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Abstract

The Jacobson-Bourbaki Theorem for division rings was formulated in terms of
corings by Sweedler in [14]. Finiteness conditions hypotheses are not required in
this new approach. In this paper we extend Sweedler’s result to simple artinian
rings using a particular class of corings, comatrix corings. A Jacobson-Bourbaki like
correspondence for simple artinian rings is then obtained by duality.

Introduction

One of the key pieces in the Galois theory of fields and more generally of division rings is
the Jacobson-Bourbaki Theorem, see [11, Chapter 7, Sections 2, 3] and [10, Section 8.2].
Let E be a division ring with prime field k. Consider the injective ring homomorphism
r : E → End(kE), e 7→ re where re(e

′) = e′e for all e′ ∈ E (the multiplication in End(kE) is
the opposite of the composition). The Jacobson-Bourbaki Theorem states that there is a
bijective correspondence between the set of division subrings D of E such that DE is finite
dimensional and the set of subrings S of End(kE) such that Im(r) ⊆ S and SE is finite
dimensional. The ring End(kE) is indeed an E-ring and the condition Im(r) ⊆ S can be
rephrased as S being an E-subring of End(kE). This correspondence is hidden behind the
veil of the Galois connection in a Galois extension of fields or more generally of division
rings, see [11] and [4, 5].

Using the dual structure of E-ring, the structure of E-coring, in [14] Sweedler gave a
dual result to the Jacobson-Bourbaki Theorem. The advantage of using this dual structure
is that the finiteness conditions needed in the Jacobson-Bourbaki Theorem can be dropped.
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The finiteness conditions come implicit in the structure of coring through the fact that an
element is mapped into a finite sum of elements via the comultiplication map. Sweedler’s
result asserts that there is a bijective correspondence between division subrings of E and
quotient corings of the E-coring E⊗kE. The Jacobson-Bourbaki Theorem can be obtained
from Sweedler’s result by duality and this process makes clear why the finiteness conditions
are needed.

The goal of this paper is to extend Sweedler’s result from division rings to simple
artinian rings replacing the Sweedler coring E ⊗k E by a more general type of coring, the
comatrix coring introduced in [6] to describe the structure of cosemisimple corings. Let Σ
be a finitely generated and projective right module over a ring A and let B be a simple
artinian subring of End(ΣA). Let C denotes the comatrix A-coring Σ∗⊗B Σ constructed on
the bimodule Σ and with coefficients B, see (1). Our main theorem (Theorem 2.4) states
that there is a bijective correspondence between the set of all simple artinian subrings
B ⊆ C ⊆ End(ΣA) and the set of all coideals J of C such that the quotient coring
C/J is simple cosemisimple. If in addition ΣA is simple, then any quotient coring of C

is simple cosemisimple, thus obtaining a bijective correspondence between intermediate
division subrings of B ⊆ End(ΣA) and coideals of C (see Remark 2.5). Sweedler’s result,
together with some additional information on conjugated subextensions, is then obtained
as a consequence by taking A a division ring and Σ = A (Corollary 2.6). An example
illustrating the bijective correspondence is worked out. This closes Section 2, which thus
contains our main results.

Section 1 recalls the most fundamental results on comatrix corings, Galois corings, and
cosemisimple corings needed in the sequel. We also include a homological characterization
of Galois corings (Theorem 1.5), which gives as a consequence that if the canonical map is
surjective for a quasi-projective comodule with a generating condition, then the coring is
Galois (Corollary 1.6). This corollary is used in the proof of the main result of Section 3,
namely, Theorem 3.2, which states a Jacobson-Bourbaki correspondence for simple artinian
subextensions of a ring extension. This correspondence is dual to the stated in Section 2.
We complete the paper with an Appendix that contains a complete classification of the
simple cosemisimple C/R–corings.

We next fix notation and present some basic definitions. In the sequel A,B denote
associative and unitary algebras over a commutative ring K. By ⊗A we denote the tensor
product over A. The category of right A-modules is denoted by MA. Bimodules are
assumed to be centralized by K. An A-coring (or A/K–coring, when K is not obvious
from the context) is a triple (C,∆, ǫ) where C is an A-bimodule and ∆ : C → C ⊗A C

(comultiplication) and ǫ : C → A (counit) are A-bimodule maps such that (idC ⊗A ∆)∆ =
(∆ ⊗A idC)∆ and (ǫ⊗A idC)∆ = (idC ⊗A ǫ)∆ = idC. In a categorical language, a coring is
just a coalgebra in the monoidal category of A-bimodules with the tensor product ⊗A as a
product. For c ∈ C we will write ∆(c) =

∑

c(1) ⊗A c(2). The left dual ∗C = Hom(AC, AA)
of the coring C is an Aopp-ring (Aopp denotes the opposite ring of A) with the product
(f ∗ g)(c) =

∑

f(c(1)g(c(2))) for all f, g ∈ ∗C and c ∈ C. Similarly, the right dual C∗ of C is
an Aopp-ring with the product (f ∗ g)(c) =

∑

g(f(c(1))c(2)) for f, g ∈ C∗ and c ∈ C.
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A right C-comodule is a right A-module together with an A-module map ρM : M →
M ⊗A C such that (idM ⊗A ∆)ρM = (ρM ⊗ idC)ρM and (idM ⊗ ǫ)ρM = idM . A C-comodule
map between two right C-comodules M and N is an A-module map f : M → N such that
(f ⊗A idC)ρM = ρNf . By HomC(M,N) we will denote the K-module of all C-comodule
maps between M and N . The category whose objects are right C-comodules and whose
morphisms are C-comodule maps is denoted by MC. It is an additive K–linear category
and if AC is flat, then it is a Grothendieck category. The product of every endomorphism
ring of an object in an additive category is by default the composition. We adopt, however,
the following convention in the case of modules: the product of the endomorphism ring
End(MA) of a right A–module M is the composition, although by End(AN) we will denote
the opposite ring of the endomorphism ring of a left A–module N , being then its product
the opposite of the composition.

1 Comatrix corings, Galois comodules and cosemisim-

ple corings

Let Σ be a B−A–bimodule, and assume that ΣA is finitely generated and projective with
a finite dual basis {(e∗i , ei)} ⊆ Σ∗ × Σ. We can consider a coring structure [6, Proposition
2.1] over the A–bimodule Σ∗ ⊗B Σ with comultiplication and counit defined respectively
by

∆(φ⊗B x) =
∑

i

φ⊗B ei ⊗A e
∗
i ⊗B x, ǫ(φ⊗B x) = φ(x). (1)

The comultiplication is independent of the choice of the dual basis. This coring will be
called the A-comatrix coring on Σ with coefficients in B. The A-module Σ becomes a right
Σ∗ ⊗B Σ–comodule with coaction

̺Σ(x) =
∑

i

ei ⊗A e
∗
i ⊗B x.

Assume Σ to be the underlying A–module of a right comodule over some A–coring C,
with structure map ρΣ : Σ → Σ ⊗A C. In this case, with T = End(ΣC), we have from [6,
Proposition 2.7] that the map can : Σ∗ ⊗T Σ → C defined by

can(φ⊗T x) =
∑

φ(x0)x1 (ρΣ(x) =
∑

x0 ⊗A x1)

is a homomorphism of A–corings. This canonical map allowed to extend [6, Definition 3.4]
the notion of a Galois coring without assuming the existence of group-like elements. When
the role of the comodule Σ is stressed, the terminology of Galois comodules introduced in
[3] is more convenient. Probably, the best solution here is to mention both the coring and
the comodule.

Definition 1.1. The pair (C,Σ) is said to be Galois if can is an isomorphism. In such a
case, we say that C is a Galois coring and Σ is termed a Galois comodule. The extension
T ⊆ End(ΣC) is called a (C,Σ)-Galois extension.
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The notion of a noncommutative G–Galois extension, may be recovered from this defi-
nition, see [6, Example 2.9]. In this case, the corresponding Galois coring has a group-like
element. We give an example of a noncommutative Galois extension for a coring without
group-like elements.

Example 1.2. Let C and H denote the complex number field and the Hamilton’s quater-
nions algebra respectively. Consider the right C-vector space T with basis {c, s}. This
vector space becomes a C-bimodule with left action ic = c and is = −s and a C-coring
with comultiplication and counity defined by

∆(c) = c⊗ c− s⊗ s, ǫ(c) = 1,

∆(s) = c⊗ s + s⊗ c, ǫ(s) = 0.

Analogously to the coalgebra case this coring is called the trigonometric coring. This coring
has no group-like elements. Let Σ be a right C-vector space with basis {v1, v2}. The map
ρ : Σ → Σ ⊗ T defined by

v1 7→ v1 ⊗ c+ v2 ⊗ s, v2 7→ v2 ⊗ c− v1 ⊗ s

makes Σ into a right T-comodule. It is not difficult to check that (T,Σ) is a Galois C-coring.
The corresponding Galois extension is the well-known embedding of H into M2(C):

i 7→

(

0 −1
1 0

)

, j 7→

(

i 0
0 −i

)

.

Our first objective is to enrich [3, 18.26] with a new characterization of Galois comod-
ules. We need two previous observations. The first one is that if C is flat as a left A–module
then, using that the forgetful functor U : MC → MA is faithful and exact, the following
lemma can be proved (see [9]).

Lemma 1.3. If C is flat as a left A–module, then a right C–comodule M is finitely generated
in the Grothendieck category MC if and only if M is finitely generated as a right A–module.

We have a pair of functors

MT

−⊗T Σ //
MC

HomC(Σ,−)
oo (2)

where − ⊗T Σ is left adjoint to HomC(Σ,−). If χ : HomC(Σ,−) ⊗T Σ → idMC is the
counit of this adjunction, then the canonical map can be expressed [6, Lemma 3.1] as the
composite

can : Σ∗ ⊗T Σ
(−⊗AidC)◦ρΣ⊗T Σ // HomC(Σ,C) ⊗T Σ

χC // C (3)

Observe that χC is an isomorphism if and only if can is so. Our second observation is the
following lemma.
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Lemma 1.4. Let η : idMT
→ HomC(Σ,−⊗T Σ) be the unit of the adjunction (2). Consider

the map can∗ : HomC(Σ,Σ
∗ ⊗T Σ) → HomC(Σ,C), f 7→ can ◦ f. Then the following

composition is the identity map on Σ∗

Σ∗
ηΣ∗ // HomC(Σ,Σ

∗ ⊗T Σ)
can∗ // HomC(Σ,C) ∼= Σ∗

Proof. If we apply the displayed composite map to φ ∈ Σ∗, then we obtain the map from
Σ to A given by x 7→

∑

ǫC(φ(x0)x1), which is nothing but φ since
∑

ǫC(φ(x0)x1) =
∑

φ(x0)ǫC(x1) =
∑

φ(x0ǫC(x1)) = φ(x)

We are now in position to state our homological characterization of Galois comodules.

Theorem 1.5. Let Σ be a right comodule over an A–coring C and assume that Σ is finitely
generated and projective as a right A-module. If AC is flat, then (C,Σ) is Galois if and
only if there exists an exact sequence Σ(J) → Σ(I) → C → 0 in MC such that the sequence

HomC(Σ,Σ
(J)) // HomC(Σ,Σ

(I)) // HomC(Σ,C) // 0

is exact.

Proof. Consider T (J) → T (I) → Σ∗ → 0 a free presentation of the left T–module Σ∗. By
tensorizing with T Σ we obtain an exact sequence Σ(J) → Σ(I) → Σ∗ ⊗T Σ → 0. We have
then the following commutative diagram in MT

T (J) //

η
T (J)

��

T (I) //

η
T (I)

��

Σ∗ //

ηΣ∗

��

0

HomC(Σ,Σ
(J)) // HomC(Σ,Σ

(I)) // HomC(Σ,Σ
∗ ⊗T Σ) // 0

(4)

Now, ηT (J) and ηT (I) are isomorphisms because Σ is finitely generated in the Grothendieck
category MC (see [9]). By Lemma 1.4, ηΣ∗ is an isomorphism if and only if can∗ is bijective.
So if we assume that (C,Σ) is Galois, then ηΣ∗ is an isomorphism and, from (4), the following
sequence is exact

HomC(Σ,Σ
(J)) // HomC(Σ,Σ

(I)) // HomC(Σ,Σ
∗ ⊗T Σ) // 0

Observe that the isomorphism of A–corings can : Σ∗ ⊗T Σ ∼= C is also an isomorphism of
right C–comodules. This finishes the proof of the necessary condition. For the sufficiency,
consider the commutative diagram in MC with exact rows

Σ(J) // Σ(I) // C // 0

HomC(Σ,Σ(J)) ⊗T Σ //

χ
Σ(J)

OO

HomC(Σ,Σ(I)) ⊗T Σ //

χ
Σ(I)

OO

HomC(Σ,C) ⊗T Σ //

χC

OO

0

In this diagram, χΣ(J) and χΣ(I) are isomorphisms because Σ is finitely generated in MC.
We have then that χC is an isomorphism and, thus, (C,Σ) is Galois.
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T. Brzeziński has shown in [2] that a simple comodule with can surjective is Galois.
As a consequence of Theorem 1.5 we derive a generalization of Brzeziński’s result. Fol-
lowing the definition given for modules in [1], we say the comodule Σ is quasi-projective
if for every exact sequence Σ → N → 0 in MC then the sequence of abelian groups
HomC(Σ,Σ) → HomC(Σ, N) → 0 is exact. Since, by Lemma 1.3, Σ is finitely generated in
MC, a straightforward adaptation of [1, Proposition 16.2.(2)] to Grothendieck categories
gives that HomC(Σ,−) will already preserve exact sequences of the form Σ(I) → N → 0.
The following corollary is then easily deduced from Theorem 1.5, making use once more of
the “AB5” condition.

Corollary 1.6. Assume that Σ is quasi-projective in MC and generates every subcomodule
of any finite direct sum of copies of Σ (e.g., Σ is a semisimple comodule). If can is
surjective, then (C,Σ) is Galois.

Now, let us recall from [7, 6] the structure of cosemisimple corings, which is tightly
related to the coring version of the Generalized Descent Theorem formulated in [6, Theorem
3.10]. A coring is said to be cosemisimple if it satisfies one of the equivalent conditions of
the following theorem.

Theorem 1.7. [7, Theorem 3.1] The following assertions for an A-coring C are equivalent:

(i) Every left C-comodule is semisimple and CM is abelian.

(ii) Every right C-comodule is semisimple and MC is abelian.

(iii) CC is semisimple and CA is flat.

(iv) CC is semisimple and AC is flat.

A coring is called simple if it has no non trivial subbicomodules. It was proved in [7,
Theorem 3.7] that any cosemisimple coring decomposes in a unique way as a direct sum
of simple cosemisimple corings. An example of simple cosemisimple coring is the comatrix
A-coring Σ∗ ⊗B Σ, where ΣA is finitely generated and projective and B ⊆ End(ΣA) is
simple artinian. The following result shows that indeed all simple cosemisimple corings
can be obtained in this way.

Proposition 1.8. [6, Proposition 4.2] Let C be a simple cosemisimple A-coring and ΣC a
finitely generated right C-comodule. Then T = End(ΣC) is simple artinian, ΣA is finitely
generated projective and the canonical map can : Σ∗ ⊗T Σ → C is an isomorphism.

A more precise description of simple cosemisimple corings is given by the following
structure theorem. It may be viewed as a generalization of the Artin-Wedderburn Theorem.

Theorem 1.9. [6, Theorem 4.3] An A-coring C is simple cosemisimple if and only if there
is a finitely generated projective right A-module Σ and a division subring D ⊆ End(ΣA)
such that C ∼= Σ∗ ⊗D Σ as A-corings.

In such a case, if Γ is another finitely generated and projective right A-module and
E ⊆ End(ΓA) is a division subring, then C ∼= Γ∗⊗E Γ if and only if there is an isomorphism
of right A-modules g : Σ → Γ such that gDg−1 = E.

6



In view of this structure theorem, for a field extension A/k, the classification of simple
cosemisimple A-corings centralized by k is reduced to the classification of finite dimensional
division algebras over k and to the study of how these division algebras embed in matrix
algebras over A. The first problem leads to the Brauer group theory of a field and the
second one can be treated with the help of the Skolem-Noether Theorem. The complete
classification for the field extension C/R is obtained in the Appendix.

2 The Galois connection from a coring point of view

Let ΣA be a finitely generated and projective right A-module and denote by S = End(ΣA)
its endomorphism ring. Let B ⊆ S be a subring, and consider the comatrix A–coring
C = Σ∗ ⊗B Σ. A typical situation is to consider B = k, a field, and S = Mn(k), the ring of
square matrices of order n over k. Let Subext(S/B) denote the set of all ring subextensions
B ⊆ C ⊆ S, and Coideals(C) be the set of all coideals of C. Consider the maps

J : Subext(S/B)
..
Coideals(C) : Rnn (5)

defined as follows. For each subextension C ∈ Subext(S/B) we have a canonical homo-
morphism of A–corings C = Σ∗ ⊗B Σ → Σ∗ ⊗C Σ, whose kernel J (C) is a coideal of
C. Conversely, given a coideal J of C, then, by [6, Proposition 2.5], B ⊆ End(ΣC) ⊆
End(ΣC/J ) ⊆ S, so that R(J) = End(ΣC/J) is a subextension of B ⊆ S. Both J and R are
inclusion preserving maps. The following proposition, which generalizes [13, Proposition
6.1], collects some more of their relevant general properties.

Proposition 2.1. The maps defined in (5) enjoy the following properties.

(1) RJ (C) ⊇ C for every C ∈ Subext(S/B).

(2) JR(J) ⊆ J for every J ∈ Coideals(C).

(3) RJ (C) = C if and only if End(ΣΣ∗⊗CΣ) = C.

(4) JR(J) = J if and only if (C/J,Σ) is Galois.

(5) The maps J and R establish a bijection between the set consisting of ring subextensions
B ⊆ C ⊆ S such that End(ΣΣ∗⊗CΣ) = C and the set of coideals J of C such that
(C/J,Σ) is Galois.

Proof. A direct computation gives that RJ (C) = End(ΣΣ∗⊗CΣ) for every C ∈ Subext(S/B).
Thus, (1) follows from [6, Proposition 2.5]. This gives also (3). Now, for a given coideal
J ∈ Coideals(C), we have the commutative diagram with exact rows

0 // JR(J)

��

// Σ∗ ⊗B Σ // Σ∗ ⊗End(ΣC/J ) Σ

canC/J

��

// 0

0 // J // C // C/J // 0

(6)
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which implies (2) and (4). Finally, let us prove (5): for any ring subextension C ∈
Subext(S/B), the A-coring Σ∗ ⊗C Σ is Galois by [6, Lemma 3.9]. Hence C/J (C) is Galois.
Conversely, for any J ∈ Coideals(C) we have End(ΣC) ⊆ End(ΣC/J ). If C/J is Galois,
then the canonical map canC/J is an isomorphism and, therefore, End(ΣΣ∗⊗End(Σ

C/J )Σ) =

End(ΣC/J ). Statement (5) follows now from (3) and (4).

Remark 2.2. If A(Σ∗ ⊗C Σ) is locally projective (see e.g. [3, 42.10] for this notion), then
C = End(ΣΣ∗⊗CΣ) if and only if CΣ is faithfully balanced, i.e., C is isomorphic to the
biendomophisms ring of CΣ under the natural map. This is because for A(Σ∗⊗C Σ) locally
projective, End(ΣΣ∗⊗CΣ) = End(∗(Σ∗⊗CΣ)Σ), see [3, 19.3]. Then, by [6, Proposition 2.1],
∗(Σ∗ ⊗C Σ) ∼= End(CΣ)op canonically and, therefore,

End(ΣΣ∗⊗CΣ) = End(∗(Σ∗⊗CΣ)Σ) = End(End(CΣ)opΣ) = End(ΣEnd(CΣ)).

Remark 2.3. We have from [6, Proposition 2.5] that

End(ΣΣ∗⊗CΣ) = {f ∈ End(ΣA) | f ⊗C x = 1 ⊗C f(x), for every x ∈ Σ} := C.

Since Σ∗⊗CΣ is Galois, we get that C = C. Proposition 2.1 gives a bijective correspondence
between coideals J of C such that C/J is Galois and subextensions C such that C = C.

We are now ready to state a generalization of Sweedler’s predual to Jacobson-Bourbaki
Theorem [14, Theorem 2.1]. We will say that C,C ′ ∈ Subext(S/B) are conjugated in S if
there is an unit g ∈ S such that C ′ = gCg−1.

Theorem 2.4. Let Σ be a finitely generated projective right A-module and let S = End(ΣA).
Let B be a subring of S and consider the comatrix A-coring C = Σ∗ ⊗B Σ. Denote by S
the set of all simple artinian subrings B ⊆ C ⊆ S and let T denote the set of all coideals
J of C such that C/J is simple cosemisimple. Then the maps

R(−) : T → S, J 7→ End(ΣC/J )

J (−) : S → T , C 7→ Ker(C ։ Σ∗ ⊗C Σ)

are inverse to each other. If, in addition, A is a (noncommutative) local ring, then two
intermediate simple artinian subrings C and C ′ are conjugated in S if and only if C/J (C)
and C/J (C ′) are isomorphic as A–corings.

Proof. For C ∈ S, the A-coring Σ∗ ⊗C Σ is a simple cosemisimple A-coring in virtue of
[6, Proposition 4.2]. Hence C/J (C) ∼= Σ∗ ⊗C Σ is simple cosemisimple and so J (C) ∈ T .
From [6, Proposition 2.5], C ⊆ End(ΣΣ∗⊗CΣ). Since CΣ is faithfully flat, [6, Theorem 3.10]
yields C = End(ΣΣ∗⊗CΣ). By Theorem 2.1, RJ (C) = C.

Assume that J ∈ T , then C/J is simple cosemisimple. By [6, Theorem 4.1], C/J is flat
as a left A-module which implies, by [9, Lemma 3.1], that Σ is finitely generated as a right
C/J-comodule. Hence End(ΣC/J ) is a simple artinian ring. So R(J) ∈ S. Furthermore,
C/J is Galois by [6, Proposition 4.2]. By Theorem 2.1, JR(J) = J .
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For the second assertion, let C,C ′ be intermediate simple artinian subrings and let
g ∈ S be invertible such that gCg−1 = C ′. We check that Σ∗ ⊗C Σ is isomorphic to
Σ∗ ⊗C′ Σ. The set {e∗i g, g(ei)}

n
i=1 is a dual basis for Σ and, by [6, Remark 2.2] the coring

structure on Σ∗⊗C′ Σ defined by this dual basis is the same as the one defined by {e∗i , ei}
n
i=1.

Consider the A-bimodule map,

ψ : Σ∗ × Σ → Σ∗ ⊗C′ Σ, (ϕ, x) 7→ ϕg−1 ⊗C′ g(x).

Let c ∈ C and c′ = gcg−1 ∈ C ′. Then,

ψ(ϕc, x) = ϕcg−1 ⊗C′ g(x) = ϕg−1c′ ⊗C′ g(x) = ϕg−1 ⊗C′ c′g(x)
= ϕg−1 ⊗C′ gc(x) = ψ(ϕ, cx).

Hence ψ defines a unique A-bimodule map ψ̄ : Σ∗ ⊗C Σ → Σ∗ ⊗C′ Σ. It is routine to
verify that ψ is an isomorphism of A-corings. Conversely, let χ : Σ∗ ⊗C Σ → Σ∗ ⊗C′ Σ
be an isomorphism of A-corings. Let S, S ′ be the unique, up to isomorphism, simple right
Σ∗ ⊗C Σ-comodule and Σ∗ ⊗C′ Σ-comodule, respectively. Then Σ ∼= S(m) as a Σ∗ ⊗C Σ-
comodule and Σ ∼= S ′(n) as a Σ∗ ⊗C′ Σ-comodule for some m,n ∈ N. Let Sχ denote S
viewed as a right Σ∗ ⊗C′ Σ-comodule via χ. Then Sχ ∼= S ′ as a Σ∗ ⊗C′ Σ-comodule. In
particular, they are isomorphic as right A-modules. Since A is local, Sχ ∼= S ′ ∼= A(l) as
right A-modules for a certain l ∈ N. Let Σχ denote Σ when considered as a right Σ∗⊗C′ Σ–
comodule. Then Σχ ∼= (Sχ)(m) ∼= A(lm) as a right A-module. On the other hand, Σ ∼= A(ln)

as a right A-module. Since the underlying right A-module of Σχ and Σ is the same,
m = n and hence Σχ ∼= Σ as a right Σ∗ ⊗C′ Σ-comodule. Denote this isomorphism by g.
Then End(ΣΣ∗⊗C′Σ) = End(Σχ

Σ∗⊗C′Σ) via d 7→ g−1dg. As End(Σχ
Σ∗⊗C′Σ) = End(ΣΣ∗⊗CΣ),

C = End(ΣΣ∗⊗CΣ) and C ′ = End(ΣΣ∗⊗C′Σ), the assertion holds.

Remark 2.5. With hypothesis as in Theorem 2.4, if we assume in addition that ΣA is
simple, then any quotient coring of C = Σ∗ ⊗B Σ is simple cosemisimple: since ΣA is
simple, Σ is simple as a right C/J-comodule for any coideal J of C. It is easy to see
that the canonical map can : Σ∗ ⊗End(ΣC/J ) Σ → C/J is surjective. Using that ΣC/J is
simple, by Corollary 1.6, can is an isomorphism. As End(ΣC/J ) is a division ring, C/J
is simple cosemisimple. Thus we have a bijective correspondence between intermediate
division subrings of B ⊆ End(ΣA) and coideals of C. Observe that no assumptions are
made on A. As a consequence we can derive Sweedler’s predual to the Jacobson-Bourbaki
Theorem, with the additional information concerning conjugated subrings.

Corollary 2.6. [14, Theorem 2.1] Let D ⊆ E be division rings. Set C = E ⊗D E and let
g = 1 ⊗D 1 be the distinguished group-like element. For a coideal J of C let πJ : C → C/J
denote the canonical projection. Then, the maps

R(−) : T → S, J 7→ {e ∈ E : eπJ(g) = πJ (g)e}

J (−) : S → T , C 7→ Ker(C ։ Σ∗ ⊗C Σ)

establish a bijective correspondence between the set S of intermediate division rings D ⊆
C ⊆ E and the set T of coideals J of C. Moreover, two intermediate division rings C and
C ′ are conjugated in S if and only if C/J (C) ∼= C/J (C ′).
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Proof. It only remains to prove that End(EC/J) = {e ∈ E : eπJ (g) = πJ(g)e} but this is
easily checked.

Remark 2.7. If ΣA is not simple, then the quotient corings of Σ∗⊗B Σ need not in general
to be simple cosemisimple. Let k be a field, Σ = k(2) and T = T2(k) ⊆ End(kΣ) = M2(k)
the upper triangular matrix algebra. Then Σ∗ ⊗T Σ is a non simple cosemisimple quotient
coalgebra of Σ∗ ⊗k Σ. This example also serves to show that factor corings of Galois
corings are not Galois. The module ΣT is isomorphic to the indecomposable projective eT ,
where e ∈ M2(k) is the elementary matrix with 1 in the (1, 1)-entry and zero elsewhere.
Thus, End(ΣT ) ∼= eTe ∼= k, and the canonical map (15) gives here a surjective k-coalgebra
homomorphism can : Σ∗⊗k Σ → T ∗ which, obviously, cannot be bijective. Thus, if we take
C = Σ∗ ⊗k Σ, and D = T ∗, then the factor coalgebra (D,Σ) of the Galois coalgebra (C,Σ)
is not Galois. On the other hand, observe that ΣT ∗ is projective but does not generate all
its submodules, which sheds some light on the conditions involved in Theorem 1.5.

Example 2.8. We next illustrate the Galois connection established in Theorem 2.4 by
a concrete example. Assume that k has an n-th primitive root of unity ω. For α, β non
zero elements in k let Aω(α, β) denote the associative k-algebra generated by two elements
x, y subject to the relations xn = α, yn = β and yx = ωxy. Details on the properties of
this algebra to be used in the sequel may be consulted in [12, Chapter 15]. The algebra
Aω(α, β) is a central simple k-algebra. For our purposes we will assume that the subalgebras
C(α) = k〈x : xn = α〉 and C(β) = k〈y : yn = β〉 are fields. Let Σ be an n-dimensional
C(α)-vector space with basis B = {v1, ..., vn} and consider a dual basis B∗ = {v∗1, ..., v

∗
n}

in Σ∗. The algebra Aω(α, β) can be embedded in Mn(C(α)) by assigning

x 7→ X = xe1,1 + ωxe2,2 + ...+ ωn−1xen,n, y 7→ Y = e1,2 + ...+ en−1,n + βen,1,

where ei,j denotes the elementary matrix in Mn(C(α)) with 1 in the (i, j)-entry and zero
elsewhere. The action of X and Y on the bases B and B∗ is:

X · vj = ωj−1vjx v∗j ·X = ωj−1xv∗j

Y · vj =

{

βvn if j = 1
vj−1 if j > 1

v∗j · Y =

{

βv∗1 if j = n
v∗j+1 if j < n

(7)

If either α or β is equal to 1, then the algebra Aω(α, β) is isomorphic to Mn(k).

We will next describe the coideals of the C(α)–coring Σ∗ ⊗k Σ corresponding to the
intermediate extensions of k ⊂Mn(C(α)) given in the following diagram:

Mn(C(α))

Aω(α, β)

uuuuuuu

Mn(k)

FFFFFFF

C(α) C(β)

SSSSSSSSSSSSSS

k

JJJJJJJJJ

wwwwwwww
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For l,m, i = 1, ..., n set zi
l,m = α−1xn−iv∗l ⊗k vmx

i. Observe that the set {zi
l,m : l,m, i =

1, ..., n} is a basis of Σ∗ ⊗k Σ as a right C(α)-vector space. We have that xzi
l,m = zi−1

l,m x
for 1 ≤ i ≤ n with the convention z0

l,m = zn
l,m. The comultiplication and counit of Σ∗ ⊗k Σ

reads:
∆(zi

l,m) =
∑n

j=1(α
−1xn−iv∗l ⊗k vj) ⊗C(α) (v∗j ⊗k vmx

i)

=
∑n

j=1(α
−1xn−iv∗l ⊗k vjx

i) ⊗C(α) (α−1xn−iv∗j ⊗k vmx
i)

=
∑n

j=1 z
i
l,j ⊗C(α) z

i
j,m,

ǫ(zi
l,m) = δl,m.

(8)

Trivial extensions: The trivial extensions k ⊆ k ⊂ Mn(C(α)) and k ⊂ Mn(C(α)) ⊆
Mn(C(α)) correspond to the coideals {0} and Ker(ǫ) respectively.

Extension k ⊂ C(α) ⊂ Mn(C(α)) : We embed C(α) into Mn(C(α)) by mapping x to X
and consider the C(α)-coring Σ∗⊗C(α) Σ. The action of X on B and B∗ gives the following
relations in Σ∗ ⊗C(α) Σ :

α−1xn−iv∗l ⊗C(α) vmx
i = v∗l ⊗C(α) vm. (9)

The set {v∗l ⊗C(α) vm : l,m = 1, ..., n} is a basis of Σ∗ ⊗C(α) Σ as a right C(α)-vector space.
Set cl,m = v∗l ⊗C(α) vm. The bimodule structure on this coring is given by xcl,m = ωm−lcl,mx.
The comultiplication and counit in Σ∗ ⊗C(α) Σ are defined by:

∆(cl,m) =
n

∑

j=1

cl,j ⊗C(α) cj,m, ǫ(cl,m) = δl,m.

The coideal JC(α) of Σ∗⊗kΣ corresponding to this extension is the right subspace generated
by the set

{zn
l,m − ωi(m−l)zi

l,m : l,m, i = 1, ..., n−1}.

Observe that if we embed diagonally C(α) into Mn(C(α)), then Σ is centralized by C(α)
and hence Σ∗ ⊗C(α) Σ is indeed a coalgebra, the comatrix coalgebra over C(α) of order n.
Hence the diagonal embedding of C(α) is not conjugated with the preceding one.

Extension k ⊂ C(β) ⊂Mn(C(α)) : We embed C(β) into Mn(C(α)) by mapping y to Y
and consider the C(α)-coring Σ∗ ⊗C(β) Σ. Taking into account the action of Y on B and
B∗, the following relations in Σ∗ ⊗C(β) Σ are obtained:

v∗i ⊗C(β) vj =

{

β−1v∗n−(j−i)+1 ⊗C(β) v1 if i < j

v∗i−j+1 ⊗C(β) v1 if i ≥ j
(10)

A basis of Σ∗ ⊗C(β) Σ as a left C(α)-vector space is:

{α−1xn−iv∗l ⊗C(β) v1x
i : l, i = 1, ..., n}.

11



Setting cil = α−1xn−iv∗l ⊗C(β) v1x
i, the left action of C(α) on Σ∗⊗C(β) Σ reads as xcil = ci−1

l x
with the convention c0l = cnl . The comultiplication and counit of Σ∗ ⊗C(β) Σ is given by:

∆(cil) =
∑n

j=1(α
−1xn−iv∗l ⊗C(β) vj) ⊗C(α) (v∗j ⊗C(β) v1x

i)

=
∑n

j=1(α
−1xn−iv∗l ⊗C(β) vjx

i) ⊗C(α) (α−1xn−iv∗j ⊗C(β) v1x
i)

=
∑l

j=1(α
−1xn−iv∗l ⊗C(β) vjx

i) ⊗C(α) (α−1xn−iv∗j ⊗C(β) v1x
i)

+
∑n

j=l+1(α
−1xn−iv∗l ⊗C(β) vjx

i) ⊗C(α) (α−1xn−iv∗j ⊗C(β) v1x
i)

=
∑l

j=1(α
−1xn−iv∗l−j+1 ⊗C(β) v1x

i) ⊗C(α) (α−1xn−iv∗j ⊗C(β) v1x
i)

+β−1
∑n

j=l+1(α
−1xn−iv∗n−(j−l)+1 ⊗C(β) v1x

i) ⊗C(α) (α−1xn−iv∗j ⊗C(β) v1x
i)

=
∑l

j=1 c
i
j ⊗C(α) c

i
l−j+1 + β−1

∑n
j=l+1 c

i
j ⊗C(α) c

i
n−(j−l)+1,

ǫ(cil) = δl,1.

The coideal JC(β) of Σ∗ ⊗k Σ corresponding to C(β) is the right subspace generated by
the following set:

{zi
l,m − β−1zi

n−(m−l)+1,1 : l,m, i = 1, ..., n; l < m} ∪ {zi
l,m − zi

l−m+1,1 : l,m, i = 1, ..., n; l ≥ m}.

Extension k ⊂ Aω(α, β) ⊂Mn(C(α)) : Consider Aω(α, β) as embedded into Mn(C(α))
by mapping x to X and y to Y . We next describe the C(α)-coring Σ∗ ⊗Aω(α,β) Σ. Since
C(α) and C(β) are contained in Aω(α, β), similar relations to (9) and (10) are obtained.
The set {vi ⊗Aω(α,β) v1 : i = 1, ..., n} is a basis of Σ∗ ⊗Aω(α,β) Σ as a right C(α)-vector space.
Set ci = vi ⊗Aω(α,β) v1. The bimodule structure of Σ∗ ⊗Aω(α,β) Σ is xci = ω−i+1cix. The
comultiplication and the counit of Σ∗ ⊗Aω(α,β) Σ are:

∆(ci) =
∑n

l=1(v
∗
i ⊗Aω(α,β) vl) ⊗C(α) (v∗l ⊗Aω(α,β) v1)

=
∑i

l=1(v
∗
i−l+1 ⊗Aω(α,β) v1) ⊗C(α) (v∗l ⊗Aω(α,β) v1)

+β−1
∑n

l=i+1(v
∗
n−(l−i)+1 ⊗Aω(α,β) v1) ⊗C(α) (v∗l ⊗Aω(α,β) v1),

=
∑i

l=1 cl ⊗C(α) ci−l+1 + β−1
∑n

l=i+1 cl ⊗C(α) cn−(l−i)+1,

ǫ(ci) = δi,1.

The coideal JAω(α,β) of Σ∗⊗k Σ that corresponds to this intermediate extension is the right
subspace generated by the set:

{zn
l,m − ωi(m−l)zi

l,m : l,m, i = 1, ..., n} ∪ {zi
l,m − β−1zi

n−(m−l)+1,1 : l,m, i = 1, ..., n;

l < m} ∪ {zi
l,m − zi

l−m+1,1 : l,m, i = 1, ..., n; l ≥ m}.

Extension k ⊂Mn(k) ⊂ Mn(C(α)) : Let

X = e1,1 + ωe2,2 + ... + ωn−1en,n, Y = e1,2 + ...+ en−1,n + en,1.
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Then Xn = 1, Y n = 1 and Y X = ωXY and the k-algebra generated by X and Y is Mn(k).
The action of X and Y on the basis B and B∗ is obtained from (7) for β = 1. From these
actions we get the relations:

v∗1 ⊗Mn(k) v1 = v∗n · Y ⊗Mn(k) v1 = v∗n ⊗Mn(k) Y · v1 = v∗n ⊗Mn(k) vn

= v∗n−1 · Y ⊗Mn(k) vn = v∗n−1 ⊗Mn(k) Y · vn = v∗n−1 ⊗Mn(k) vn−1

= ....

= v∗2 ⊗Mn(k) v2.

v∗i ⊗Mn(k) vj = ω−j+1v∗i ⊗Mn(k) X · vj = ω−j+1v∗i ·X ⊗Mn(k) vj

= ωi−jv∗i ⊗Mn(k) vj .

Then v∗i ⊗Mn(k) vj = 0 for i 6= j. Set ci = α−1xn−iv∗1 ⊗Mn(k) v1x
n−i for i = 1, ..., n. Then

the set {ci : i = 1, ..., n} is a basis of Σ∗ ⊗Mn(k) Σ as a right C(α)-vector space. The
bimodule structure of this coring is given by xci = ci−1x with the convention c0 = cn. The
comultiplication and counit of Σ∗ ⊗Mn(k) Σ takes the form:

∆(ci) =
∑n

j=1(αx
n−iv∗1 ⊗Mn(k) vj) ⊗C(α) (v∗j ⊗Mn(k) v1)x

i

= (αxn−iv∗1 ⊗Mn(k) v1) ⊗C(α) (v∗1 ⊗Mn(k) v1)x
i

= (αxn−iv∗1 ⊗Mn(k) v1x
i) ⊗C(α) (α−1xn−iv∗1 ⊗Mn(k) v1)x

i

= ci ⊗C(α) ci,

ǫ(ci) = 1.

This coring can also be obtained as the Sweedler coring associated to the extension k ⊂
C(α). The coideal JMn(k) of Σ∗ ⊗k Σ corresponding to this extension is the right subspace
spanned by the set

{zi
l,m : l,m, i = 1, ..., n; l 6= m} ∪ {zi

1,1 − zi
l,l : l, i = 1, ..., n}.

3 Duality

Let f : C → D, g : C → E be surjective homomorphisms of A–corings. Then Kerf = Kerg
if and only if there exists an isomorphism of A–corings D ∼= E making commute the
diagram

C
f

����
��

��
�� g

��>
>>

>>
>>

D
≃ // E

(11)

Thus, every coideal J of C determines a class of surjective homomorphisms C → D having
J as their common kernel or, alternatively, the morphisms in each class are connected by
commutative triangles as in (11).

From a formal point of view, corings over A are dual to A–rings, being these last
understood to be morphisms of rings A → U . The definition of a homomorphism of
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A–rings is obvious, and we will conceive an A–subring of a given A–ring A → E as an
isomorphism class of injective homomorphisms of A–rings U → E. Obviously, every A–
subring of E may be represented by an inclusion U ⊆ E. We can thus consider the set
Subrings(E) of A–subrings of E.

One of the possible concrete dual correspondences from A–corings to A–rings goes as
follows: if C is an A–coring, then ∗ǫC : A → ∗Cop is an A–ring (see [14, Proposition
3.2]), and under this mapping, homomorphisms of A–corings give homomorphisms of A–
rings. In particular, if J ∈ Coideals(C) and C → D = C/J is the corresponding canonical
projection, then we have an injective homomorphism of A–rings ∗Dop → ∗Cop (see again
[14, Proposition 3.2]). If C = Σ∗ ⊗B Σ is a comatrix A–coring, then, by [6, Proposition
2.1], we have an injective homomorphism of A–rings ∗

D
op → ∗

C
op ∼= End(BΣ). The

corresponding A–subring of End(BΣ) will be denoted by R′(J). Conversely, given an
A–subring U → End(BΣ), then End(ΣU) is independent on the representative U of the
A–subring. We define the coideal J ′(U) of Σ∗ ⊗B Σ as the kernel of the homomorphism of
A–corings Σ∗ ⊗B Σ → Σ∗ ⊗End(ΣU ) Σ induced by the ring homomorphism B → End(ΣU).

These considerations lead to a Galois connection for E = End(BΣ):

J ′ : Subrings(E)
..
Coideals(C) : R′

nn (12)

The following proposition collects some of its relevant properties. A right comodule Σ
over an A–coring D is said to be loyal if the canonical map

M∗ ⊗End(MD ) M // M∗ ⊗End(∗DM) M

induced by the inclusion End(ΣD) ⊆ End(∗DΣ) is a bijection. By [3, 19.2,19.3], if AD is
locally projective, then every right D–comodule is loyal.

Proposition 3.1. The mappings defined in (12) enjoy the following properties.

(1) R′J ′(U) = End(End(ΣU )Σ) for every U ∈ Subrings(E) and, thus, U ⊆ R′J ′(U).

(2) J ⊇ J ′R′(J) for every J ∈ Coideals(Σ∗ ⊗B Σ) such that ΣC/J is loyal.

(3) The maps J ′ and R′ establish a bijection between the set of A–subrings U of End(BΣ)
such that ΣU is faithful and balanced, and the set of coideals J of C such that (C/J,Σ)
is Galois and ΣC/J is loyal.

Proof. (1) Given an A–subring U ⊆ End(ΣB), J ′(U) is defined as the kernel of the sur-
jective homomorphism of A–corings Σ∗⊗B Σ → Σ∗ ⊗End(ΣU ) Σ. The commutative diagram
of injective homomorphisms of A–rings

∗(Σ∗ ⊗End(ΣU ) Σ)op //

≃

��

∗(Σ∗ ⊗B Σ)op

≃

��
End(End(ΣU )Σ) // End(BΣ)

deduced from [6, Proposition 2.1], shows that R′J ′(U) = End(End(ΣU )Σ).
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(2) With p : C → D = C/J the canonical projection, consider the commutative diagram

Σ∗ ⊗B Σ
p //

f

((PPPPPPPPPPPP
D

Σ∗ ⊗End(ΣD ) Σ

can

88rrrrrrrrrrr

, (13)

where f is induced by the morphism B → End(ΣD). Since ΣD is loyal, we get from the
diagram that J ⊇ ker(f) = J ′R′(J).

(3) Let U ⊆ E = End(BΣ) be an A–subring. By definition, J ′(U) is such that
C/J ′(U) ∼= Σ∗ ⊗End(ΣU ) Σ. By [6, Lemma 3.9], (Σ∗ ⊗End(ΣU ) Σ,Σ) is Galois. This means
that the canonical map

can : Σ∗ ⊗End(ΣΣ∗⊗End(ΣU )Σ
) Σ // Σ∗ ⊗End(ΣU ) Σ

is an isomorphism. But this map is nothing but the one induced by the ring extension

End(ΣΣ∗⊗End(ΣU )Σ) ⊆ End(∗(Σ∗⊗End(ΣU )Σ)Σ) = End(ΣEnd(ΣEnd(ΣU ))) = End(ΣU),

which proves that Σ is a loyal right Σ∗ ⊗End(ΣU ) Σ–comodule. Part (1) gives obviously
R′J ′(U) = U . Conversely, let J be a coideal of C such that (C/J,Σ) is Galois and ΣC/J is
Galois. Put D = C/J . From the triangle (13), and the fact that ΣD is loyal, we compute
the A–subring R′(J) of End(RΣ) as

∗(D)op ∼= ∗(Σ∗ ⊗End(ΣD ) Σ)op ∼= ∗(Σ∗ ⊗End(Σ∗Dop) Σ)op ∼= End(End(Σ∗Dop)Σ) (14)

This means that R′(J), defined as ∗Dop, is such that ΣR′(J) is faithful and balanced. The
diagram (13) gives in addition that J ′R′(J) = J .

We are now in position to prove our version for simple artinian rings of the Jacobson-
Bourbaki theorem.

Theorem 3.2. Let Σ be a finitely generated projective right module over a Quasi-Frobenius
ring A and let S = End(ΣA). Let B be a subring of S. Denote by I the set of intermediate
simple artinian subrings B ⊆ C ⊆ S such that CΣ is finitely generated. Let D denote the
set of all A-subrings U of End(BΣ) such that UA is finitely generated and projective, and
ΣU is semisimple and isotypic. The maps

R∗(−) : D → I, U 7→ End(ΣU),

J ∗(−) : I → D, C 7→ End(CΣ).

establish a bijective correspondence. This correspondence is dual to that of Theorem 2.4.
Moreover, if A is in addition local, then two intermediate simple artinian rings C and C ′

are conjugated if and only if End(CA) and End(C′A) are isomorphic as A–rings.
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Proof. If C is simple artinian and CΣ is finitely generated, then U = End(CΣ) is a simple
artinian A–ring. Thus, ΣU is semisimple isotypic. The comatrix A–coring Σ∗ ⊗C Σ is
then finitely generated and projective as a left A–module. The ring isomorphism Uop ∼=
∗(Σ∗⊗CΣ) given in [6, Proposition 2.1] is an isomorphism ofA–bimodules. In particular, UA

becomes a finitely generated module. Obviously, CΣ is faithful and balanced. Conversely,
assume that ΣU is semisimple isotypic for an A–subring U ⊆ End(BΣ) such that UA is
finitely generated. Then C = End(ΣU) is a simple artinian subring of S, because ΣU is
clearly finitely generated. To prove that ΣU is faithful and balanced, consider that the
comatrix A–coring structure on U∗ ⊗U U induces, via the isomorphism U∗ ⊗U U ∼= U∗ an
A–coring structure on this last A–bimodule [6, Example 2.4]. If {u∗α, uα}

n
α=1 is a finite dual

basis for UA, the comultiplication and counit are given explicitly by

∆ : U∗ → U∗ ⊗A U
∗, ϕ 7→

∑

α

ϕuα ⊗A u
∗
α,

ǫ : U∗ → A, ϕ 7→ ϕ(1)

The canonical map U → ∗(U∗) is then an anti-isomorphism of rings. We may then identify
the categories of MU∗

and UopM = MU (see e.g. [3, 19.6]). In fact, an explicit isomorphism
of categories is given as follows. For each element m in a right U–module M , the equality
mu =

∑

αmuαu
∗
α(u) for u ∈ U says that {muα, u

∗
α} is a set of right rational parameters in

the sense of [7]. Thus [7, Corollary 4.7] gives the isomorphism of categories MU = MU∗

,
where the right U∗–comodule structure on MU is given by ρM (m) =

∑

αmuα ⊗A u
∗
α. In

particular, the (finitely generated) simple isotypic right U–module may be considered as a
right U∗–comodule, and we have a canonical map given by

can : Σ∗ ⊗C Σ → U∗, ϕ⊗C x 7→
∑

α

ϕ(xuα)u∗α (15)

Now, for every 0 6= u ∈ U , let x ∈ Σ such that xu 6= 0. Then, for ϕ ∈ Σ∗ with ϕ(xu) 6= 0,
we have

can(ϕ⊗C x)(u) =
∑

α

ϕ(xuα)u∗α(u) =
∑

α

ϕ(xuαu
∗
α(u)) = ϕ(xu) 6= 0,

which implies, being A Quasi-Frobenius and UA finitely generated, that can is surjective.
Finally, since ΣU∗ is semisimple, we get from Corollary 1.6 that can an isomorphism.
Therefore, we have an isomorphism

Uop ∼= ∗(U∗)
can

∗
// End(CΣ)op

which turns out to be, by using [6, equation (3)], the canonical homomorphism U →
End(CΣ). In this way, ΣU is faithful and balanced and CΣ must be finitely generated.

Remark 3.3. If the base ring A is simple artinian then Theorem 3.2 takes a simpler form.
Thus, for a simple artinian ring B, the maps

R∗(−) : D → I, U 7→ End(ΣU),

J ∗(−) : I → D, C 7→ End(CΣ).
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establish a bijective correspondence between the set D of simple artinian A-subrings U of
End(BΣ) such that UA is finitely generated and the set I of intermediate simple artinian
subrings B ⊆ C ⊆ S such that CS is finitely generated.

If Σ = A, and B ⊆ A is a subring, then for every A–subring U ⊆ End(BA), we have that
R∗(U) = End(UA) = {c ∈ A : u(ca) = cu(a), u ∈ U, a ∈ A}. If, moreover, A is a division
ring, then we deduce from Theorem 3.2 the following version of the Jacobson-Bourbaki
theorem (c.f. [14, §4]).

Corollary 3.4. Let B ⊆ A be division rings. The maps R∗ and J ∗ establish a bijective
correspondence between the intermediate division rings B ⊆ C ⊆ A such that CA is finite
dimensional and the A–subrings U ⊆ End(BA) such that UA is finite dimensional. More-
over, two intermediate division subrings C and C ′ are conjugated if and only if End(CA)
and End(C′A) are isomorphic A–rings.

Proof. The pertinent remark here is that AU is always a simple module (since AA is simple).

Appendix

Throughout this section all corings are C/R-corings and all C-bimodules are assumed to
be centralized by the field of real numbers R.

We know by the Structure Theorem of simple and cosemisimple corings that any such
a C-coring C is of the form Σ∗ ⊗D Σ where Σ is a finite dimensional complex vector
space and D is a R-division algebra embedded in End(ΣC) ∼= Mn(C) where n = dim(ΣC).
Furthermore, two corings Σ∗ ⊗D Σ and Σ∗ ⊗E Σ are isomorphic if and only if there is an
invertible u ∈ End(ΣC) such that uEu−1 = D, i.e., E and D are conjugated in End(ΣC).

By Fröbenius Theorem, D = R,C or H. We study the possible ways of embedding
these division algebras in Mn(C). As a consequence of the proof of the Skolem-Noether
Theorem ([10, Theorem 4.9]) the non conjugated ways of embedding D in Mn(C) are in
bijective correspondence with the simple left D ⊗R Mn(C)-modules.

1. Case D = R. Since Mn(C) is an R-algebra, the only way of embedding R in Mn(C)
is the obvious one. The comultiplication and counit of the coring Σ∗ ⊗R Σ is described in
(8). If n = 1, then this coring is isomorphic to the coring [Z/2]C associated to the canonical
Z/2–grading on C. As a right C–vector space, [Z/2]C is free over the basis Z/2 = {[0], [1]}.
Its left C-vector space structure is determined by the rules i[0] = [1]i, i[1] = [0]i. In this
coring, [0] and [1] are group-like elements. For n > 1, the coring Σ∗⊗RΣ is isomorphic with
the tensor product coring (see [8, Proposition 1.5]) [Z/2]C⊗RM

c(R, n), where M c(R, n) is
the comatrix R–coalgebra. An explicit isomorphism sends z0

m,l onto [0]⊗Rxm,l and z1
m,l onto

[1]⊗R xm,l, where xm,l denotes the matrix with 1 in the component (l,m) and 0 elsewhere.

2. Case D = C. Since C⊗RMn(C) ∼= Mn(C)⊕Mn(C), there are two ways (for n > 0)
of embedding C into Mn(C). Let ep,q denote the elementary matrix in Mn(C) with 1 in the
(p, q)-entry and zero elsewhere. The two non conjugate embeddings are represented by the
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one sending i to i(
∑n

l=1 el,l) and the one sending i to ī =
∑n

l=1 el,n−l+1. In the first case, Σ
is centralized by C and therefore Σ∗ ⊗C Σ is a C-coalgebra. Thus Σ∗ ⊗C Σ is isomorphic
to the comatrix coalgebra of order n. Let us study the second case. The action of ī on Σ
and Σ∗ is:

ī · vj = vn−j+1i, v∗j · ī = iv∗n−j+1.

Then the bimodule structure on Σ∗ ⊗C Σ is given by:

i(v∗p ⊗C vq) = iv∗p ⊗C vq = v∗n−p+1 · ī⊗C vq = v∗n−p+1 ⊗C ī · vq

= v∗n−p+1 ⊗C vn−q+1i = (v∗n−p+1 ⊗C vn−q+1)i.

The comultiplication and counit of Σ∗ ⊗C Σ is defined by:

∆(v∗p ⊗ vq) =

n
∑

l=1

(v∗p ⊗ vl) ⊗ (v∗l ⊗ vq), ǫ(v∗p ⊗ vq) = δp,q.

This coring can be described as the right C-vector space C = ⊕n
p,q=1vp,qC with bimodule

structure ivp,q = vn−p+1,n−q+1i and with comultiplication and counit given by:

∆(vp,q) =

n
∑

l=1

vp,l ⊗C vl,q, ǫ(vp,q) = δp,q.

3. Case D = H. Since H is a central simple R-algebra and Mn(C) is simple, H ⊗R

Mn(C) is simple. Hence all embeddings of H in Mn(C) are conjugate. Let us observe that
if H embeds in Mn(C), then n is even. By the Double Centralizer Theorem we would have
Mn(C) ∼= H ⊗R C(H), where C(H) denotes the centralizer of H in Mn(C). Comparing
real dimensions, 4 divides 2n2. Let ī, j̄ be the generators of H. Consider the following
embedding of H in M2(C) :

ī 7→

(

0 −1
1 0

)

, j̄ 7→

(

i 0
0 −i

)

.

Since n is even, the above embedding gives an embedding of H in Mn(C) by placing each
block repeatedly in the main diagonal. Any other embedding of H in Mn(C) is conjugated
to this one.

We next describe the coring Σ∗ ⊗H Σ. We first assume that n = 2. Observe that
this case is a particular case of our example in the second section by taking k = R and
α = β = −1. The bimodule structure on Σ∗ ⊗H Σ is the following:

i(v∗1 ⊗ v1) = (v∗1 ⊗ v1)i, i(v∗2 ⊗ v1) = −(v∗2 ⊗ v1)i.

The comultiplication and counit of Σ∗ ⊗H Σ read as:

∆(v∗1 ⊗ v1) = (v∗1 ⊗ v1) ⊗ (v∗1 ⊗ v1) − (v∗2 ⊗ v1) ⊗ (v∗2 ⊗ v1), ǫ(v∗1 ⊗ v1) = 1,

∆(v∗2 ⊗ v1) = (v∗2 ⊗ v1) ⊗ (v∗1 ⊗ v1) + (v∗1 ⊗ v1) ⊗ (v∗2 ⊗ v1), ǫ(v∗2 ⊗ v1) = 0.
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This coring is precisely the trigonometric coring. We now discuss the general case dim(ΣC) =
n = 2m. Let us recall that H is embedded in Mn(C) in the following way:

ī 7→
∑m

i=1 e2l−1,2l −
∑m

l=1 e2l,2l−1, j̄ 7→ i(
∑n

l=1(−1)l+1el,l).

Through this embedding the action of H on Σ and Σ∗ is:

ī · vq =

{

vq−1 if q is even
−vq+1 if q is odd

j̄ · vq = (−1)q+1vqi

v∗q · ī =

{

−v∗q−1 if q is even
v∗q+1 if q is odd

v∗q · j̄ = (−1)q+1iv∗q

These actions give rise to the following relations in Σ∗⊗H Σ. Let p, q ∈ {1, 2, ..., m}. Then:

v∗2p ⊗ v2q = −v∗2p ⊗ ī · v2q−1 = −v∗2p · ī⊗ v2q−1 = v∗2p−1 ⊗ v2q−1,
v∗2p−1 ⊗ v2q = −v∗2p−1 ⊗ ī · v2q = v∗2p−1 · ī⊗ v2q−1 = −v∗2p ⊗ v2q−1.

The set {v2p ⊗ vl|p = 1, ..., m; l = 1, ..., n} is a basis of Σ∗ ⊗H Σ as a right C-vector space.
The left C-action on this coring is:

i(v∗2p ⊗ v2q) = iv∗2p ⊗ v2q = (−1)2p+1v∗2p · j̄ ⊗ v2q = (−1)2p+1v∗2p ⊗ j̄ · v2q

= v∗2p ⊗ v2qi = (v∗2p ⊗ v2q)i,

i(v∗2p ⊗ v2q−1) = iv∗2p ⊗ v2q−1 = (−1)2p+1v∗2p · j̄ ⊗ v2q−1 = (−1)2p+1v∗2p ⊗ j̄ · v2q−1

= −v∗2p ⊗ v2qi = −(v∗2p ⊗ v2q−1)i.

The comultiplication and counit of Σ∗ ⊗H Σ is:

∆(v2p ⊗ v2q) =
∑m

l=1(v
∗
2p ⊗ v2l) ⊗C (v∗2l ⊗ v2q) +

∑m
l=1(v

∗
2p ⊗ v2l−1) ⊗C (v∗2l−1 ⊗ v2q)

=
∑m

l=1(v
∗
2p ⊗ v2l) ⊗C (v∗2l ⊗ v2q) −

∑m
l=1(v

∗
2p ⊗ v2l−1) ⊗C (v∗2l ⊗ v2q−1)

ǫ(v2p ⊗ v2q) = δp,q

∆(v2p ⊗ v2q−1) =
∑m

l=1(v
∗
2p ⊗ v2l) ⊗C (v∗2l ⊗ v2q−1) +

∑m
l=1(v

∗
2p ⊗ v2l−1) ⊗C (v∗2l−1 ⊗ v2q−1)

=
∑m

l=1(v
∗
2p ⊗ v2l) ⊗C (v∗2l ⊗ v2q) +

∑m
l=1(v

∗
2p ⊗ v2l−1) ⊗C (v∗2l ⊗ v2q)

ǫ(v2p ⊗ v2q−1) = 0.

Let T = Cc ⊕ Cs denote the trigonometric coring and let M c(R, m) be the R-comatrix
coalgebra of order m. Then T⊗R M

c(R, m) becomes a C-coring in the natural way [8]. It
may be verified that the map from T ⊗R M

c(R, m) to Σ∗ ⊗H Σ defined by

c⊗R xpq 7→ v∗2p ⊗ v2q, s⊗R xpq 7→ v∗2p ⊗ v2q−1,

is an isomorphism of corings.
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[3] T. Brzeziński and R. Wisbauer, Corings and comodules. Cambridge University Press,
Cambridge, 2003.

[4] A.W.M. Dress, On more shortcut to Galois Theory. Adv. Math. 110 (1995), 129-140.

[5] A.W.M. Dress, Basic Noncommutative Galois Theory. Adv. Math. 110 (1995), 141-
173.
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