(l))a(h & l(g)m@)) (2.1)

o(hay @ L)) hele) = haylayo(he) @ le) (2.2)

It turns out that a lazy left cocycle is also a right cocyclevea a lazy cocycle
o for H and aH°P-comodule algebral, we may construct a ne °’-comodule
algebrad,,, which is equal to4 as aH°P-comodule, but with product defined by:

aeb= a(o)b(o)a(a(l) & b(l))

The group of lazy cocycles fofi, is computed in[[3]. Lazy cocycles are
parametrized by elements £ as follows:

oy ‘ 1 g h gh
1711 0 0
g|1l 1 0 0
h {0 0O % %
gh|0 0O % —%

We have the following group isomorphisms:

(2.3) ¥y : BC(k,Hy,1m9) — BC(k,Hy,r),[A] — [As,], constructed in[[9,
Proposition 3.1].

(2.4) @, : BM(k,Hy4, R;) — BC(k, Hy,rt),[A] — [A°]. We explain howA?
is equipped with the corresponding structure. TheAgftmodule algebrad
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becomes a right/;-comodule algebra. TheA® is a right H,**’-comodule
algebra. The quasitriangular structuie is a coquasitriangular structure in
H}. Then A°? may be endowed with the lef/;-action stemming from
the comodule structure ang,. On the other hand4°? may be viewed as
an H,"-comodule algebra through the isomorphism H, — Hj. The
coquasitriangular structur®; on H; corresponds to the coquasitriangular
structurer; on H, via ¢.

An isomorphism betwee® M (k, Hy, Ry) and BM (k, Hy, R;) can be con-
structed combining the above ones. Thus, the crucial stieparalyze the sought
correspondence faBM (k, Hy, Ry).

The Brauer grou@BM (k, Hy, Ry) is computed in[[20] through the split exact
sequence (see alsd [1, Theorem 3.8] for an alternative apipyo

| — (k,+) —> BM(k, Hy, Ro) =—= BW (k) — 1.
The mapj* : BM (k, Hy, Ry) — BW (k),[A] — [A] is obtained by restricting the
H,-action of A to akZs-action via the inclusion map: kZ, — H4. This map is
split by 7* : BW (k) — BM (k, Hy, Ro), [B] — [B], whereB is considered as an
H,-module by restriction of scalars via the algebra projectic Hy — kZs, g —
g,h — 0. A class[A] lying in the kernel of;j* is a matrix algebra with an inner
action of H, such that the restriction t8Z, is strongly inner. Thus there exist
uniquely determined, w € A such that

g-a=uau"t, h-a=w(g-a)—aw Vac€ A, (2.5)

=1, wutuw=0, w?=/}, (2.6)

for certaing € k. Mapping[A] — (3 defines a group isomorphisgt Ker(j*)

=~ (k,+). We will determinej*([C(a; t, s)]) andx ([C(a; t, s)]7*5* ([C(a;t, s)] 7))
whenever this is well-defined. To this purpose, we will firesckribe all products
of two algebras of typ€'(a; t, s).

Lemma22 Letz,y be generators fo€(a; t, s) andC(a’; ¢, ") respectively, with
relations, H,-actions and coactions as above. The produ¢t; t, s)#C(a’;t', )
is isomorphic to the generalized quaternion algebra witheyators X = x#1
andY = 1#y, relations, H4-action and andH 4-coaction:

X?=qa, Y?’=d, XY+YX=st,
g’X:_Xv Q'Y:—Y, h-X=t, h'Y:t,,
p(X)=X®@g+s®@h, pY)=Y®@g+s®h.
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Proof: By direct computation:
X? = (a#1)(a#1) = a#l, Y7 = (1#y)(14y) = d#1, XY =y,

YX = (1) (@#1) = o#(g - y) + s#(h - y) = XY + st'#1.

The formulas for the action and the coaction follow immegliafrom the definition

of action and coaction on#-product. O
Elements inBW (k) are represented by graded tensor products of the following

three type of algebrag®(1) generated by the odd elementvith 22 = 1; classi-

cally Azumaya algebras having trivizk-action; andC'(a)#C(1), whereC'(a) is

generated by the odd elemenivith 42 = a € &k ([13, Theorem 1V.4.4]).

Proposition 2.3 For a # 0 let [C(a;t,0)] € BM(k, Hy, Ry) denote the class of
C(a;t,0). Then

[C(a5t,0)] = (t*(4a)™, [C(a)]) € (k,+) x BW (k),
so the groupBM (k, H4, Ry) is generated byBW (k) and the classeg’(a; 1,0)].

Proof: Itis clear thatifa # 0thenj*([C(a;t,0)]) = [C(a)] and thatt* ([C(a)]) =
[C(a;0,0)]. Thus,[C(a;t,0)#C(—a;0,0)] € Ker(5*). We shall compute its
image throughy. By Lemmd2.2C(a;t,0)#C(—a;0,0) is generated byX and
Y with relations,H-action andH 4-coaction:

X?2=q, Y?’=—-q, XY+YX=0,

g-X=-X, g-Y=-Y, h-X=t h-Y=0,
p(X)=X®g, pY)=Yag.

We look for the elementy satisfying [2.5) and (216). This element must be odd
with respect to the&Z,-grading induced by the-action, hencav = AX + uY

for some), i € k. Conditionh - X = —wX — Xw impliest = —2Xa and
conditionh - Y = —wY — Yw implies0 = —2ua sow? = a\? = t?(4a)~'.
Thus[C(a;t,0)] = (t*(4a)71,[C(a)]) and we have the first statement. For the
second one, lets, [4]) € (k,+) x BW (k). If 8 = 0 there is nothing to prove. If

B # 0, the clasgC((48)~'#%:£,0)] = [C((48)7:1,0)] = (8,[C((48)~1)), so
BM (k,Hy, Ro) = (k,+) x BW (k) is generated by3W (k) and the[C(a; 1,0)]

for a # 0. O

Lemma 2.4 Let A be aD(H,)-module algebra.
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(1) If the h-action onA is trivial, then A is (Hy, Ry)-Azumaya if and only if it
is (Hy, R;)-Azumaya for every € k.

(2) If the ¢(h)-action onA is trivial, then A is (Hy, ro)-Azumaya if and only if
itis (Hy4,r)-Azumaya for every € k.

(3) The representatives d8W (k) in BC(k, Hy,7) and BM (k, Hy, R;) all
coincide when viewed insideéQ(k, Hy).

Proof: (1) It follows from the form of the elements i@ that if A is (Hy, Ro)-
Azumaya and the action df on A is trivial (i.e., if it lies in BW (k)), then its
comodule structurgy, induced byR; coincides with the comodule structupg
induced byR,y. Hence, the maps’ andG with respect to the action ang are
the same as the mapsandG with respect to the action ang, so A is (Hy, Ry)-
Azumaya for every € k.

(2) Itis proved as (1).

(3) The first statement shows that the representativeB16f(k) inside the
different BM (k, Hy, R;) coincide. The second statement shows the same for
BC(k,Hy,ry). Therefore we may assume= t = 0. The elements of this
copy of BW (k) consist ofZs-graded Azumaya algebra$ where the grading
is induced by the action of. The h-action is trivial. If the coactiorp is in-
duced byRy, thena € A is odd if and only ifp(a) = a ® g. The action—
induced onA by rg andp is as follows: h — a = 0 for everya € A and
g — a = —aif and only if p(a) = a ® g, that is, the original action ol
and — coincide. Thus, the maps and G coincide in all cases and represents
an element ilBBW (k) C BM (k, H4, Ry) if and only if it represents an element in
BW (k) € BC(k,Hy,ro). O

Proposition 2.5 The groupBC(k, H4,75) is generated by the Brauer-Wall group
and the classef”(a; s,1)] for 2a # s.

Proof: We will first deal with the case = 0. We will show that the isomorphism
®y : BM(k,Hy,Ry) — BC(k,Hy,10), [A] — [A°P]in (2.4) mapsC(a;1,0)]
to [C’(a; 0, 1)] andBW(k) C BM(]{?, Hy, Ro) to BW(]{?) C BC(k‘, Hy, 7‘0). The
class[C(a; 1, 0)] is mapped to the class of the algelitéu)°? with comodule struc-
ture

plr) =z@ (1" —g") +1@ (k" +(gh)") =z ®@ ¢(g9) + 1@ ¢(h)

and Hy-action induced by the cotriangular structugg that is,g - + = —x and
h -z = 0. The algebra’(a)°P with these structures is juét(a; 0, 1).
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Let A be a representative of a classiBW (k) C BM (k, Hy, Ry) with action
-for whichh - a = 0 for all a € A. The clasgA] is mapped byp, to the class of
A°P with coaction

pla)=a®1"4+(g-a)@g* "+ (h-a) @h* 4+ (gh-a) ® (gh)* € A® ¢(kZs).

Therefore[A?] € BW (k) C BC(k, Hy,ro).

We now takes € k arbitrary and use the isomorphisin, : BC(k, Hy,ro) —
BC(k,Hy,rs) in (2.3) to prove the statement. We will show tHét(a;0,1)]
is mapped tdC(a + 27 1s;s,1)] through¥,. Recall that¥, maps the class of
C(a;0,1) to the class of the algebré(a; 0,1),,. Itis generated by with relation

x.x:xzas(g@@g)+xas(h®g)+xas(g®h)+as(h®h):a+§,

with (same) coactiop(z) = z ® g + 1 ® h and action induced by andr,, that is:
g-x=rsggxr+rs(g®h)=—x, h-x=rs(h®@g)xr+rs(h®@h)=s.

ThenV ([C(a;0,1)]) = [C(a + 5;5,1)].

Since the coaction is not changed ¥y the class of an element for which
the image of the coaction is i ® kZy is again of this form. Hence the classes in
BW (k) Cc BC(k,Hy,ro) correspond to the classesBiV (k) C BC(k, Hy,7s).

O

Proposition 2.6 The groupBM (k, Hy, R;) is generated by the Brauer-Wall group
and the classeR”(a; 1,t)] for 2a # t.

Proof: Through the isomorphisn®, : BM((k,Hy, R;) — BC(k,Hy,r) in
(2.4), the clas$C(a; 1,t)] is mapped tdC/(a;t,1)] and the classes iBW (k) C
BM (k, Hy, R;) correspond to the classes BIV (k) ¢ BC(k, Hy,r). The Hy-
comodule structure on the algelrda)” is:

plr) =z@ (1" —g" )+ 1@ (h" + (gh)") =z @ ¢(g) + 1 © ¢(h)

The Hy-action induced by the cotriangular structureon H, givesh - x = t.
Therefore this algebra i€'(a;t,1). Finally, the statement concerniigiV (k) is
proved as in the preceding theorem. O

Remark 2.7 ThatBM (k, H4, R;) is generated bW (k) and the classd€’(a; 1, t)]
for 2a # t was first discovered in[1, Theorem 3.8 and Page 392] as agoasee
of the Structure Theorems foH,, R;)-Azumaya algebras. Since we will strongly
use Proposition 216 later, for the reader’'s convenience fiegeal this alternative
and self-contained approach. Notice that it mainly relied.emmd 2.2 that will
be another key result for us in the sequel.
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3 Fitting BM (k, Hy, Ry) and BC(k, Hy, rs) into BQ(k, Hy)

As groupsBM (k, Hy, Ry) = BC(k, Hy,r) for everys,t € k. However, their
images inBQ(k, H,) through the natural embeddings

ir: BM(k, Hy, Ry) — BQ(k,Hy) and ty: BC(k, Hy,rs) — BQ(k, Hy)

do not coincide in general. In this section we will describe mutual intersections
of these images.

Proposition 3.1 Let0 # t € kthenIm(i;) = Im(t;-1)

Proof: Givent # 0, by Lemmd21L[C(a;1,t)] € Im(i;) N Im(t-1) for ev-
ery a # 2t. Besides, by Lemm@a 2. 4t(BW(k)) = 15(BW(k)) for any s € k.
Since the elements dW (k) and the[C'(a; 1,t)]'s generateBM (k, Hy, R;) and
BC(k, Hy,ri—1) we are done. O

Given[A] in BQ(k, Hy), there are two naturdl,-gradings ord, the one com-
ing from theg-action, for whichja| = 1iff g-a = —a for 0 # a € A and the one
arising from the coaction, for whiateg(a) = 1ifand only if id®@)p(a) = a®g
wherer is the projection ont&Z,. If we view A as aD(H,)-module, the grading
| - | is associated with the g-action whereas the gradinlpg is associated with
the ¢(g) > 1-action. Let us observe that for the clasé&g; ¢, s) the two natural
gradings coincide, for eveny, t, s € k.

Lemma3.2 Let[A4] € BQ(k,H4) and[B] in io(BW (k)). As aH,-module alge-
bra,

(1) A#B = A®B, the Z,-graded tensor product with respect to tdeg-
grading onA and the natural - |-grading onB.

(2) B#A = B®A, theZ,-graded tensor product with respect to thé-grading
on A and the natural - |-grading onB.

Proof: The two gradings o coincide and we have, for homogeneéus B and
¢ € A (for thedeg-grading):

(a#tb)(c#d) = aci)#(cq) - b)d = ac# (g - b)d = (=1)%BWPlacgtbd.
For homogeneous € B andc € A (for the| - |-grading):

(d#tc) (b#ta) = dbioy#(bqry - ¢)a = db#(g" - c)a = (= 1)l dbtca.
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It follows from Propositions 2]%, 2.6 and Lemfal3.2 that Eheents infm(i;)
andIm(.;) can be represented by algebras for which theZyxgradings coincide,
since this property is respected by theproduct. Indeed, this kind of representa-
tives give rise to a subgroup that we will study in Section 5.

We will show now that groups of typ&C or BM either intersect only in
BW (k) or coincide and that the latter happens only in the situaifdProposition
B.1.

Theorem 3.3 Consider the class df'(a;t, s) in BQ(k, Hs). Then:
(1) [C(a;t,s)] € Im(i;) if and only ifs = I¢;
(2) [C(a;t,s)] € Im(y) ifand only ifsl = ¢.

Proof: (1) We know from Lemmg_2]1 that if the action (resp. coactwfi()'(a; ¢, s)
comes from the cotriangular (resp. triangular) structtinen the indicated rela-
tions among the parameters hold. We only need to show thafoiindition is still
necessary if we change representative in the class.

Let us assume tha€'(a; ¢, s)] € Im(i;) for somel € k. Then[C(a;t,s)] =
[C(b; 1,1)][A] = [A][C(b; 1,1)] for some[A] € i;(BW (k)) andb € k with 2b # .
Hence[C(a;t, s)#C (1l — b;1,1)] = [A] € 4/(BW (k)). We may choosel so that
the h-action and thes(h)-action onA are trivial.

Since[C (a;t, s)#C(1 — b; 1,1)#A] is trivial in BQ(k, Hy), there is aD(H,)-
module P such thatC(a;t, s)#C (Il — b;1,1)#A = End(P) as D(H4)-module
algebras. Thefitnd(P) has a strongly inneD(H,)-action. In other words, there
is a convolution invertible algebra map D(H4) — End(P) such that

(moan) - f =wv(ma)<nu)fr (ma) Xng)

for everym 1 n € D(Hy), f € End(P), wherev—! denotes the convolution
inverse ofv. In particular, foru = v(e > g) andw = v(e > h)u we have

g’f:ufu_17 hf:'IU(gf)_fw,
uw?=1, w?=0, ww+wu=0.
We should be able to finll, W € C(a;t,s)#C(l — b; 1,1)# A such that

Ut=1, ¢-Z=UZU"},
g W=-W, W2=0, h-Z=W(g-Z)—IZW

forall Zin C(a;t,s)#C(l — b; 1,1)#A.
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Using the presentation @f (a; t, s)#C(l—b;1,1) in LemmdZ.2 we may write
W =3 0<; j<1 X'Y7#aij with a;; € A homogeneous of degrée-j + 1 mod 2
with respect to theg-grading. Since the action @fon 1#A is trivial we have, for
homogeneous ¢ A:

0 =h-(1#y)
=Wi(g - (1#7)) — (1#NW
= (_1)”' Zogmgl Xiyj#az’j’Y - Zogmg(Xiyj)(o)#((Xin)(l) ) 7)%’3’
= (=) [1# a0y + Y#any + X#ai0y + XY #a117]
— 1#ya00 — Y#(=1)Myag — X#(—1)Myaig — XY#yans.
From here we deduce that the odd elemets o1; and the even elementsg, oy

belong to theZ,-center ofA. Henceagg, a1 are zero andv g, oy are scalars. So,
we can writelWW = a X #1 + Y #1 for somea, 5 € k and we will get:

at+f3 =h-W=-2W?=0,
t =h(X#1) = a(—2a +ts),
1 =h-(Y#1)=—as—26(—-0b) =a(—s+2t(l - b)).

Combining the second equation with the third one multipbgd and usingy # 0
we obtain
a=ts—t>(1 —b). (3.1)

The| - |-grading and theleg-grading onC/(a; t, s)#C (I — b; 1,1)# A coincide.
Therefore:

v(¢(g) 1) fr(p(g) 1)t =olg) - f=g-f=ufu""  Vf€End(P).

SinceEnd(P) is central andv is an algebra morphismy’ := v(¢(g) < 1) =
Au with A = +1 (both possibilities will be analyzed later). The elemenit:=
v(p(h) < 1) satisfies

¢(h) - f=w'f —(6(g)- flw'  Vf € End(P).
Thus, we can tak®’ in C(a;t, s)#C (I — b; 1,1)# A such that
WU+UW' =0, (W)2=0 o¢h)-Z=W2Z—-(g-2)W

for all Z in C(a;t,s)#C (I — b;1,1)#A. Arguing as foriW before, we see that
W' = ~vX#1 + 6Y #1 for somev,d € k. It follows from the last relation of
D(Hy) in §llthat

v(e < hg)v(d(h) > 1)+v(¢(h) > 1)v(e > hg) = v(¢(g) > 1v(e > g)—v(e > g)*.
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This impliesW W’ + W'IW = X\ — 1. Besides,
0=q¢(h) - W =2(W')? = sy 4+l
Now, by direct computation:
A—1 =WW +W'W
=a((X —tY)(vX + YY) + (7 X + 0Y)(X —tY))
= ay(2a — ts) + ad(s — 2t(l — b))
= —ty—o.

Let us first assume@ = 1. Then,y(s —tl) = 0. If v = 0, thend = 0 and so
W’ = 0. This means that the(h)-action is identically zero, yielding = | = 0.
Otherwise,s = tl and we are done.

We finally show that the possibilitk = —1 can not occur. I\ = —1, then
d =2 —tyandsy = —(2 — tvy)l. On the other hand,

I=9¢(h) - (Y#1) =W (YH#1) + YH#OW =sy+22—-ty)(I—b) (3.2)
Moreover,

= (W")?
v2a + 8%(1 — b) + ~ds
~

2ts =2 (1= b)) + (2 = t9)*(L = D) + (2 — ty)s
2(1 — b)(2 — 2ty) + 2s

[ '@ [

From heresy = (2ty — 2)(I — b). Substituting this in[(3]2) we gét= 2b, contra-
dicting the fact that’(b; 1, 1) is (H4, R;)-Azumaya.

(2) If L # 0, thenIm(y) = Im(i;—1) by Propositiof 311 and the statement
follows from (1). It remains to show thaC'(a;t,s)] € Im(w) impliest = 0.
If [C(a;t,s)] € Im(t), there existd € k and anH,-Azumaya algebral with
trivial h-action and trivial¢(h)-action such thafC(a;t,s)] = [A#C(;0,1)].
ThenC'(a;t, s)#C(—b;0,1)#A = End(P) for someD(H,)-moduleP. Arguing
as in (1) we see that thereli§ = a X#1+8Y #1 € (C(a;t,s)#C(—b;0,1))#A
for somea, 5 € k such that

h-Z=WI(g-2Z)—ZW,
0 =h-W=-2W2=at+ 3,
t =h-(X#1)=—2aq,
0 =h-(Y#1)=200.
From here if follows that = 0. O
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Corollary 3.4 Let[C(a;t,s)], [C(b;p,q)] be inBQ(k, Hy). Then[C(a;t,s)] =
[C(b;p,q)] ifand only ifC(a;t,s) = C(b;p, q).

Proof: We analyze the case # 0, the other cases are treated similarly. If
[C(a;t,s)] = [C(b;p,q)] andp = 0then[C(a;t, s)] € Im(wy), contradicting The-
orem3.8. Thernp # 0 and we may reduce to the cd§&a; 1, s)] = [C(b; 1,q)] €
Im(iq). Applying again Theorerin 3.3 we see that ¢ and the equality of classes
is an equality inBM (k, Hy, Ry;). Applying <I>51\I/;1<I>q we obtain the equality
[C(a —271¢;1,0)] = [C(b—271¢;1,0)] in BM(k, Hy, Ry). From Proposition
[2.3, we obtain(4a — 2¢)~! = (4b — 2¢)~! and we have the statement. O

Theorem 3.5 Leti; : BM(k, Hy, Ry) — BQ(k,H,) and¢s : BC(k, Hy,7s5) —
BQ(k, Hy) be the natural embeddings BQ (k, H4). Then:

(1) Im(ig) N Im(es) # io(BW (k)) if and only ifts = 1. If this is the case, then
Im(iy) = Im(is);

(2) Im(i¢) N Im(is) # io(BW (k)) if and only ift = s;
(3) Im(u) NIm(es) # io(BW (k)) if and only ift = s.

Proof: This is a consequence of Propositions| 2.3] 2.5,[2.6, 3.1 aedrén{ 3.8.
O

4 Theaction of Aut(H,) on Im(i;) and I'm(¢s)

For a Hopf algebraf, a group morphism from\uty,pe(H) to BQ(k, Hy) has
been constructed in[8], where the casgafwas also analized. The image of an
automorphisnu can be represented as follows.

Let us denote by, the right H-comodule H with left H-actionl - m =
a(lz))mS~(lq)). ThenA, = End(H,) can be endowed of th&/-Azumaya
algebra structure:

(- f)(m) =1y - f(SUa) -m),

p(f)(m) = f(m)) o) @ S~ (my) f(m)))-
The assignment — [A, 1] defines a group morphisiuteps (H) — BQ(k, H).
The image ofAutype(H) acts onBQ(k, H) by conjugation. An easy descrip-
tion of [B(a)] := [A4][B][A.]~! for any representativés has been given ir[8,

Theorem 4.11]. As an algebiB(«) coincides withB, while the H-action and
H-coaction are:

heab=a(h) b, pa(b)=bo ®a (b)) (4.1)
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When H = H, the Hopf automorphism group utpeps(H4) = k° and
consists of the morphisms that are the identitygoend multiply & by a nonzero
scalara. The moduleH, has action

9:-9=9, g-h=-h,
h-g=ahg+g¢g*S~'(h) = —-(1+a)gh, h-h=0,

and the kernel of the group morphism consists{&fl}. We may thus embed
(k)2 = k' /{£1} into BQ(k, Hy) (cf. [19]). We shall denote by the image of
this group morphism.

We analyze this action on the classes and subgroups debdmitiee previous
sections.

Lemma4.l Leta € k'. Then:
(1) [AdJ[C(ast, $)][Aa] ™" = [C(a; at, sa™ )]
(2) K acts trivially onio(BW (k)).

In particular, BM (k, Hy, R,,2) is conjugate toBM (k, Hy, R;) in BQ(k, Hy)
while BM (k, Hy, Ry) and BC'(k, Hy, 1) are normalized byx'.

Proof: (1) It follows from direct computation that
hwr=ot, garz=-z, pr)=r®g+sa'@h

(2) Since: the action of an automorphism i, is trivial on g; the action of
h is trivial on a representative of a class iV (k); and the comodule map on a
representativel of a class inBW (k) has image iM ® kZs, the formulas in[(4]1)
do not modify the action and coaction onhtherefore[A] = [A,][A][A.] ! for
every[A] € io(BW (k)).

SincelIm(i;) is generated by, (BW (k)) and the classeg’(a;1,1)], we see
that Im(;) is conjugate tdm(i,2;) in BQ(k, Hy). If I = 0 we get the statement
concerninglm(iy). The statement concernid®C'(k, Hy, ro) follows because this
group is generated by (BW (k)) and the class€€’(a; 0, 1)]. O

Remark 4.2 The observation thatm(iy) is normalized byK has already been
proved in [21,84]. Lemmd4.1l should be seen as a generalization of that.resul

Itis shown in[18] that Hy, R;) is equivalent td Hy4, R,) if and only ift = a?s
for somea € k'. The above lemma shows that the Brauer groups of fypé are
conjugate inBQ(k, H,) if the corresponding triangular structures are equivalent
This is a general fact:
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Proposition 4.3 Let R and R’ be two equivalent quasitriangular structures éh
and leta € Autpope(H) be such thafa ® «)(R') = R. Then the images of
BM (k,H, R) and BM (k, H, R") are conjugate by the image ofin BQ(k, H).

Proof: If B represents an element B\ (k, H, R) then there will be an action
- on B such that the coactiop is given byp(b) = (R® -b) @ R for all b €
B. The image ofa in BQ(k, H) is represented byl,,-1. A representative of
[A.]7Y[B][A4] is given by the algebr#® with actionh -,—1 b = a~!(h) - b. The
coaction is given by

pa(d) = (R . b) @ o(RW) = ((R?) -4 b) @ o(RV) = R ., b RV,
so the coaction ofd,]~}[B][A,] is induced byR’ and-,,. O

For the dual statement, the proof is left to the reader.

Proposition 4.4 Let r and 7’ be two equivalent coquasitriangular structures on
H and leta € Autpeps(H) be such that’(« @ a) = r. Then the images of
BC(k,H,r)and BM (k, H,r") are conjugate by the image ofin BQ(k, H).

5 Thesubgroup BQyrai(k, Hy)

In this section we shall analyze the classes that can besames byii,-Azumaya
algebras for which the gradings coming from ghaction and the comodule struc-
ture coincide. They form a subgroup that will be related te Brauer group
BM (k,E(2), Ry) of Nichols 8-dimensional Hopf algebr#&(2) with respect to
the quasitriangular structur®,y attached to th&€ x 2-matrix N with 1 in the
(1,2)-entry and zero elsewhere.

Let BQgrqa(k, Hy) be the set of classes that can be represented Hy-a
Azumaya algebral for which the| - |-grading and theleg-grading coincide. In
other words, the classes B(Q,.q(k, H4) can be represented by(H,)-module
algebras on which the actions @¢&ind¢(g) coincide. The last defining relation of
D(H,) in Section 1 implies that the action afand¢(h) on such representatives
commute. ClearlyBQg,qq(k, Hs) is a subgroup oBQ(k, Hy).

Proposition 5.1 BQ4rqq(k, Hy) is normalized by .

Proof: Let [A] € BQgrad(k, Hy) With |a] = deg(a) for everya € A and let
[A.] € K. Then[A,#A#A,] is represented byl with action and coaction deter-
mined by [(4.1). Since is fixed by all Hopf automorphisms df, we have

gaa=g-a, (d®@m)pa(a)=(id® m)p(a),
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so the two gradings are not modified by conjugatior Ay]. O

The subgroupBQ«q(k, Hs) consists of those classes that can be represented
by module algebras for the quotient B(H,) by the Hopf ideall generated by
#(g) 11— e g. Let us denote byt; the canonical projection ontb(Hy)/1.

Let £(2) be the Hopf algebra with generatarsz;, =2, with relations

62:1, 3322:0, cr;+xic=0,1=1,2, x122+ 2271 =0,

coproduct
Alc)=c®c, Alr)=1®z +z;c,
and antipode
S(c)=¢, S(z;)=cx;.

The Hopf algebra morphism

T: D(Hy) — E(2)
Plg) =l e
eEXIg —c
e h — T
d(h) <1 — cxo

determines a Hopf algebra isomorphidiiH,4)/I = E(2). The canonical quasi-
triangular structurék on D(H,) is

R =1ex(1®1*+9® g +h®h*+ gh® (gh)*) > 1]
+ilex(1®e+gRe+1®d(9) — g® d(g)
+h ® ¢(h) +h @ (gh) + gh @ ¢(h) — gh @ ¢(gh)) > 1]

so (mr ® mr)(R) is a quasitriangular structure fa@p(H4)/I = E(2). Applying
T ® T to'R we have:

(TeT)(R) =3(191+1®@c+c®l—c®c

(5.1)
+x1 ® cxa + 1 @ 9 + cx1 ® cro — cx1 R T9)

The quasitriangular structures @i{n) were computed ir [17]. They are in bijec-
tion with n x n-matrices with entries ik. For a given matrix\/ the corresponding
guasitriangular structure is denoted By;. The mapI’ induces a quasitriangu-
lar morphism from(D(H,4), R) onto (E(2), Ry), where N is the2 x 2-matrix
with 1 in the (1,2)-entry and zero elsewhere. }f is a representative of a class
in BQgrqqa(k, Hy) on which the ideall acts trivially, thenA is an £(2)-module
algebra and the mags andG on A ® A are the same as those inducedRy, so
Ais (E(2), Ry)-Azumaya.
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Theorem 5.2 The groupBM (k, E(2), Ry ) fits into the following exact sequence

1 — Zy —— BM(k,E(2), Ry) —— BQgraa(k, Hy) — 1.

Proof: Restriction of scalars througl' provides a group morphisrd™ from
BM (k,E(2),Rn) to BQ(k, H) whose image i83Q4qq4(k, Hy). The kernel of
T* consists of those classéd] such thatd = End(P) asD(H4)-module alge-
bras, for somé)(H,)-module P. The clas§A| may be non-trivial only ifg and
¢(g) act differently onP even though they act equally dind(P). The ¢(g)-
and g-action onEnd(P) are strongly inner, hence there are eleméntand in
End(P) such thatp(g) - f = UfU' = ufu~! = g- f for every f € End(P).
SinceEnd(P) is a central algebrd/? = u? = 1, uU = Uu. From here[J = +u,
and if [End(P)] # 1in BM(k, E(2), Ry) we necessarily havel = —u. The
actions ofg and¢(g) on P are given by the elementandU respectively, so for
every non-trivial[A] in Ker(7T*) we haveA = End(P) for someD(H,)-module
P for which g acts as-¢(g). We claim that there is at most one non-trivial element
in Ker(T™).

Given any pair of such elemenind(P) andEnd(Q) representing classes in
Ker(T*) we haveEnd(P)#End(Q) = End(P ® Q) asD(H4)-module algebras
by [7, Proposition 4.3], wherf®(Q is aD(H,)-module. Then, the actions gand
#(g) on P ® Q coincide, saP ® Q is anE(2)-module. Thus|End(P)][End(Q)]
is trivial in BM (k, E(2), Ry ) for every choice ofP and@. Therefore Ker(7™)
is either trivial or isomorphic t&,. The proof is completed once we provide a
non-trivial element. Let us considét = k2 on whichg, h, ¢(g) and¢(h) act via
the following matrices:, w, U, W, respectively:

1 0 0 0 0 1
u-(o _1>, w—<_2 0), U=-u, W—<0 0>.

Then P is a D(H,)-module but not anF(2)-module. On the other hand, the
D(H,)-module algebra structure dind(P) is in fact anE(2)-module algebra
structure:
g-f=ufut =UfUT =¢(g) - f; (5.2)
h-f=wfut+ fuw, o) -f=Wf-UfU W (5.3)

Moreover,End(P) is (E(2), Ry )-Azumaya because it §,-Azumaya. We claim
that the class oEnd(P) is not trivial in BM (k, E(2), Ry). Indeed, if it were
trivial, then the E(2)-action onEnd(P) given byc.f = g.f, z1.f = h.f and
(cxa).f = ¢(h).f would be strongly inner. In other words, there would ex-
ist a convolution invertible algebra morphism E(2) — End(P) for which
L-f = Y p(ay)fr (o) for everyl € E(2). Putingu’ = p(c) we have
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c.f =u'f(u')~t = ufu~!. SinceEnd(P) is a central simple algebra, we neces-
sarily haveu’ = \u and sinceg(w’)? = 1 we have) = +1. Puttingw’ = p(z1) we
havez;.f = v’ fu’' — fw'v' and since/w’ = —w'v’, we have\w’ fu + A fuw’ =
x1.f =h.f =wfu+ fuw foreveryf € End(P). Usinguw = —wu we see that
M —w)f = f(A' — w) sow = \w' + p for somep € k. Using once more
skew-commutativity of; with w andw’ we see that. = 0.

Putting W’ = p(cx2) and using that/W’' = —W'u' we see thatV'f —
ufuW' = (cxe).f = ¢(h).f = Wf —ufuW foreveryf € End(P). From here,
we deduce that(W’' — W) = v € k. Using skew-commutativity of with W and
W' we conclude that = 0 soW’ = W. ThenW'w' —w' W' = A(Ww—wW) #

0 so that relation(cze)x; — x1(cxa) = 0 in E(2) cannot be respected. Hence,
[End(P)] # 1in BM (k, E(2), Ry) andKer(T*) = Z. O

The following proposition shows that the grouBd/ (k, Hy, R;) may be viewed
inside BM (k, E(2), Ry) and it also describes the image throdghof them.

Proposition 5.3 For every(\, u) € k x k there is a group homomorphism
Oxpu: BM(k,Hy,Ry,) — BM(k,E(2), Rn)
satisfying:

(1) The image 0B is the subgroup isomorphic tB1V (k) represented by
elements with trivial:; - andzz-action andKer(©g o) = (k, +).

(2) ©,, is injective if and only i{ A, 1) # (0,0).

(3) For (A, ) # (0,0), the image of7™*®©, , is Im(i,\-1) if A # 0 and
Im(e,—1y) if p# 0.

Proof: For every(\, ) € k x k the mapd, ,: E(2) — H4 mappingc — g,
x1 — Ah andzy — ph is a Hopf algebra projection. A direct computation shows
that (0, ® 0 ,)(Rn) = Ry, so the pull-back ob) , induces the desired homo-
morphismo, .

(1) Let (A, ) = (0,0). Then any element iBM (k, Hy, Ry) can be written
as a pair of the form{[C(a;t,0)], [B]) for [B] € BW (k). The image through
©0,0 of such an element ig(a)|[B] € BW (k) with trivial z;-action onC'(a).
Clearly, BW (k) = Im(©g,). ThatKer(©gp) is isomorphic to(k, +) follows
from the isomorphisnBM (k, Hy, Ry) = (k, +) x BW (k) and the fact thatk, +)
is realized as classes admitting a representative thaivial twhen viewed as a
kZo-module algebra.
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(2) Let (A, ) # (0,0). If ©,,([A]) = 1 then A is isomorphic to an endo-
morphism algebra with strongly inné#(2)-action. In other words4d = End(P)
and there is a convolution invertible algebra mapF(2) — A such that - a =
> p(lay)ap~t(lz)) for everyl € E(2),a € A. There are elements, v, w € A
with v invertible such that - a = g - a = uau™', 1 - a = (va — av)u = \h - a
andz; - a = (wa — aw)u = ph - a. Then

0=pzy-a—Ary-a= (v — Aw)a — a(pw — Aw))u  Va € A,

and since is invertible andA is central we havev —\w = 7 for somen € k. The
relation between andw givesn = 0 and souv = Aw. Thus, the same elements
u,v andw ensure that théf,-action onA is strongly inner. Thereford] = 1 in
BM (k, Hy4, Ry,). The converse follows from (1).

(3) Let us now assume tha#, ) # (0,0). It is immediate to see that if
[A] € BW(k) c BM(k,Hy, Ry,) is represented by an algebra with trivial
action, ther, ,([A]) is represented by an algebra with trivial- andz,-action.
HenceT*©, ,(BM(k, H4, Ry,)) C io(BW (k)) and the restriction of 0, ,
to BW (k) is an isomorphism ont@,(BW (k)). Let us now consider the class
[C(a; 1, )] € BM(k, Hy, Ry,,). Itsimage througl®, ,, is the algebra generated
by x with 22 = a, withc- 2 = —2, 21 - = = X andxy - 2 = p. A direct verification
shows thatl™©, ,([C(a; 1, Ap)]) = [C(a; A, )]. Then the image of*©, , is
Im(i, 1) if A# 0andIm(e,—1y) if p # 0. O

Theoren 5.R shows that one should understBdd(k, E(2), Ry ) in order to
computeBQ(k, Hy). In view of Propositiod 513BM (k, E(2), Ry) seems to be
much more complex that the groups of type BM treated in[[1020].

6 Appendix

This last section is devoted to the analysis of some difiiesiloccurring in the
study of the structure of E(2), Ry )-Azumaya algebras. We show that the set
of classes represented @g-graded central simple algebras (with respect to the
grading induced by the-action) is not a subgroup @M (k, E(2), Ry ).

Let us consider the braidingyy determined byRy between two leftF(2)-
modulesV andW. Letv € V andw € W be homogeneous elements with respect
to theZs-grading induced by the-action. By direct computation it is:

Yyw v @w) = ZRE\?) 'w®R§\1,) v
= (=DMl @ v 4 (=1)lwHT (1) IHDAwHD) (25 ) @ (21 - v).
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If we denote by the braiding associated with tl#&-grading we have
Yyw (v @ w) = o(v @ w) + (=) g (21 v @ 23 - W), (6.1)

Let F'andG be the maps i (114) defining &%'(2), Ry )-Azumaya algebral and
let Fy and G be the maps defining afF'(2), Ry)-Azumaya algebra, that is, the
maps determining when afi(2)-module algebra i€,-graded central simple. Itis
not hard to verify by direct computation that, for homogargee, b, d € A with
respect to the-action we have:

F(a#b)(d) = Fo(a#b)(d) + (=)l Fy(atar - b) (w2 -d)  (6.2)

G(a#tb)(d) = Go(a#b)(d) + (=D Fy(wy - a#tb)(z1-d)  (6.3)
Notice that if eitherz; or x5 acts trivially, thenF = Fy andG = Gy. So in
this case A is (E(2), Ry )-Azumaya if and only if it isZ,-graded central simple
(i.e. Ais (E(2), Ro)-Azumaya). We will say that the;-action on an¥(2)-module
algebraA isinnerif there exists an odd elemente A such that:;-a = v(c-a)—av
for everya € A.

Theorem 6.1 Let A be an(E(2), Ry)-Azumaya algebra. The following asser-
tions are equivalent:

(1) Thexy-action onA is inner;
(2) Thexs-action onA is inner;
(3) Ais aZs-graded central simple algebra.

In addition, the F(2)-action on A is inner if and only ifA is a central simple
algebra.

Proof: (1) = (3) Letv; € A be an odd element such that- a = v1(c- a) — avy
for all a € A. Applying equality [6.P) to any homogeneoluandd in A gives:

F(a#b)(d) = Fo(a#b)(d) + Fo(a#b)((x2 - d)v1)

+(= 1) Fy (a#tbvr) (s - d) (6.4)

This equality extends to all elemendgsandb in A. If A were notZ,-graded
central simple, there would exist an elemént )" a;#b; in Ker(Fp). Then
(O, aitbi)(1#v1) = >, a;i#bjvy € Ker(Fy) and for everyf in A we would
have Fy (>, ai#bi)(f) = Fo(>_; ai#bivr)(f) = 0. It follows from (6.4) that
>, ai#b; € Ker(F'), contradicting the injectivity of.
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(2) = (3) Similarly to (1)=- (3) replacingF' by G.

(3) = (1), (2) Suppose that is aZs-graded central simple algebra. Afis a
central simple algebra then thig(2)-action onA is inner by the Skolem-Noether
theorem. IfA is not central simple then it is of odd typé ([13, Theorem Bdfi-
nition 3.5]) and it is(H4, Ro)-Azumaya for the subalgebra éf(2), isomorphic to
H,4 generated by andz;. By [1, Theorem 3.4] the;;-action is inner.

Let us finally assume that thE(2)-action onA is inner. ThenA is aZs-
graded central simple algebra. Sing€2) acts innerly o4 then it acts trivially on
its centerZ(A). Besides it is immediately seen thétA) is contained in the right
and left £(2)-center, that are trivial becauskis assumed to b&'(2)-Azumaya.
HenceZ(A) must be trivial and so is also a central algebra. By the structure
theorems ofZ,-graded central simple algebras ([13, Theorem |V.3.4]s central
simple. d

Proposition 6.2 Let A and B be two equivalentE(2), Ry )-Azumaya algebras.
Then thex;-action onA is inner if and only if it is so orB.

Proof: Let P and@ be finite dimensionak'(2)-modules for whichA#End(P) =
B#End(Q). If the x;-action onA is inner then it is so oM#End(P) by [11,
Proposition 4.6], hence itis so d#End(Q), which is aZ,-graded central simple
algebra by Theorem 8.1. For= 1,2, let W;, v; be odd elements iB#End(Q)
andEnd(Q) respectively inducing the;-action. We recall that; - v; = 0 because
the action orEnd(Q) is strongly inner, whilec; - W; is a scalar for every pair, j
becauser; - W; belongs to the graded center B#End(Q). The odd elements
T = W; — 1#v; — (SL’Q . Wi)(l#vl) c B#EHd(Q) for i = 1,2 are such that
xj-T; = x;- W; for everyi andj. Moreover, for every homogeneoyisc End(Q)
with respect to the-action we have:

(—DVIT(1#£f) = Wile - 1#c- f) — 1tvi(c- f) — (w2 - Wi)(A#v1(c - f))
= (I#/)W; — (1# fvi) — (x2 - W) (A# for) — (w2 - Wi)(z1 - (144 ]))
= (1#)[Wi — 13fv; — (w2 - Wy)(1f01)] — (22 - Wi) (21 - (1£]))
= (V#HT; — (x2- W) (a1 - (141)).

In other words,
A#)T; = ()BT A4 F) + (20 Ty (21 - (1)),

so by [6.1) the elemerf; € C 1,40 (End(Q)), the left centralizer oEnd(Q)
in B#End(Q), that is,T; € B#1 by the double centralizer theorei [1, Theorem
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2.3]. Besides, for every homogenedus B we have:

Ti(c-b#l) — (B#DT; = (~)PIW;(b#1) — (b#tv;) — (w2 - Wi) (b#tvr)
—(b# )W, + (b#v;) + (z - W) (b#v1)
=Z; (b#l)

Hence ther;-action onB is inner. O

We conclude by showing that, contrarily to the cases tremtdhe literature
([10,11,20]), a Skolem-Noether-like approach is probatulyappropriate for the
computation ofBM (k, E(2), Ry ) because the set of classes admitting a represen-
tative with inner action is not a subgroup.

Theorem 6.3 The classes i M (k, E(2), Ry ) that are represented %, -graded
central simple algebras do not form a subgroup.

Proof: Lett # 0,1 andq # 2 be ink. We consider the representativg1; ¢, 2)
generated by with 22 = 1, ¢c-x = —x, z1-x = t andzy-= = 2 and the representa-
tive C(1; 1, q) generated by with y? = 1, c-y = —y, 21-y = 1 andzy-y = ¢. Both
are(E(2), Ry)-Azumaya becaus€'(1; 1, 2t) is (Hy, Rat)-Azumaya,C(1; 1, q) is
(H4, Ry)-Azumaya and”(1;¢,2), C(1; 1, ¢) are obtained from these ones respec-
tively by pulling back througl#, ,. They are als&,-graded central simple alge-
bras. Their produof’(1;¢,2)#C(1;1,q) is generated by the odd elemert¥sand
Y with X? = 1,Y2 = 1andXY + Y X = 2. The elemenfX — Y is easily seen
to lie in theZ,-graded center, s6'(1;t,2)#C(1;1, q) is not aZs-graded central
simple algebra. IfB were another representative [6f(1;¢,2)#C(1;1,q)] that
is aZs-graded central simple algebra, then by Theokem 6.1 thaction on it
would be inner. By Propositidn 6.2; would act innerly orC'(1;¢,2)#C(1; 1, q).
Applying again Theorerh 6.1¢'(1;¢,2)#C(1;1, ¢) would beZ,-graded central
simple. O
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