On the left and right Brylinski-Kostant filtrations

Istvan Heckenberger^{*} Mathematisches Institut Fakultät für Mathematik & Informatik Universität Liepzig Leipzig, Germany

Anthony Joseph Donald Frey, Professional Chair Department of Mathematics The Weizmann Institute of Science Rehovot, 76100, Israel

September 12, 2007

Abstract

Let \mathfrak{g} be a complex semisimple Lie algebra, \mathfrak{b} a Borel subalgebra, and $\mathfrak{h} \subset \mathfrak{b}$ a Cartan subalgebra. Let V be a finite dimensional simple $U(\mathfrak{g})$ module. Based on a principal *s*-triple (e, h, f) and following work of Kostant, Brylinski [?] defined a filtration \mathcal{F}_e for all weight subspaces V_{μ} of V and calculated the dimensions of the graded subspaces for μ dominant. In [?] these dimensions were calculated for all μ .

Let $\delta M(0)$ be the finite dual of the Verma module of highest weight 0. It identifies with the global functions on a Weyl group translate of the open Bruhat cell and so inherits a natural degree filtration. On the other hand, up to an appropriate shift of weights, there is a unique

^{*}Formerly Marie Curie Intra-European Fellow at Mathematics Department, Weizmann Institute of Science.

 $U(\mathfrak{b})$ module embedding of V into $\delta M(0)$ and so the degree filtration induces a further filtration \mathcal{F} on each weight subspace V_{μ} .

A casual reading of [?] might lead one to believe that \mathcal{F} and \mathcal{F}_e coincide. However this is quite false. Rather one should view \mathcal{F}_e as coming from a left action of $U(\mathfrak{n})$ and then there is a second (Brylinski-Kostant) filtration \mathcal{F}'_e coming from a right action. It is \mathcal{F}'_e which may coincide with \mathcal{F} .

In this paper the above claim is made precise. First it is noted that \mathcal{F} is itself not canonical, but depends on a choice of variables. Then it is shown that a particular choice can be made to ensure that $\mathcal{F} = \mathcal{F}'_e$.

An explicit form for the unique left $U(\mathfrak{b})$ module embedding $V \hookrightarrow \delta M(0)$ is given using right action of $U(\mathfrak{n})$. This is used to give a purely algebraic proof of Brylinski's main result in [?] which is much simpler than [?].

It is noted that the dimensions of the graded subspaces of $\operatorname{gr}_{\mathcal{F}_e} V_{\mu}$ and $\operatorname{gr}_{\mathcal{F}'_e} V_{\mu}$ can be very different. Their interrelation may involve the Kashiwara involution. Indeed a combinatorial formula for multiplicities in tensor products involving crystal bases and the Kashiwara involution is recovered. Though the dimensions for the graded subspaces of $\operatorname{gr}_{\mathcal{F}'_e} V_{\mu}$ are determined by polynomial degree, their values remain unknown.