We extend the notion of conjugacy classes and class sums from finite groups to semisimple Hopf algebras and show that the conjugacy classes are obtained from the factorization of H as an irreducible left $D(H)$-module. For quasitriangular semisimple Hopf algebras H we prove that the product of two class sums is an integral combination of the class sums up to $1/d^2$ where $d = \text{dim}(H)$. We show also that in this case the character table is obtained from the S-matrix associated to $D(H)$.
Conjugacy classes and class sums for Hopf algebras

Almeria 2011
Based on work of
Sara Westreich and Miriam Cohen
Along this lecture the base field \(k \) is assumed to be algebraically closed of characteristic 0. \(H \) is a semisimple algebra of dimension \(d \). We denote by \(S \) and \(s \) the antipodes of \(H \) and \(H^* \) respectively. We denote by \(\Lambda \) the (2-sided) idempotent integral of \(H \).

Let \(\{V_1, \ldots, V_n\} \) be a full set of non-isomorphic irreducible left \(H \)-modules of respective dimension \(d_j \) and corresponding characters \(\chi_j \). We have:

\[
V_i \otimes V_j = \sum_{i,j}^l m_{ij}^l V_l,
\]

where \(m_{ij}^l \) are non-negative integers.

The character algebra \(R(H) \) of \(H \) is the \(k \)-span of all the characters on \(H \). In fact \(\{\chi_1, \ldots, \chi_n\} \) form a basis for \(R(H) \). By Kac (1972) and Zhu (1994) - \(R(H) \) is a semisimple algebra with involution.
By Larson (1971), the bilinear form defined on the ring of characters by

\[(\chi_i, \chi_j) = \dim_k \text{hom}_H(V_i, V_j) = m_{ij}^1 = \langle \chi_is(\chi_j), \Lambda \rangle\]

satisfies -

The irreducible characters are orthogonal with respect to this form.

This will be applied in two directions:

(i) \(R(H)\) is a symmetric algebra with a symmetric form \(\beta\) defined by

\[\beta(p, q) = \langle \Lambda, pq \rangle\]

and a Casimir element

\[\sum_{k=1}^{n} \chi_k \otimes s(\chi_k)\]

(ii) Define an inner product on \(R(H)\) as follows: For \(u = \sum \alpha_i \chi_i,\ v = \sum \beta_j \chi_j\), set

\[(u, v) = \sum \alpha_i \beta_i\]
Nichols and Richmond (1998) discussed various properties of that inner product. If we define an involution \(*\) by

\[\chi^* = s(\chi) \]

and extend it to \(u = \sum \alpha_i \chi_i \in R(H) \) by

\[u^* = \sum \bar{\alpha}_i \chi_i^* \]

Then

\[(uv, w) = (v, u^* w) = (u, wv^*) \]

Let \(\{F_1, \ldots, F_m\} \) be the set of central primitive idempotents of \(R(H) \). Then [NR] proved the following:

\[F_i^* = F_i \]

and for all \(x \in R(H) \), \(\mu \) a character defined on \(R(H) \),

\[\mu(x^*) = \overline{\mu(x)} \]

These results will be used later to prove that certain matrices are unitary.
For $1 \leq i \leq m$, define the **Class sum**

$$C_i = dF_i \to \Lambda.$$

Claim: The irreducible character μ_i of $R(H)$ corresponding to F_i can be identified inside $Z(H)$ by

$$\mu_i = q_i C_i, \quad q_i \in \mathbb{Q}.$$

Proof For $x \in R(H)$,

$$\mu_i(x) = \text{Trace}(L_x F_i)$$

Let $\{f_1, \ldots, f_m\}$ be a complete set of primitive orthogonal idempotents in $R(H)$ so that $f_i F_j = \delta_{ij} f_i$.

The Casimir element of $R(H)$ satisfies

$$\sum \chi_i \otimes \chi_i^* = \sum_{k=1}^{n} \chi_k \otimes s(\chi_k) = \sum_j n_j F_j$$

where

$$n_j = \frac{d \dim(C(H) f_j)}{\dim(H^* f_j)}$$
The result follows now from the trace formula for symmetric algebras. The coefficient q_i is given by:

$$q_i = \frac{\dim(C(H)f_i)}{\dim(H^*f_i)}$$

As a result we obtain that:

$$<\chi_i^*, C_j> = <\chi_i, C_j>$$
Recall the left adjoint action of H on itself,

$$h_{ad}x = \sum h_1 x S(h_2)$$

Then

$$\Lambda_{\cdot ad}H = Z(H).$$

(When H is not semisimple then $\Lambda_{\cdot ad}H$ is a proper ideal of $Z(H)$ - the Higman ideal.

We have also left coadjoint action of H on H^*, \triangleright given by:

$$\triangleright p = \sum h_2 \triangleright p \leftarrow Sh_1$$

When H is semisimple then

$$\Lambda \triangleright H^* = R(H).$$

Recall the Frobenius map $\Psi : H \to H^*$ defined as:

$$\Psi(h) = \lambda \leftarrow S(h).$$
We show that Ψ an H-module map from (H, \dot{ad}) to (H^*, \triangleright) in the sense that

$$\Psi(h \dot{ad} a) = h \triangleright \Psi(a).$$

Note, \dot{ad} makes H into an H-module algebra, while \triangleright does not make H^* into an H-module algebra. However, it has some nice properties.

(i) For all $h \in H$, $p \in R(H)$, $x \in H^*$,

$$h \triangleright (px) = p(h \triangleright x)$$

If moreover $h \in \text{Coc}(H)$, then

$$h \triangleright (xp) = (h \triangleright x)p.$$

Define the **conjugacy class** C_i as:

$$C_i = \Lambda \leftarrow f_i H^*.$$

Then by the properties of Ψ mentioned above it is not hard to see that:

* C_i is stable under the adjoint action of H.*

By definition, C_i is stable under the right hit action of H^* on H.
It is known that H is a left module over $D(H)$ where the H^* part acts by right hit and the H part acts by the left adjoint action. We can show that:

C_i is a $D(H)$-submodule of H.

But more is true,

Theorem [CW]: Let H be a semisimple Hopf algebra and let $\{f_1, \ldots, f_m\}$ be idempotents in $R(H)$ so that $\{f_i R(H)\}$ is the complete set of non-isomorphic irreducible $R(H)$-modules. Assume $\dim(f_i R(H)) = m_i$. Then C_i is an irreducible $D(H)$-module and moreover,

$$H \cong \bigoplus_{i=1}^n C_i^{m_i}$$

as $D(H)$-modules.

The proof is based on the properties of the Frobenius maps Ψ.
When $R(H)$ is commutative the central primitive idempotents $\{F_j\}$ form a basis of $R(H)$, hence the class sums $\{C_j\}$ where $C_j = \Lambda \leftarrow dF_j$, form a basis for $Z(H)$.

One can check that

$$< F_j, \Lambda > = \frac{\dim(F_jH^*)}{d},$$

hence by definition

$$\{F_i\} \text{ and } \left\{ \frac{C_j}{\dim(F_jH^*)} \right\} \text{ are dual bases.}$$

We can define a character table for H as follows:

$$\xi_{ij} = \frac{1}{\dim(F_jH^*)} < \chi_i, C_j >$$

The dual bases imply that the character table is actually the change of bases matrix A from $\{\chi_i\}$ to $\{F_j\}$.
Recall that for groups the character table is defined by $\xi_{ij} = \chi_i(g)$ for some g in the conjugacy class C_j. Hence $\chi_i(g) = \chi_i(C_j^{j/|C_j|})$. Thus the definition extends the definition of character tables for groups.

In [CW,3.1] we proved that the inverse change of bases matrix $(\beta_{jk}) = A^{-1}$ satisfies

$$\beta_{jk} = \frac{\dim(F_jH^*)}{d} \alpha_{k^*j}^*,$$

By using this we can show first and second orthogonality relations (as for groups). That is,

(a) $\sum_j \dim(F_jH^*) \xi_{mj} \xi_{nj}^* = \delta_{mn}d.$

(b) $\sum_m \xi_{mi} \xi_{mj}^* = \delta_{ij} \frac{d}{\dim(F_iH^*)}$

By [NR], $\xi_{ij}^* = \overline{\xi_{ij}}$, thus the character table is “almost” unitary.
When H is a factorizable Hopf algebra we have the Drinfeld map $f_Q : H^* \to H$, which is an algebra isomorphism between $R(H)$ and $Z(H)$. In particular, for any primitive idempotent F of $R(H)$, $f_Q(F) = E$ is a primitive central idempotents of H.

Reorder the set $\{F_j\}$ so that for all $1 \leq j \leq m$,

$$f_Q(F_j) = E_j$$

Recall [CW] that for semisimple factorizable Hopf algebra we have:

$$f_Q(\chi_j) = \frac{1}{d_j} C_j.$$

It follows that the S-matrix satisfies

$$s_{ij} = \langle \chi_i, f_Q(\chi_j) \rangle = \frac{1}{d_j} \langle \chi_i, C_j \rangle = \frac{\dim(F_j H^*)}{d_j} \xi_{ij}$$

Since $\dim(F_j H^*) = \dim(E_j H) = d_j^2$, we obtain

$$s_{ij} = d_j \xi_{ij}$$
Hence

\[s_{i^*j} = \overline{s_{ij}} \]

Thus we obtain the result of [ENO, 2005]

For a factorizable semisimple Hopf algebra, the S-matrix (multiplied by $\frac{1}{\sqrt{d}}$) is unitary.

Unlike for groups, the structure constants for the product of two class sums are not necessarily integers. We can prove integrability up to d^2 in case H is quasitriangular. In this case, H is a Hopf image of $D(H)$ which is a factorizable Hopf algebra. Denote this map by Φ.

The images of the F_i's under $\Phi^* : H^* \to D(H)^*$, are sums of primitive idempotents in $R(D(H))$, and thus induce a partition $\{I_s\}$ on their indexes. All class sums of $D(H)$ belonging to the same I_s are mapped under Φ to the corresponding class sum of H with a certain coefficient.
On the other hand, if \(\{ \hat{E}_i \}_{i=1}^m \) is the set of central primitive idempotents of \(D(H) \) then

\[
\Phi(\hat{E}_i) = \begin{cases}
E^i & 1 \leq i \leq n, \\
0 & n + 1 \leq i \leq m
\end{cases}
\]

We use these and the fact that \(D(H) \) is factorizable to prove:

Let \(H \) be a quasitriangular Hopf algebra. Then the product of two class sums is an integral combination up to a factor of \(d^{-2} \) of the class sums of \(H \).

The character table of a quasitriangular Hopf algebra \(H \) is strongly related to the \(S \)-matrix of \(D(H) \). We show:

If \((H, R) \) is quasitriangular and \((\xi_{si}) \) is its character table, then \(\xi_{si} = d_i^{-1} s_{ij} \) for all \(i \in I_s \), where \(s_{it} \) arise from the \(S \)-matrix of \(D(H) \).

The factor \(d^{-2} \) can not be avoided as will be demonstrated in the next example - the character table of \(D(kS_3) \).
Conjugacy classes of S_3 are given by:

$$C_1 = \{1\} \quad C_{(12)} = \{(12), (13), (23)\}$$

$$C_{(123)} = \{(123), (132)\}$$

The centralizers are given by:

$$C_G(1) = S_3 \quad C_G(12) = \{1, (12)\} \cong \mathbb{Z}_2$$

$$C_G(123) = \{1, (123), (132)\} \cong \mathbb{Z}_3$$

For $\sigma = 1$ we have 3 irreducible representations of S_3.

- M_1 is the trivial representation of S_3.

- M_2 is the sign representation of S_3.

- M_3 is the 2 irreducible dimension of S_3 with $\chi_{M_3}(123) = -1$, $\chi_{M_3}(12) = 0$.
For $\sigma = (12)$ we have two representations:

- M_4 is the trivial representation of \mathbb{Z}_2.

- M_5 the unique non-trivial representation of \mathbb{Z}_2.

For $\sigma = (123)$ we have 3 representations:

- M_6 is the trivial representation of \mathbb{Z}_3.

- M_7 is the representation with $\chi_{M_7}(123) = \omega$, $\chi_{M_7}(132) = \omega^2$, ω a third root of unity.

- M_8 is the representation with $\chi_{M_8}(123) = \omega^2$, $\chi_{M_8}(132) = \omega$.
We can compute now the S-matrix which is actually well known known (e.g [BK]). Finally, Denote $\frac{1}{d_i}C_i$ by η_i. Then the generalized character table of $D(kS_3)$ is given by

\[
\begin{pmatrix}
\eta_1 & \eta_2 & \eta_3 & \eta_4 & \eta_5 & \eta_6 & \eta_7 & \eta_8 \\
\chi_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\chi_2 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 \\
\chi_3 & 2 & 2 & 2 & 0 & 0 & -1 & -1 & -1 \\
\chi_4 & 3 & -3 & 0 & 1 & -1 & 0 & 0 & 0 \\
\chi_5 & 3 & -3 & 0 & -1 & 1 & 0 & 0 & 0 \\
\chi_6 & 2 & 2 & -1 & 0 & 0 & 2 & -1 & -1 \\
\chi_7 & 2 & 2 & -1 & 0 & 0 & -1 & -1 & 2 \\
\chi_8 & 2 & 2 & -1 & 0 & 0 & -1 & 2 & -1 \\
\end{pmatrix}
\]

We can check that:

$$\chi_4\chi_5 = \chi_2 + \chi_3 + \chi_6 + \chi_7 + \chi_8$$

Hence

$$C_4C_5 = 9f_Q(\chi_4\chi_5) = 9C_2 + \frac{9}{2}C_3 + \ldots$$