

elemento químico

Descripción de un

Conjunto de una, dos o tres letras que se usa para imbolo atómico representar un átomo en una fórmula química

> **Elemento** Símbolo Hidrógeno Н Hierro Fe

Número másico

32

2+ Carga iónica

Número atómico

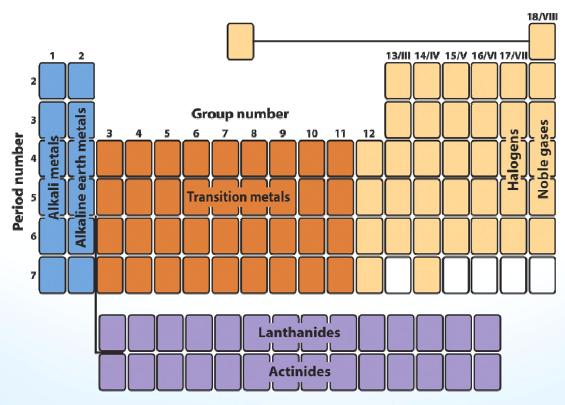
Número másico (A)

Número total de protones y neutrones de ese átomo

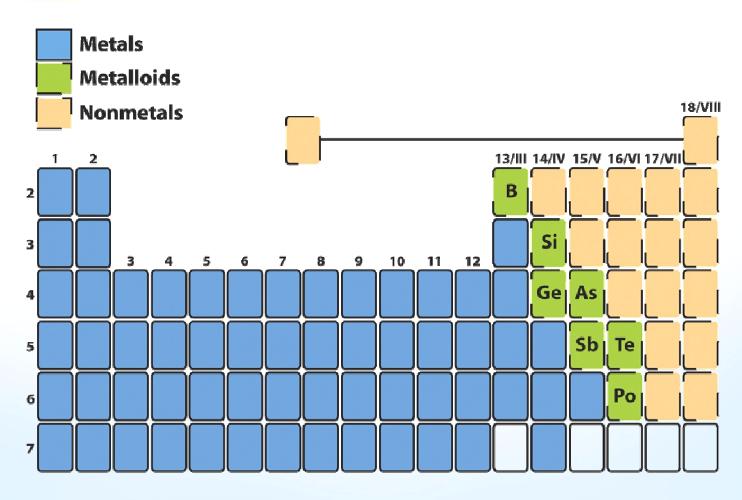
Número atómico (Z)

Número de protones de ese átomo

TABLE B.1 Properties of Subatomic Particles


Particle	Symbol	Charge*	Mass (kg)
electron	e ⁻	-1	9.109×10^{-31}
proton	p	+1	1.673×10^{-27}
neutron	n	0	1.675×10^{-27}

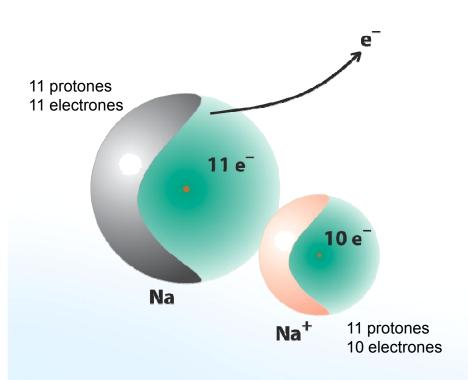
^{*}Charges are given as multiples of the charge on a proton, which in SI units is 1.602×10^{-19} C (see Appendix 1B).

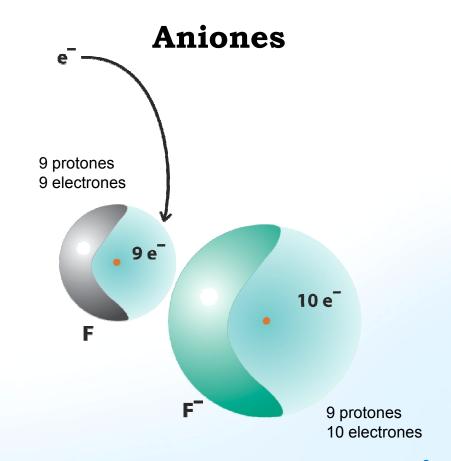

Tabla periódica

Ordenamiento de los elementos en filas y columnas, en orden creciente de números atómicos y de acuerdo con su configuración electrónica

Tema 1.- Formulación Química Inorgánica

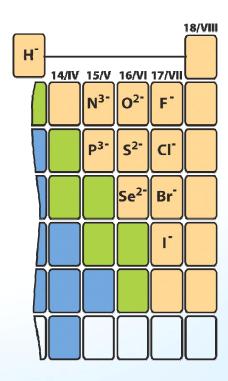
						_												
Grupo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	0
Período	meta	ales													no me	tales		
1	1 H HIDRÓGENO 1,00																	2 He HELIO 4,00
2	3 Li LITIO 6,94	4 Be BERILIO 9,01											5 B BORO 10,81	6 C CARBONO 12,01	7 N NITRÓGENO 14,00	8 O oxigeno 15,99	9 F FLUOR 18,99	10 Ne NEÓN 20,18
3	11 Na sodio 22,99	12 Mg MAGNESIO 24,30			frágiles		metales	pesados	dú	ctiles		(1)	13 AI ALUMINIO 26,98	14 Si SILICIO 28,08	15 P rósroro 30,97	16 S AZUFRE 32,08	17 CI CLORO 35,45	18 Ar ARGÓN 39,94
4	19 K POTASIO 39,1	20 Ca CALCIO 40,08	21 Sc ESCANDIO 44,95	22 Ti TITANIO 47,90	23 V VANADIO 50,94	24* Cr CROMO 51,99	25 Mn manganeso 54,94	26 Fe HIERRO 55,84	27 Co COBALTO 58,93	28 Ni NIQUEL 58,69	29* Cu COBRE 63,54	30 Zn CINC 85,40	31 Ga GALIO 69,72	32 Ge GERMANIO 72,64	33 As Arsénico 74,92	34 Se SELENIO 78,96	35 Br BROMO 79,90	36 Kr CRIPTÓN 83,80
5	37 Rb RUBIDIO 85,47	38 Sr estroncio 87,62	39 Y ITRIO 88,90	40 Zr CIRCONIO 91,22	41* Nb NIOBIO 92,9	42* Mo MOLIBDENO 95,94	43 Tc TECNECIO 98,9	44* Ru RUTENIO 101	45* Rh RODIO 102,9	46* Pd PALADIO 108,4	47* Ag PLATA 107,9	48 Cd CADMIO 112,4	49 In INDIO 114,8	50 Sn ESTAÑO 118,7	51 Sb ANTIMONIO 121,7	52 Te TELURO 127,8	53 YODO 126,9	54 Xe XENÓN 131,3
6	55 Cs CESIO 132,9	56 Ba BARIO 137,3	57-71 *	72 Hf HAFNIO 178,5	73 Ta TANTALIO 180,9	74 W VOLFRAMIO 183,8	75 Re RENIO 188,2	76 Os OSMIO 190,2	77 Ir IRIDIO 192,2	78* Pt PLATINO 195,1	79* Au oro 197	80 Hg MERCURIO 200,6	81 TI TALIO 204,4	82 Pb PLOMO 207,2	83 Bi BISMUTO 209	84 Po POLONIO 209	85 At ASTATO 210	86 Rn RADÓN 222
7	87 Fr FRANCIO 223,0	88 Ra RADIO 226,0	89-103 **	104 Rf RUTHERFOR- DIO-261	105 Db DUBNIO 282	106 Sg SEABORGIO 263	107 Bh BOHRIO 284	108 Hs HASSIO 289	109 IVIt MEITNERIO 288	110 Ds darmstadtio 271	111 Rg ROENTGENIO 272	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
6	*Lantánio	ios	57 La LANTANO 138,9	58 Ce CERIO 140,1	59 Pr PRASEODIMIO 140,9	60 Nd NEODIMIO 144,2	61 Pm PROMECIO 145	62 Sm SAMARIO 150,3	63 Eu EUROPIO 152	64 Gd GADOLINIO 157,2	65 Tb TERBIO 158,9	66 Dy DISPROSIO 162,5	67 Ho HOLMIO 164,9	68 Er ERBIO 167,2	69 Tm TULIO 168,9	70 Yb ITERBIO 173	71 Lu LUTECIO 175	
	**Actínio		89 Ac ACTINIO 227,0	90 Th TORIO 232	91 Pa PROTACTINIO 231	92 U URANIO 238	93 Np NEPTUNIO 237	94 Pu PLUTONIO 244	95 Am AMERICIO 243	96 Cm curio 247	97 Bk BERQUELIO 247	98 Cf CALIFORNIO 251	99 Es EINSTENIO 252	100 Fm FERMIO 257	101 Md MENDELEVIO 258	102 No NOBELIO 259	103 Lr LAURENCIO 280	
(1) punto	de fusión l	bajo; (Z*) c							1 12 14 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11 7 15 17							
	Config		d ¹	f1	f 2	f 3	f4	f e	f e	f7	f®	t.s	f 10	f 11	f 12	f 18	f 14	
meta	d	ı	ored meta	e/	pre	d no meta	ı	поп	netal		inerte		tierra	s raras	со	lor de for	ido	
THE RESERVE	SÓLIDOS		***************************************	LÍ	QUIDOS			GASE	S		S	INTÉTICO			color	de símbo	lo	
	10000	10 10 10 10		The same of	1 191 1 1 1	A 10 10 10 10 10 10 10 10 10 10 10 10 10	1000	19 1 1 1	- 1 de 76 1	1000	2 1 1 1 1						1 191 1 1 1	-




Lones y compuestos iónicos

- Los átomos de casi todos los elementos pueden ganar *o* perder electrones para dar especies cargadas denominadas *iones*.
- Los compuestos formados por iones se conocen como compuestos iónicos.
- Los **metales** tienden a **perder electrones** para formar iones cargados positivamente llamados *cationes*.
- Los **no metales** tienden a **ganar electrones** para formar iones con carga negativa denominados *aniones*.

Cationes



Cationes

Aniones

Elementos químicos. Especies homoatómicas

Elementos

Sustancias fundamentales constituidas por átomos que tienen el mismo número atómico, es decir, el mismo número de protones en sus núcleos

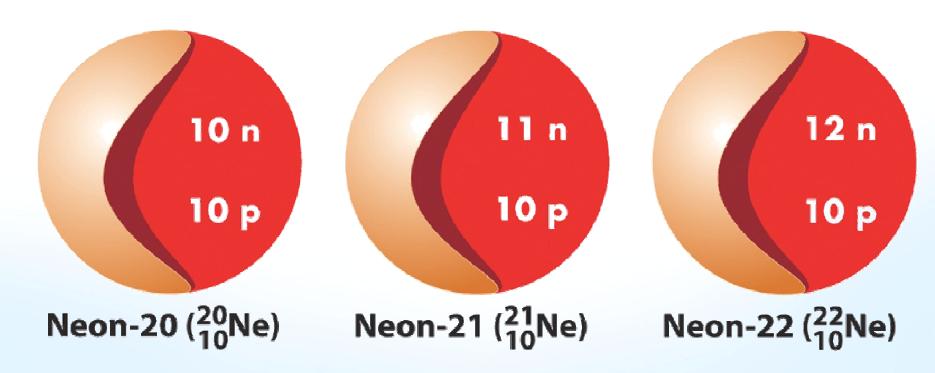
Elementos monoatómicos

Formados por un único átomo Gases nobles (He, Ne...)

Elementos diatómicos

Formados por dos átomos Cl_2 , O_2 , N_2 , H_2

Elementos poliatómicos


Formados por más de dos átomos S_{8} , C_{n}

Elementos químicos. Especies homoatómicas

Isótopos

átomos que tienen el mismo Z (número atómico) y diferente A (número másico)

Elementos químicos. Especies homoatómicas

TABLE B.2 Some Isotopes of Common Elements

Element	Symbol	Atomic number, Z	Mass number, A	Abundance (%)
hydrogen	¹ H	1	1	99.985
deuterium	² H or D	1	2	0.015
tritium	3 H or T	1	3	
carbon-12	¹² C	6	12	98.90
carbon-13	¹³ C	6	13	1.10
oxygen-16	¹⁶ O	8	16	99.76

^{*} Radioactive, short-lived.

ELidrógeno con no metales Formulación

a) Escriba los símbolos del hidrógeno y del otro elemento en el orden que establece la siguiente lista (electronegatividades), escribiendo primero el que aparece más a la izquierda (menos electronegativo)

B, Si, C, Sb, As, P, N,
$$\mathbf{H}$$
, Te, Se, S, At, I, Br, Cl, O, F

b) Escriba a la derecha de cada símbolo, el subíndice numérico que corresponde al número de oxidación del otro elemento (el subíndice 1 se omite por simplicidad)

En las combinaciones del **hidrógeno** con no metales, su número de oxidación es **+I**, y al otro elemento le corresponde un número de oxidación negativo

Grupo	Elementos	nº oxidación
13	В	-111
14	C, Si	-IV
15	N, P, As, Sb	-111
16	O, S, Se, Te	-11
17	F, Cl, Br, I, At	-l

nº oxi	idación	Fórmula
H = +I	Si = -IV	SiH ₄
H = +I	N = -III	NH ₃
H = +I	O = -II	H ₂ O
H = +I	Br = -I	HBr

ELidrógeno con no metales Nomenclatura

a) Hidrácidos. Nomenclatura sistemática

B, Si, C, Sb, As, P, N, **H**, Te, Se, S, At, I, Br, CI, O, F

Se nombran añadiendo la terminación **–uro** al nombre de dicho elemento, seguidos de las palabras **de hidrógeno**

Los hidrácidos generados en disolución acuosa, se nombran con la palabra **ácido** seguida del **nombre** del no metal al que se le añade el sufijo - **hídrico**

Fórmula	Nombre sistematico	Nombre en disolución acuosa
HF	Fluoruro de hidrógeno	Ácido fluorhídrico
HCI	Cloruro de hidrógeno	Ácido clorhídrico
HBr	Bromuro de hidrógeno	Ácido bromhídrico
HI	Yoduro de hidrógeno	Ácido yodhídrico

Fórmula	Nombre sistematico	Nombre en disolución acuosa
HAt	Astaturo de hidrógeno	
H ₂ S	Sulfuro de hidrógeno	Ácido sulfhídrico
H ₂ Se	Seleniuro de hidrógeno	Ácido selenhídrico
H ₂ Te	Telururo de hidrógeno	Ácido telurhídrico

b) Otros compuestos binarios del hidrógeno con no metales. Nomenclatura sistemática

Se nombran añadiendo la terminación **–ano** a la raíz que indica cuál es el elemento. En algunos casos reciben nombres comunes.

El **borano** (**BH**₃) no es la combinación habitual de boro con hidrógeno. Forma agrupaciones de mayor tamaño que se nombran con un prefijo numérico (**di-, tri-, etc**) que indica el número de átomos de boro y la palabra **borano**, seguida del nº de átomos de H entre paréntesis

Fórmula	Nombre sistematico	Nombre en disolución acuosa
B ₂ H ₆	Diborano (6)	Diborano
B ₃ H ₅	Triborano(5)	Triborano
B ₄ H ₆	Tetraborano(6)	Tetraborano

Otros no metales también forman hidruros complejos, en los que el no metal forma enlaces consigo mismo. Se nombran añadiendo los prefijos **di-, tri-, tetra**,...(nº de átomos del elemento) al nombre del hidruro simple.

Fórmula	Nombre sistematico	Nombre en disolución acuosa
BH ₃	Borano	
CH ₄	Carbano	Metano
SiH ₄	Silano	
NH ₃	Azano	Amoniaco
PH ₃	Fosfano	Fosfina
AsH ₃	Arsano	Arsina
SbH ₃	Estibano	Estibina
H ₂ O	Oxibano	Agua

Fórmula	Nombre sistematico	Nombre en disolución acuosa
Si ₂ H ₆	Disilano	
Si ₃ H ₈	Trisilano	
Si ₄ H ₁₀	Tetrasilano	
N_2H_4	Diazano	Hidrazina
P_2H_4	Difosfano	Difosfina

Lidrógeno con metales Formulación

a) Igual que en el caso de los no metales. El símbolo del metal va siempre delante del símbolo del hidrógeno

En las combinaciones del **hidrógeno** con metales, su número de oxidación es **-I**, y al otro elemento le corresponde un número de oxidación **positivo**

Grupo	Elementos	nº oxidación
1	Li, Na, K, Rb, Cs	+
2	Be, Mg, Ca, Sr, Ba	+
13	Al, Ga	+ 111
14	Ge, Sn, Pb	+ IV

nº oxidación	Fórmula
H = -l Na = +l	NaH
H = -I Ca = +II	CaH ₂
H = -I AI = +III	AlH ₃
H = -I Pb = +IV	PbH ₄

Lidrógeno con metales

Nomenclatura

a) Nomenclatura sistemática

Los nombres se forman con la palabra hidruro precedida de un prefijo numérico (mono-, di-, tri-,,,) que indica el número de hidrógenos seguida de la preposición de y el nombre del metal

a) Nomenclatura de Stock

Se forma con la expresión hidruro de... seguida del nombre del metal y su nº de oxidación entre paréntesis

En ambos sistemas cuando el metal tiene un único número de oxidación y no hay confusión posible, se suprimern los prefijos (mono-, di-,...) o los nº de oxidación (I, II,III...)

Fórmula	Nombre sistematico	Nombre Stock	Nombre preferido
NaH	Monohidruro de sodio	Hidruro de sodio (I)	Hidruro de sodio
CaH ₂	Dihidruro de calcio	Hidruro de calcio(II)	Hidruro de calcio
AlH ₃	Trihidruro de aluminio	Hidruro de alumnio (III)	Hidruro de alumnio
PbH ₄	Tetrahidruro de plomo	Hidruro de plomo (IV)	Hidruro de plomo

Los hidruros de los metales de los Grupos 14, 15, 16 y 17 se pueden nombrar también como los de los no metales

Fórmula	Nombre sistematico	Nombre común
GeH₄	Germano	
SnH₄	Estannano	
PbH ₄	Plumbano	
BiH ₃	Bismutano	Bismutina
PoH ₂	Polano	Poloniuro de hidrógeno

Algunos de estos hidruros presentan agrupaciones superiores, que se nombran con los prefijos di-, tri-

. . .

Fórmula	Nombre sistematico
Sn ₂ H ₆	Diestannano

Formulación de hidruros a partir de su nombre sistemático

- a) Escribir los símbolos del hidrógeno y del otro elemento
 - a) No metal.- Se necesita saber cuál de los símbolos se escribe antes
 - b) Metal.- Su símbolo se escribe siempre a la izquierda del hidrógeno
- b) Colocar los subíndices basándose en los prefijos numéricos mono-, di-, tri... Recordar que monose suele omitir, lo mismo que di-, tri-, si el elemento posee un único número de oxidación

Si la nomenclatura es de Stock, utilizar el nº de oxidación expresado en el nombre para deducir los subíndices

Nombre sistematico	Símbolos	Fórmula
Fluoruro de hidrógeno	HF	HF
Hidruro de calcio	СаН	CaH ₂
Hidruro de uranio (III)	UH	UH ₃

- Los compuestos binarios del oxígeno se llaman óxidos.
- El oxígeno con una configuración electrónica 1s² 2s² 2p⁴ trata de adquirir la configuración del gas noble neón 1s² 2s² 2p⁶ tomando 2 electrones y por tanto presentando un nº de oxidación de II
- El oxígeno es el segundo elemento más electronegativo del Sistema Periódico, todos los elementos que se combinan con él, a excepción del flúor que es más electronegativo, toman siempre un número de oxidación positivo

Oxígeno con no metales (óxidos ácidos) Formulación

a) Escribir los símbolos de los elementos: el más electronegativo a la derecha y el más electronegativo a la izquierda.

Rn, Xe, Kr, Ar, Ne, He, B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, **O**, F

b) Escribir a la derecha de cada símbolo, el subíndice que representa el número de oxidación del otro elemento, de manera que la fórmula resultante, los subíndices son los números de oxidación intercambiados

c) Los subíndices se simplifican para obtener los números enteros menores posibles

nº oxidación	Fórmula sin simplificar	Fórmula simplificada
N = +I O = -II	N ₂ O	
N = +II O = -II	N_2O_2	NO
N = +III O = -II	N_2O_3	
N= + IV O = -II	N_2O_4	NO ₂
N= +IV O = -II	N_2O_4	
N = +IV O = -II	N_2O_5	

Oxígeno con no metales (óxidos ácidos) Nomenclatura

a) Nomenclatura sistemática

Se forman con la palabra óxido acompañada de un prefijo numérico (mono-, di-, tri...) que indica el nº de átomos de oxígeno en la fórmula. Le sigue de y el nombre del elemento también acompañado de su correspondiente prefijo numérico Los prefijos se omiten en aquellos casos en los que los elementos de la fórmula tienen un único nº de oxidación

b) Nomenclatura de Stock

Oxido de... seguida del nombre del otro elemento y su nº de oxidación entre paréntesis y sin signo

Fórmula	Nombres sistemático	Nombre Stock
N ₂ O	Óxido de dinitrógeno	Óxido de nitrógeno (I)
NO	Monóxido de nitrógeno	Óxido de nitrógeno (II)
N_2O_3	Trióxido de dinitrógeno	Óxido de nitrógeno (III)
N_2O_4	Tetraóxido de dinitrógeno	Óxido de nitrógeno (IV)
NO ₂	Dióxido de nitrógeno	Óxido de nitrógeno (IV)
N_2O_5	Pentaóxido de dinitrógeno	Óxido de nitrógeno (V)

Fórmula	Nombres sistemático	Nombre Stock	Nombre preferido
SiO ₂	Dióxido de silicio	Óxido de silicio (IV)	Óxido de silicio
B ₂ O ₃	Trióxido de diboro	Óxido de boro (III)	Óxido de boro

En ambos sistemas cuando el metal tiene un único número de oxidación y no hay confusión posible, se suprimern los prefijos (mono-, di-,...) o los nº de oxidación (I, II,III...)

Compuestos de oxígeno con flúor: fluoruros de oxígeno

- El oxígeno menos electronegativo que el flúor, sus combinaciones se consideran fluoruros en lugar de óxidos
- El flúor posee un estado de oxidación negativo (-I) y el oxígeno positivo (+I, +II)
- El símbolo del oxígeno se escribe a la izquierda

nº oxidación	Fórmula	Nombre sistemático	Nombre Stock
O = +II F = -I	OF ₂	Difluoruro de oxígeno	Fluoruro de oxígeno (II)
O = +I F = -I	O_2F_2	Difluoruro de dioxígeno	Fluoruro de ioxígeno (I)

Oxígeno con metales (óxidos básicos) Formulación

- a) Escribir los símbolos de los elementos: el del metal, que es más electropositivo a la izquierda
- b) Escribir a la derecha de cada símbolo, el subíndice correspondiente. Utilice los números de oxidación del mismo modo que en los no metales
- c) Si es posible, la fórmula se simplifica

nº oxidación	Fórmula sin simplificar	Fórmula simplificada
Fe = +II O = -II	Fe ₂ O ₂	FeO
Fe = +III O = -II	Fe ₂ O ₃	

Oxígeno con metales (óxidos básicos) Nomenclatura

a) Se puede utilizar la **nomenclatura sistemática** o la **nomenclatura de Stock**, construyendo los nombres de la misma manera que para los óxidos de los no metales

Fórmula	Nombre sistemático	Nombre Stock
Fe ₂ O ₂	Monóxido de hierro	Óxido de hierro (II)
Fe ₂ O ₃	Trióxido de dihierro	Óxido de hierro (III)

b) Los prefijos o los números de oxidación se pueden suprimir si con ello no se introduce ambigüedad.

Fórmula	Nombres sistemático	Nombre Stock	Nombre preferido
Li ₂ O	Óxido de dilitio	Óxido de litio (I)	Óxido de litio
CaO	Monóxido de calcio	Óxido de calcio (II)	Óxido de calcio

Formulación de óxidos a partir de su nombre sistemático

- a) Escribir los símbolos del oxígeno y del otro elemento
 - a) El símbolo del oxígeno siempre es el de la derecha excepto en los fluoruros
- b) Colocar los subíndices basándose en los prefijos numéricos mono-, di-, tri... Recordar que monose suele omitir, lo mismo que di-, tri-, si el elemento posee un único número de oxidación

Nombre sistematico	Símbolos	Fórmula
Dióxido de manganeso	Mn O	MnO_2
Heptaóxido de dicloro	CI O	Cl ₂ O ₇

Si la **nomenclatura es de Stock**, los subíndices son los números de oxidación intercambiados: al oxígeno le corresponde el mostrado en el nombre para el otro elemento, y a éste, el número de oxidacióndel oxígeno (-II)

Si es posible, simplifique la fórmula

Nombre Stock	Símbolos	Fórmula sin simplificar	Fórmula simplificada
Óxido de cloro (I)	CI O	Cl ₂ O	
Óxido de cobalto (III)	Co O	Co ₂ O ₃	
Óxido de azufre (II)	S O	S ₂ O ₂	so
Óxido de azufre (IV)	S O	S ₂ O ₄	SO ₂
Óxido de azufre (VI)	S O	S ₂ O ₆	SO ₃

Peróxidos

Compuestos en los que los átomos de oxígeno están unidos entre sí (\mathbf{O} - \mathbf{O}). El peróxido más conocido es el **peróxido de hidrógeno o agua oxigenada (\mathbf{H_2O_2} o \mathbf{H}-\mathbf{O}-\mathbf{O}-\mathbf{H}) En estos compuestos el nº de oxidación del oxígeno es \mathbf{-I}**.

O₂²⁻ ión peróxido

Los peróxidos más comunes se dan con cationes de metales de los Grupos 1, 2, 11 y 12 del Sistema Periódico

Formulación

- a) Escribir los símbolos de los elementos: el del metal, que es más electropositivo a la izquierda, seguida del O₂ (sólo a efectos de formulación, trate a este grupo como si fuese un único elemento)
- b) Escribir a la derecha del metal, el subíndice correspondiente. Utilizar los números d oxidación de los elementos para deducirlo. A efectos de formulación, el ión peróxido tiene un número de oxidación de -II

nº oxidación	Fórmula sin simplificar	Fórmula simplificada
Na = +I O_2 = -II	Na ₂ O ₂	
$Cu = +I O_2 = -II$	Cu ₂ O ₂	
$Zn = +II O_2 = -II$	$Zn_2(O_2)_2$	ZnO ₂

Tema 1.- Formulación Química Inorgánica

Peróxidos

Nomenclatura

a) Nomenclatura de Stock

Se nombran como los óxidos, sustituyendo la palabra óxido por peróxido

b) Nomenclatura sistemática

Se nombran como los óxidos

Fórmula	Nombre Stock	Nombre sistemático
Na ₂ O ₂	Peróxido de sodio	Dióxido de disodio
ZnO ₂	Peróxido de cinc	Dióxido de cinc
Cu ₂ O ₂	Peróxido de cobre (I)	Dióxido de dicobre

No metal con no metal

Formulación

a) Escribir los símbolos de los elementos no metálicos. Escriba primero el elemento que aparezca más a la izquierda

Rn, Xe, Kr, Ar, Ne, He, B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F

- b) Escribir a la derecha de cada símbolo, el subíndice correspondiente, utilizando los números de oxidación de cada elemento, de modo que los subíndices son los números de oxidación intercambiados
- c) Simplifique los subíndices cuando sea posible. El subíndice I no se escribe

Número de oxidación	Fórmula	Fórmula simplificada
Br = +I	BrCl	
= +V F = -	IF ₇	
As = +III S = -II	As_2S_3	
Si = +IV C = -IV	Si ₄ C ₄	SiC

No metal con no metal

Nomenclatura

a) Nomenclatura sistemática

- a) Se nombran añadiendo el sufijo **–uro** al nombre del elemento cuyo símbolo figura a la derecha en la fórmula seguido de la preposición **de** y el **nombre** del otro elemento
- b) A los nombres de los elementos se les añaden los prefijos numéricos **mono-, di-, tri-,...** para indicar su nº en la fórmula
- c) El prefijo mono- se suele omitir. Los otros también pueden omitirse si al hacerlo no se crea confusión (elemento con un único estado de oxidación)

b) Nomenclatura Stock

Igual que en la nomenclatura sistemática pero omitiendo los prefijos e incluyendo el nº de oxidación (entre paréntesis y sin signo) del elemento citado en último lugar

Fórmula	Nombre sistemático	Nombre Stock
BrCl	Monocloruro de bromo	Cloruro de bromo (I)
IF ₇	Heptacloruro de yodo	Fluoruro de yodo (VII)
As ₂ S ₃	Trisulfuro de diarsénico	Sulfuro de arsénico (III)

Fórmula	Nombre sistemático	Nombre Stock	Nombre preferido
SiC	Monocarburo de silicio	Carburo de silicio (IV)	Carburo de silicio

Metal con no metal

Formulación

- a) Escribir los símbolos de los elementos: el del metal elemento más electropositivo- a la izquierda
- b) Escribir a la derecha de cada símbolo, el subíndice correspondiente, utilizando los números de oxidación de cada elemento, de modo que los subíndices son los números de oxidación intercambiados. Los no metales suelen presentar un único estado de oxidación
- c) Simplifique los subíndices cuando sea posible. El subíndice I no se escribe

Número de oxidación	Fórmula	Fórmula simplificada
Fe = +II Cl = -I	FeCl ₂	
Fe = +III Cl = -I	FeCl ₃	
Co = +II S = -II	Co ₂ S ₂	CoS

Metal con no metal

Nomenclatura

- a) Nomenclatura sistemática
- a) Se nombran añadiendo el sufijo **–uro** al nombre del no metal cuyo símbolo figura a la derecha en la fórmula seguido de la preposición **de** y el **nombre** del metal
- b) El uso de los prefijos es el habitual

b) Nomenclatura Stock

Igual que en la nomenclatura sistemática pero omitiendo los prefijos e incluyendo el nº de oxidación (entre paréntesis y sin signo) del elemento citado en último lugar

Fórmula	Nombre sistemático	Nombre Stock
FeCl ₂	Dicloruro de hierro	Cloruro de hierro (II)
FeCl ₃	Tricloruro de hierro	Cloruro de hierro (III)
CoS	Sulfuro de Cobalto	Sulfuro de cobalto (II)
Hg ₂ Cl ₂	Dicloruro de dimercurio	Cloruro de mercurio (I)

Fórmula	Nombre sistemático	Nombre Stock	Nombre preferido
CaF ₂	Difluoruro de calcio	Fluoruro de calcio (II)	Fluoruro de calcio
NaBr	Monobromuro de sodio	Bromuro de sodio (I)	Bromuro de sodio
Ca ₃ P ₂	Difosfuro de tricalcio	Fosfuro de calcio(II)	Fosfuro de calcio

Formulación de compuestos binarios a partir de su nombre sistemático

- a) Escribir los símbolos de los dos elementos. El símbolo más electronegativo es el de la derecha
- b) Escribir los subíndices basándose en los prefijos numéricos o los números de oxidación. Los subíndices son los números de oxidación intercambiados
- c) Simplicar la fórmula siempre que se pueda

Nombre Stock	Símbolos	Fórmula sin simplificar	Fórmula simplificada
Cloruro de sodio	Na Cl	NaCl	
Nitruro de sodio	Li N	LiN	
Dicloruro de diazufre	S CI	S ₂ Cl ₂	
Fluoruro de azufre (VI)	SF	SF ₆	
Seleniuro de calcio	Ca Se	Ca ₂ Se ₂	CaSe

Hidróxidos

Combinación de un **metal** (en forma de catión) con el anión **hidróxido** (**OH**⁻). En disolución acuosa tienen carácter básico

Formulación

- a) Escribir primero el símbolo del metal, seguido de OH- Utilizar paréntesis para OH- si el compuesto presenta más de un grupo hidroxilo
- Escribir a la derecha del símbolo del metal y de (OH), el subíndice utilizando los números de oxidación del metal y del grupo OH, que a efectos de formulación presenta un número de oxidación de -I

Número de oxidación	Fórmula
K = +I OH = -I	КОН
Ca= +II OH = -I	Ca(OH) ₂
Al = +III OH = -I	Al(OH) ₃

Hidróxidos

Nomenclatura

a) Nomenclatura sistemática

El nombre se forma con las palabras **hidróxido de** seguidas del nombre del metal. Se utilizan los prefijos numéricos del modo vista anteriormente

b) Nomenclatura de Stock

Forme el nombre con las palabras **hidróxido de** seguidas del nombre del metal. A este último le sigue su número de oxidación entre paréntesis

Fórmula	Nombre sistemático	Nombre Stock
Cr(OH) ₂	Dihidróxido de cromo	Hidróxido de cromo(II)
Cr(OH) ₃	Trihidróxido de cromo	Hidróxido de cromo (III)

Fórmula	Nombre sistemático	Nombre Stock	Nombre preferido
KOH	Monohidróxido de potasio	Hidróxido de potasio (I)	Hidróxido de potasio
Ca(OH) ₂	Dihidróxido de calcio	Hidróxido de calcio (II)	Hidróxido de calcio
Al(OH) ₃	Trihidróxido de aluminio	Hidróxido de alumnio (III)	Hidróxido de aluminio

Hidróxidos

Formulación de un hidróxido a partir de su nombre sistemático

- a) Escribir los símbolos del metal y a continuación el grupo OH. Si hay más de uno, escribir entre paréntesis (OH)
- b) Escribir los subíndices basándose en los prefijos numéricos o los números de oxidación. Los subíndices son los números de oxidación intercambiados

Nombre Stock	Símbolos	Fórmula
Hidróxido de sodio	Na OH	NaOH
Dihidróxido de hierro	Fe OH	Fe(OH) ₂
Hidróxido de platino (IV)	Pt OH	Pt(OH) ₄

Punto de vista estructural

Suelen presentar un átomo central, que es un metal de transición o un no metal, rodeado de otros átomos, generalmente oxígenos, de los que uno o más están unidos a hidrógenos ácidos

Fórmula	Nombre antiguo	Nombre tradicional	Nombres sistemáticos	Nombres funcionales
		,	Tetraoxosulfato de dihidrógeno	Ácido tetraoxosulfúrico
H ₂ SO ₄	Aceite de vitriolo	Ácido sulfúrico	Tetraoxosulfato (2-) de hidrógeno	Ácido tetraoxosulfúrico (2-)
	Vitriolo	Gunanoo	Tetraoxosulfato (VI) de hidrógeno	Ácido tetraoxosulfúrico (VI)

Formulación

- a) Escribir los hidrógenos ácidos-aquellos que están unidos al oxígeno a través de un enlace que se rompe generando H⁺
- b) Después deben figurar el símbolo del átomo central
- c) Finalmente los símbolos de los átomos que los rodean. De ser varios y distintos, primero se escriben los oxígenos

$$H_aX_bO_c$$
 $H_aX_bO_cY_d$ $X = \text{ atomo central } Y = \text{Otro u otros elementos unidos a } X$

Fórmulas tipo H _a X _b O _c			Fórmulas ti	po H _a X _b O _c Y _d
H ₂ SO ₄	H ₄ P ₂ O ₆	H ₄ P ₂ O ₇	HSO₃CI	HSO₃Br

Números de oxidación

El oxígeno presenta un número de oxidación de -II, el hidrógeno de +I y los demás elementos siempre

un valor positivo

Número de oxidación	Fórmula
S = +II O = -II H = +I	H ₂ SO ₂
S = +IV O = -II H = +I	H ₂ SO ₃
S = +VI O = -II H = +I	H ₂ SO ₄

La suma de todos los números de oxidación de un compuesto neutro es cero, es muy fácil deducir el número de oxidación del átomo central a partir de su fórmula y viceversa

Fórmula	Número de oxidación
H ₂ SO ₂	$2 \times (n^{\circ} \text{ oxid H}) + 2 \times (n^{\circ} \text{ oxid. O}) + 1 \times (n^{\circ} \text{ oxid. S}) = 0$ $2 \times (+I) + 2 \times (-II) + 1 \times (n^{\circ} \text{ oxid S}) = 0$ $N^{\circ} \text{ oxid S} = +II$
H ₄ P ₂ O ₇	$4 \times (n^{\circ} \text{ oxid H}) + 7 \times (n^{\circ} \text{ oxid. O}) + 2 \times (n^{\circ} \text{ oxid. P}) = 0$ $4 \times (+I) + 7 \times (-II) + 2 \times (n^{\circ} \text{ oxid P}) = 0$ $N^{\circ} \text{ oxid P} = +V$

Tema 1.- Formulación Química Inorgánica

Oxoácidos más conocidos Metales de transición

GRI	GRUPO 5		GRUPO 6		GRUPO 7	
Vanadio	+V	Cromo	+VI	Manganeso	+VII	+VI
	HVO		H ₂ CrO ₄		HMnO ₄	H ₂ MnO ₄
	H ₃ VO ₄		H ₂ Cr ₂ O ₇			
		Molibdeno	+VI	Tecnecio	+VII	+VI
			H ₂ MoO ₄		HTcO₄	H ₂ TcO ₄
		Wolframio	+VI	Renio	+VII	+VI
			H ₂ WO ₄		HReO ₄	H ₂ ReO ₄

Fórmulas tipo H_aX_bO_cY_d

Oxoácidos más conocidos

No metales

GRUPO 13		GRUPO 14		
Boro	+III	Carbono	+ IV	
	H ₃ BO ₃		H ₂ CO ₃	
	(HBO ₂) _n	Silicio	+ IV	
			H_2SiO_3	
			$(H_2SiO_3)_n$	

	GRUPO 15					
Nitrógeno	+V		+111	+11	+I	
	HNO ₃		HNO ₂	H ₂ NO ₂	$H_2N_2O_2$	
Fósforo	+V	+IV	+111		+1	
	H ₃ PO ₄	$H_4P_2O_6$	HPO ₂ (inestable)		HPH ₂ O ₂	
	H ₄ P ₂ O ₇		H ₂ PHO ₃			
	H ₅ P ₃ O ₁₀		$H_2P_2H_2O_5$			
	(HPO ₃) Polímero de HPO ₃					

Oxoácidos más conocidos

No metales

	GRUPO 16						
Azufre	+VI	+V	+IV	+111	+11		
	H ₂ SO ₄	$H_2S_2O_6$	H ₂ SO ₃	H ₂ SO ₄	H ₂ SO ₂		
	H ₂ S ₂ O ₇						
Selenio	+VI		+IV				
	H ₂ SeO ₄		H ₂ SeO ₃				
	H ₂ Se ₂ O ₇						
Teluro	+VI		+IV				
	H ₆ TeO ₆		H ₂ TeO ₃				

Oxoácidos más conocidos No metales

		GRUPO 17		
Flúor				+1
				HFO
Cloro	+VI	+V	+IV	+1
	HClO₄	HCIO ₃	HCIO ₂	HCIO
Bromo	+VI	+V	+IV	+1
	HBrO₄	HBrO ₃	HBrO ₂	HBrO
Cloro	+VI	+V		+1
	HIO₄	HIO ₃		HCIO
	H ₆ IO ₆			
	$H_4I_2O_9$			

N omenclatura

Nomenclatura tradicional

Prefijo	Sufijo	2 estados de oxidación	3 estados de oxidación	4 estados de oxidación
Per-	-ico			Mayor
	-ico	Mayor	Mayor	Intermedio
	-oso	Menor	Intermedio	Intermedio
Hipo-	-oso		Menor	Menor

Nº de oxidación	Fórmula	Nombre
S = +IV	H ₂ SO ₃	Ácido sulfuroso
S = +VI	H ₂ SO ₄	Ácido sulfúrico -
CI = + III	HCIO ₂	Ácido cloroso
CI = +V	HCIO ₃	Ácido clorico

Excepción (+VI, +V, +IV, +III, +II) per- sulfúr - ico

Nomenclatura

Nomenclatura tradicional

Prefijos orto-, meta y otros

Un elemento que da origen a distintos oxoácidos , con el átomo central con el mismo número de oxidación. Las diferencias están en

- 1. La composición, que se refleja en la fórmula
 - 1. Se aplica el prefijo **orto-** a aquel oxoácido cuya fórmula presenta el mayor número de oxígenos
 - 2. Se aplica el prefijo **meta-** a aquel oxoácido cuya fórmula presenta el menor número de oxígenos
- 2. El distinto "grado de asociación" de las moléculas (dímeros, trímeros...), que coincide con el número de átomos del elemento central de la molécula

Nº de oxidación	Fórmula	Nombre
= +V	HIO₄	Ácido peryódico Ácido metaperyódico
= +V	H ₅ IO ₆	Ácido ortoperyódico

Nº de oxidación	Fórmula	Nombre
P = +V	H₃PO₄	Ácido fosfórico Ácido ortofosfórico
P = +V	H ₄ P ₂ O ₇	Ácido difosfórico
P = +V	$H_5P_3O_{10}$	Ácido trifosfórico

- Elimina ambigüedades y falta de coherencia de la nomenclatura tradicional
- Se asa en nombrar los oxoácidos como sales en las que los cationes han sido reemplazados por hidrógenos
- No se aplica a metales de transición
- 1. Nombre del anión
 - 1. Por orden alfabético. Van precedidos por los prefijos numéricos di-, tri-, etc
 - 1. Hidrógenos no ácidos se citan como hidrido
 - 2. Oxígenos como oxo-
 - 2. Raíz del elemento central
 - 3. La terminación **–ato** unida a la raíz
 - 4. Parte final del nombre (siempre entre paréntesis)
 - 1. Sistema de Ewens-Bassett: el nº de carga iónica formal del "anión" expresado en caracteres arábigos seguidos del signo menos (1-, 2-, 3- etc.)
 - 2. Sistema de Stock: el nº de oxidación del átomo central en números romanos (I, II, III, etc.)
- 2. de hidrógeno. Si el oxoácido tiene varios átomos de hidrógeno "ácidos", la palabra hidrógeno va precedida de los prefijos numéricos di-, tri-,etc (mono- no se utiliza). La utilización de los números de oxidación y número de carga hace innecesario escribir los prefijos delante de hidrógeno y a la inversa si se utilizan prefijos, son innecesarios los números de oxidación y carga

Fórmula	Nombre sistemático	Nombre sistemático (Ewens-Bassett)	Nombre sistemático (Stock)
HCIO	Monooxoclorato de hidrógeno	Monooxoclorato (1-) de hidrógeno	Monooxoclorato (I) de hidrógeno
HCIO ₂	Dioxoclorato de hidrógeno	Dioxoclorato (1-) de hidrógeno	Dioxoclorato (III) de hidrógeno
HCIO ₃	Trioxoclorato de hidrógeno	Trioxoclorato (1-) de hidrógeno	Trioxoclorato (V) de hidrógeno
HClO₄	Tetraoxoclorato de hidrógeno	Tetraoxoclorato (1-) de hidrógeno	Tetraoxoclorato (VII) de hidrógeno
H ₂ SO ₂	Dioxosulfato de dihidrógeno	Dioxosulfato (2-) de hidrógeno	Dioxosulfato (II) de hidrógeno
H ₂ SO ₃	Trioxosulfato de dihidrógeno	Trioxosulfato (2-) de hidrógeno	Trioxosulfato (IV) de hidrógeno
H ₂ SO ₄	Tetraoxosulfato de dihidrógeno	Tetraoxosulfato (2-) de hidrógeno	Tetraoxosulfato (VI) de hidrógeno

Elemento	Raíz	Anión	Elemento	Raíz	Anión
As	arsen-	Arseniato	Р	Fosf-	Fosfato
В	bor-	Borato	Re	Ren-	Reniato
Br	brom-	Bromato	S	Sulf-	Sulfato
С	carbon-	Carbonato	Sb	Antimon-	Antimoniato
CI	clor-	Clorato	Sc	Selen-	Seleniato
Cr	crom-	Cromato	Si	Silic-	Silicato
I	yod-	Yodato	Та	Tantal-	Tantalato
Mn	mangan-	Manganato	Те	Telur-	Telurato
Мо	molibd-	Molibdato	Tc	Tecnec-	Tecneciato
N	nitr-	Nitrato	V	Vanad-	Vanadato
Nb	niob-	niobato	W	Wolfram-	Wolframato

Nomenclatura funcional

Palabra ácido seguido de un término formado por los siguientes componentes

- 1. Prefijos numéricos (**mono-, di-, etc**) y los términos que definen a los átomos que rodean al elemento central: **oxo-** para oxígeno, **tio-** para azufre, **hidrido-** para hidrógeno
- 2. La terminación -ico unida a la raíz
- 3. El número de oxidación (o el número de carga) que cuando no es necesario se suprime dando lugar a un nombre simplificado

Fórmula	Nombre sistemático simplificado	Nombre sistemático (Ewens-Bassett)	Nombre sistemático (Stock)
H ₂ SO ₄	Ácido tetraoxosulfúrico	Ácido tetraoxosulfúrico (2-)	Ácido tetraoxosulfúrico (VI)
HCIO ₃	Ácido trioxoclorico	Ácido trioxoclorico (1-)	Ácido trioxoclorico (V)
HClO₄	Ácido tetraoxoclorico	Ácido tetraoxoclorico (1-)	Ácido tetraoxoclorico (VII)
HMnO ₄		Ácido tetraoxomangánico (1-)	Ácido tetraoxomangánico (VII)
H ₂ MnO ₄		Ácido tetraoxomangánico (2-)	Ácido tetraoxomangánico (VI)

Sales binarias Formulación y nomenclatura

Catión	Anión	Sal	Nombre
Na⁺	Cl⁻	NaCl	Cloruro de sodio
Ca ²⁺	<u> </u> -	Cal ₂	Yoduro de calcio
Ni ³⁺	S ²⁻	Ni ₂ S ₃	Trisulfuro de diniquel Sulfuro de niquel (II)
NH ₄ ⁺	Cl-	NH₄CI	Cloruro de amonio
K ⁺	CN⁻	KCN	Cianuro de potasio

Sales de oxoácidos

Formulación

Escribir primero el **catión** y después el **anión**, añadiéndoles los subíndices, que corresponden a los **números de carga** intercambiados

Catión	Nº de carga	Anión	Nº de carga	Fórmula	Fórmula simplificada
Na⁺	1+	NO ₃ -	1-	NaNO ₃	
K ⁺	1+	SO ₄ ²⁻	2	K ₂ SO ₄	
NH ₄ ⁺	1+	SO ₃ ²⁻	2-	$(NH_4)_2SO_3$	
Ca ²⁺	2+	PO ₄ ³⁻	3-	Ca ₃ (PO ₄) ₂	
Pb ⁴⁺	4+	CO ₃ ²⁻	2-	Pb ₂ (CO ₃) ₂	Pb(CO ₃) ₂

Sales de oxoácidos

Formulación

- El número de carga de un catión o de un anión se puede hallar sumando los números de oxidación de sus elementos
- El subíndice 1 se omite
- Siempre que sea posible, los subíndices del catión y del anión se simplifican

Fórmula	Número de oxidación
	$3 \times (n^{\circ} \text{ oxid Ca}) + 2 \times (n^{\circ} \text{ oxid. P}) + 8 \times (n^{\circ} \text{ oxid. O}) = 0$ $3 \times (+II) + 2 \times (+V) + 8 \times (-II) = 0$
Ca ₃ (PO ₄) ₂	Número de carga
	3 x (nº carga catión) + 2 x (nº carga anión) = 0 3 x (2+) + 2 x (3-) = 0

Sales de oxoácidos

Nomenclatura tradicional

- Se nombran, citando primero el anión seguido de la preposición de y del nombre del catión.
- Se utilizan los métodos de nomenclatura sistemática y tradicional
- Los prefijos numéricos y los números de carga (o de oxidación) se suprimen si no son imprescindibles
- Si la sal contiene varias unidades de un anión complejo, se utilizan los prefijos numéricos **bis**, (dos), **tris-** (tres), **tetrakis-** (cuatro), **pentakis-** (cinco), etc. Y el nombre del naión entre paréntesis

Sufijo del oxoácido	Sufijo de la sal
-080	-ito
-ico	-ato

Sales de oxoácidos

Fórmula	Nombre sistemático	Nombre tradicional
NaNO ₃	Trioxonitrato (1-) de sodio Trioxonitrato (V) de sodio Trioxonitrato de sodio	Nitrato de sodio
K₂SO₄	Tetraoxosulfato (2-) de potasio Tetraoxosulfato (VI) de potasio Tetraoxosulfato de dipotasio	Sulfato de potasio
(NH ₄) ₂ SO ₃	Trioxosulfato (2-) de amonio Trioxosulfato (IV) de amonio Trioxosulfato de diamonio	Sulfito de amonio
Ca ₃ (PO ₄) ₂	Tetraoxofosfato (3-) de calcio Tetraoxofosfato (V) de calcio Bis(tetraoxosulfato) de tricalcio	Fosfato de calcio Bis(fosfato de tricalcio)
Pb(CO ₃) ₂	Trioxocarbonato (2-) de plomo (4+) Trioxocarbonato (IV) de plomo (IV) Bis(trioxocarbonato) de plomo	Carbonato de plomo (4+) Carbonato de plomo (IV) Bis(carbonato) de plomo

Sales con hidrógenos ácidos

• El anión- que procede de un oxoácido- contiene algún hidrógeno "ácido" que no ha sido reemplazado por un catión metálico.

NaHCO₃ K₂HPO₄

Formulación

Catión	Nº de carga	Anión	Nº de carga	Fórmula
Na⁺	1+	HCO ₃ -	1-	NaHCO ₃
K ⁺	1+	HPO ₄ ²	2	K ₂ HPO ₄
Li ⁺	1+	H ₂ PO ₄ -	1-	LiH ₂ PO ₄
Cs⁺	1+	HSO ₄ -	1-	CsHSO ₄

Sales con hidrógenos ácidos

Nomenclatura

• Se forman con el término **hidrógeno** (referido al/los hidrógeno/s ácido/s) y el nombre del anión, seguido de la preposición **de** y el nombre del catión metálico

Fórmula	Nombre sistemático	Nombre tradicional
NaHCO₃	Hidrogenotrioxocarbonato (1-) de sodio Hidrogenotrioxocarbonato (IV) de sodio Hidrogenotrioxocarbonato de sodio	Hidrogenocarbonato de sodio
K₂HPO₄	Hidrogenotetraoxofosfato (2-) de potasio Hidrogenotetraoxofosfato (V) de potasio Hidrogenotetraoxofosfato de dipotasio	Hidrogenofosfato de dipotasio
LiH ₂ PO ₄	Dihidrogenotetraoxofosfato (1-) de litio Dihidrogenotetraoxofosfato (V) de litio Dihidrogenotetraoxofosfato de litio	Dihidrogenofosfato de litio
CsHSO₄	Hidrogenotetraoxosulfato (1-) de cesio Hidrogenotetraoxosulfato (VI) de cesio Hidrogenotetraoxosulfato de cesio	Hidrogenosulfato de cesio

Tema 1.- Formulación Química Inorgánica

Formulación de una sal a partir de su nombre

- 1. Escribir primero el catión y luego el anión
- 2. Se añaden los subíndices de los iones basándose en
 - a) Terminaciones (nomenclatura tradicional)
 - b) Prefijos numéricos del nombre o los números de carga (o de oxidación) expresados en la fórmula (nomenclatura sistemática)

Nombre	lones	Fórmula
Sulfato de sodio	Na SO₄	Na ₂ SO ₄
Tris(dicromato) de dihierro	Fe Cr ₂ O ₇	Fe ₂ (Cr ₂ O ₇) ₃
Trioxoarseniato (3-) de magnesio	Mg AsO ₃	$Mg_3(AsO_3)_2$
Dioxonitrato (III) de mercurio(I)	Hg NO ₂	HgNO ₂
Bi(hidrogenocarbonato) de calcio	Ca HCO ₃	Ca(HCO ₃) ₂