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We extend the notion of conjugacy classes and class sums from finite groups to
semisimple Hopf algebras and show that the conjugacy classes are obtained from
the factorization of H as an irreducible left D(H)-module. For quasitriangular
semisimple Hopf algebras H we prove that the product of two class sums is an
integral combination of the class sums up to 1/d* where d = dim(H). We show
also that in this case the character table is obtained from the S-matrix associated
to D(H).
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Along this lecture the base field k is assumed
to be algebraically closed of characteristic O.
H is a semisimple algebra of dimension d. We
denote by S and s the antipodes of H and H*
respectively. We denote by A the (2-sided)
idempotent integral of H.

Let {V7,...,Vnh} be a full set of non-isomorphic
irreducible left H-modules of respective dimen-
sion dj and corresponding characters X We
have:

l
Vi@ V= mgVi,

]
where mgj are non-negative integers.
The character algebra R(H) of H is the k-span
of all the characters on H. In fact {x1,...-xn}
form a basis for R(H). By Kac (1972) and Zhu
(1994) -
R(H) is a semisimple algebra with involu-
tion.



By Larson (1971), the bilinear form defined on
the ring of characters by

(Xi, xj) = dimihompg(V;, V) = mz-lj =< x;5(x;5),\ >

satisfies -

The irreducible characters are orthogonal
with respect to this form.

T his will be applied in two directions:

(1) R(H) is a symmetric algebra with a sym-
metric form (g defined by

B(p,q) =< N\, pg >
and a Casimir element

n
> Xk @ s(xk)
k=1

(ii) Define an inner product on R(H) as follows:
For u = > a;x;, v= Z/BJX]7 set

(u,v) =) B,



Nichols and Richmond (1998) discussed var-
ious properties of that inner product. If we
define an involution * by

X" =s(x)
and extend it to u = > «a;x; € R(H) by
ut =) @x;
Then
(uv,w) = (v, v w) = (u, wv™)

Let {F1,... i} be the set of central primitive
idempotents of R(H). Then [NR] proved the
following:

and for all x € R(H), pn a character defined on
R(H),
p(x™) = p(x)

T hese results will be used later to prove that
certain matrices are unitary.



For 1 <1 <m, define the Class sum
Cz' = dF; — A\.
Claim: The irreducible character u; of R(H)
corresponding to F; can be identified inside
Z(H) by
ni = q;Ci, ¢; € Q
Proof For x € R(H),

pi(z) = Trace(Lyr,)

Let {f1,... fm} be a complete set of primitive
orthogonal idempotents in R(H) so that f;F; =

03 fi-
The Casimir element of R(H) satisfies
n
> Xi®x; = > Xk ®s(xg) =Y _njF;
k=1 j

where
_ddim(C(H) f;)
" dim(E )




The result follows now from the trace formula
for symmetric algebras. The coefficient g; is
given by:

. = dim(CUN L)

! dim(H*f;)

As a result we obtain that:

< XZ'*,C]' >= < X@,Cj >



Recall the left adjoint action of H on itself,

h, o= Y hizS(ho)
Then
A H = Z(H).

(When H is not semisimple then N 4H 1s a
proper ideal of Z(H) - the Higman ideal.

We have also left coadjoint action of H on
H* > given by:

thIthép;Shl
When H is semisimple then
A>H* = R(H).

Recall the Frobenius map VWV : H — H* defined
as:

W(h) = XA — S(h).



We show that W an H-module map from (H, )
to (H*,>) in the sense that

W(h a) =hoV(a).

Note, ad makes H into an H-module algebra,
while > does not make H™ into an H-module
algebra. However, it has some nice properties.
(i) Forall he H,pe R(H), x € H*,

h (px) = p(h>x)
If moreover h € Coc(H), then

h (xp) = (h>x)p.

Define the conjugacy class C; as:
Cz’ = N\ ~— sz*

Then by the properties of W mentioned above
it is not hard to see that:
C; is stable under the adjoint action of H.

By definition, C; is stable under the right hit
action of H* on H.



It is known that H is a left module over D(H)
where the H* part acts by right hit and the H
part acts by the left adjoint action. We can
show that:

C; is a D(H)-submodule of H.
But more is true,

Theorem[CW]: Let H be a semisimple Hopf
algebra and let {f1,... fm} be idempotents in
R(H) so that {f;R(H)} is the complete set of
non-isomorphic irreducible R(H)-modules. As-
sume dim(f;R(H)) = m;. Then C; is an irre-
ducible D(H)-module and moreover,

H ol ,cm

as D(H)-modules.

The proof is based on the properties of the
Frobenius maps W.



When R(H) is commutative the central prim-
itive idempotents {F;} form a basis of R(H),
hence the class sums {C;} where C; = A +— dF}
form a basis for Z(H).

One can check that

dim(F;H*
<Fja/\ >= (dj )7

hence by definition
Cj

{F;} and { } are dual bases.

We can define a character table for H as fol-

lOWS:
1

~ dim(F; H*)
The dual bases imply that the character table
is actually the change of bases matrix A from

{xi} to {F}}.




Recall that for groups the character table is
defined by §;; = x;(g) for some g in the conju-
gacy class C;. Hence x;(g) = Xi(%)- Thus the
definition extends the definition of character
tables for groups.

In [CW,3.1] we proved that the inverse change
of bases matrix (8;;) = A~1 satisfies

L

By using this we can show first and second
orthogonality relations (as for groups). That
IS,

J

d
(b) ;Emiﬁmj* = 5ijdim(Fz-H*)

By [NR], &+ = &, thus the character table is
“almost” unitary.



When H is a factorizable Hopf algebra we have
the Drinfeld map fg H* — H, which is an
algebra isomorphism between R(H) and Z(H).
In particular, for any primitive idempotent F' of
R(H), fo(F) = E is a primitive central idem-
potents of H.

Reorder the set {F};} so that for all 1 < j <m,

fo(F;) = E;
Recall [CW] that for semisimple factorizable
Hopf algebra we have:

1
fo(x;) = ECj-
J
It follows that the S-matrix satisfies
1 dim(F;H™*)
sij =< Xi» fo(xj) >= - <X C; >= d-] ij
J J

Since dim(F;H*) = dim(E,;H) = d2, we obtain

Sij = dj&ij



Hence
Si*j = Sij

Thus we obtain the result of [ENO,2005]

For a factorizable semisimple Hopf algebra,
the S-matrix (multiplied by \/LE) IS unitary.

Unlike for groups, the structure constants for
the product of two class sums are not neces-
sarily integers. We can prove integrability up
to d? in case H is quasitriangular. In this case,
H is a Hopf image of D(H) which is a factor-
izable Hopf algebra. Denote this map by &.

The images of the F;'s under ®* : H* — D(H)*,
are sums of primitive idempotents in R(D(H)),
and thus induce a partition {Is} on their in-
dexes. All class sums of D(H) belonging to
the same Is are mapped under ¢ to the corre-
sponding class sum of H with a certain coeffi-
cient.



On the other hand, if {E;}", is the set of
central primitive idempotents of D(H) then

O(B) = E' 1<i<n,
Y lo n4+1<i<m

We use these and the fact that D(H) is fac-
torizable to prove:

Let H be a quasitriangular Hopf algebra.
Then the product of two class sums is an
integral combination up to a factor of d—2
of the class sums of H.

The character table of a quasitriangular Hopf
algebra H is strongly related to the S-matrix
of D(H). We show:

If (H, R) is quasitriangular and (&,;) is its char-
acter table, then 53]- = d;lsij for all + € Is,

where s;; arise from the S-matrix of D(H).

The factor d—2 can not be avoided as will be
demonstrated in the next example - the char-
acter table of D(kS3).



Conjugacy classes of S3 are given by:
C1 = {1} C(12y = {(12),(13),(23)}

C(123) = {(123),(132)}

The centralizers are given by:
Ca(l) =53 Cg(12) ={1,(12)} = Z>

Ca(123) = {1,(123),(132)} & Z5

For c = 1 we have 3 irreducible representations
of 53.

e My is the trivial representation of Si.
e M5 is the sign representation of Ss.

e M3 is the 2 irreducible dimension of 53 with
xM5(123) = -1, xp5(12) = 0.



For o = (12) we have two representations:
e M, is the trivial representation of Zs.

e My the unique non-trivial representation of
Zo.

For o = (123) we have 3 representations:
e Mg is the trivial representation of Zs.

e Mz is the representation with x,/,(123) =
w, X0, (132) = w?, w a third root of unity.

e Mg is the representation with x;z,(123) =
w?, Xpg(132) = w.



We can compute now the S-matrix which is
actually well known known (e.g [BK]) Finally,
Denote 3C; by n;. Then the generalized char-
acter table of D(kS3) is given by

xi(1 1 1 1 1 1 1 1)
w1 1 1 -1 -1 1 1 1
3l 2 2 2 0o 0 -1 -1 -1
vl 3 =3 0 1 -1 0 0 O
xsl 3 -3 0 -1 1 0 0 O
xel 2 2 -1 0o o 2 -1 -1
12 2 -1 0 0 -1 -1 2
xs\2 2 -1 0 0 -1 2 -1

We can check that:

X4aX5 = X2 + X3+ X6 + X7 + X8
Hence

9
C4Cs = 9fg(xaxs) = 9Co + 503 +...
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