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We extend the notion of conjugacy classes and class sums from finite groups to
semisimple Hopf algebras and show that the conjugacy classes are obtained from
the factorization of H as an irreducible left D(H)-module. For quasitriangular
semisimple Hopf algebras H we prove that the product of two class sums is an
integral combination of the class sums up to 1/d2 where d = dim(H). We show
also that in this case the character table is obtained from the S-matrix associated
to D(H).
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Along this lecture the base field k is assumed

to be algebraically closed of characteristic 0.

H is a semisimple algebra of dimension d. We

denote by S and s the antipodes of H and H∗

respectively. We denote by Λ the (2-sided)

idempotent integral of H.

Let {V1, . . . , Vn} be a full set of non-isomorphic

irreducible left H-modules of respective dimen-

sion dj and corresponding characters χj. We

have:

Vi ⊗ Vj =
l∑
i,j

ml
ijVl,

where ml
ij are non-negative integers.

The character algebra R(H) of H is the k-span

of all the characters on H. In fact {χ1, . . . χn}
form a basis for R(H). By Kac (1972) and Zhu

(1994) -

R(H) is a semisimple algebra with involu-

tion.



By Larson (1971), the bilinear form defined on
the ring of characters by

(χi, χj) = dimk homH(Vi, Vj) = m1
ij =< χis(χj),Λ >

satisfies -

The irreducible characters are orthogonal

with respect to this form.

This will be applied in two directions:

(i) R(H) is a symmetric algebra with a sym-
metric form β defined by

β(p, q) =< Λ, pq >

and a Casimir element
n∑

k=1

χk ⊗ s(χk)

(ii) Define an inner product on R(H) as follows:
For u =

∑
αiχi, v =

∑
βjχj, set

(u, v) =
∑

αiβi



Nichols and Richmond (1998) discussed var-

ious properties of that inner product. If we

define an involution ∗ by

χ∗ = s(χ)

and extend it to u =
∑
αiχi ∈ R(H) by

u∗ =
∑

αiχ
∗
i

Then

(uv,w) = (v, u∗w) = (u,wv∗)

Let {F1, . . . Fm} be the set of central primitive

idempotents of R(H). Then [NR] proved the

following:

F ∗i = Fi

and for all x ∈ R(H), µ a character defined on

R(H),

µ(x∗) = µ(x)

These results will be used later to prove that

certain matrices are unitary.



For 1 ≤ i ≤ m, define the Class sum

Ci = dFi ⇀ Λ.

Claim: The irreducible character µi of R(H)

corresponding to Fi can be identified inside

Z(H) by

µi = qiCi, qi ∈ Q

Proof For x ∈ R(H),

µi(x) = Trace(LxFi)

Let {f1, . . . fm} be a complete set of primitive

orthogonal idempotents in R(H) so that fiFj =

δijfi.

The Casimir element of R(H) satisfies

∑
χi ⊗ χ∗i =

n∑
k=1

χk ⊗ s(χk) =
∑
j

njFj

where

nj =
ddim(C(H)fj)

dim(H∗fj)



The result follows now from the trace formula

for symmetric algebras. The coefficient qi is

given by:

qi =
dim(C(H)fi)

dim(H∗fi)

As a result we obtain that:

< χi∗, Cj >= < χi, Cj >



Recall the left adjoint action of H on itself,

hȧdx =
∑

h1xS(h2)

Then

ΛȧdH = Z(H).

(When H is not semisimple then ΛȧdH is a

proper ideal of Z(H) - the Higman ideal.

We have also left coadjoint action of H on

H∗, . given by:

h . p =
∑

h2 ⇀ p ↼ Sh1

When H is semisimple then

Λ . H∗ = R(H).

Recall the Frobenius map Ψ : H → H∗ defined

as:

Ψ(h) = λ ↼ S(h).



We show that Ψ an H-module map from (H,ȧd )
to (H∗, .) in the sense that

Ψ(hȧda) = h .Ψ(a).

Note, ȧd makes H into an H-module algebra,
while . does not make H∗ into an H-module
algebra. However, it has some nice properties.
(i) For all h ∈ H, p ∈ R(H), x ∈ H∗,

h . (px) = p(h . x)

If moreover h ∈ Coc(H), then

h . (xp) = (h . x)p.

Define the conjugacy class Ci as:

Ci = Λ ↼ fiH
∗.

Then by the properties of Ψ mentioned above
it is not hard to see that:
Ci is stable under the adjoint action of H.

By definition, Ci is stable under the right hit
action of H∗ on H.



It is known that H is a left module over D(H)

where the H∗ part acts by right hit and the H

part acts by the left adjoint action. We can

show that:

Ci is a D(H)-submodule of H.

But more is true,

Theorem[CW]: Let H be a semisimple Hopf

algebra and let {f1, . . . fm} be idempotents in

R(H) so that {fiR(H)} is the complete set of

non-isomorphic irreducible R(H)-modules. As-

sume dim(fiR(H)) = mi. Then Ci is an irre-

ducible D(H)-module and moreover,

H ∼= ⊕ni=1C
⊕mi
i

as D(H)-modules.

The proof is based on the properties of the

Frobenius maps Ψ.



When R(H) is commutative the central prim-

itive idempotents {Fj} form a basis of R(H),

hence the class sums {Cj} where Cj = Λ ↼ dFj,

form a basis for Z(H).

One can check that

< Fj,Λ >=
dim(FjH

∗)

d
,

hence by definition

{Fi} and {
Cj

dim(FjH∗)
} are dual bases.

We can define a character table for H as fol-

lows:

ξij =
1

dim(FjH∗)
< χi, Cj >

The dual bases imply that the character table

is actually the change of bases matrix A from

{χi} to {Fj}.



Recall that for groups the character table is

defined by ξij = χi(g) for some g in the conju-

gacy class Cj. Hence χi(g) = χi(
Cj
|Cj|

). Thus the

definition extends the definition of character

tables for groups.

In [CW,3.1] we proved that the inverse change

of bases matrix (βjk) = A−1 satisfies

βjk =
dim(FjH

∗)

d
αk∗j

By using this we can show first and second

orthogonality relations (as for groups). That

is,

(a)
∑
j

dim(FjH
∗)ξmjξnj∗ = δmnd.

(b)
∑
m
ξmiξmj∗ = δij

d

dim(FiH∗)

By [NR], ξij∗ = ξij, thus the character table is

“almost” unitary.



When H is a factorizable Hopf algebra we have

the Drinfeld map fQ : H∗ → H, which is an

algebra isomorphism between R(H) and Z(H).

In particular, for any primitive idempotent F of

R(H), fQ(F ) = E is a primitive central idem-

potents of H.

Reorder the set {Fj} so that for all 1 ≤ j ≤ m,

fQ(Fj) = Ej

Recall [CW] that for semisimple factorizable

Hopf algebra we have:

fQ(χj) =
1

dj
Cj.

It follows that the S-matrix satisfies

sij =< χi, fQ(χj) >=
1

dj
< χi, Cj >=

dim(FjH
∗)

dj
ξij

Since dim(FjH
∗) = dim(EjH) = d2

j , we obtain

sij = djξij



Hence

si∗j = sij

Thus we obtain the result of [ENO,2005]

For a factorizable semisimple Hopf algebra,

the S-matrix (multiplied by 1√
d
) is unitary.

Unlike for groups, the structure constants for

the product of two class sums are not neces-

sarily integers. We can prove integrability up

to d2 in case H is quasitriangular. In this case,

H is a Hopf image of D(H) which is a factor-

izable Hopf algebra. Denote this map by Φ.

The images of the Fi’s under Φ∗ : H∗ → D(H)∗,
are sums of primitive idempotents in R(D(H)),

and thus induce a partition {Is} on their in-

dexes. All class sums of D(H) belonging to

the same Is are mapped under Φ to the corre-

sponding class sum of H with a certain coeffi-

cient.



On the other hand, if {Êi}mi=1 is the set of
central primitive idempotents of D(H) then

Φ(Êi) =

Ei 1 ≤ i ≤ n,
0 n+ 1 ≤ i ≤ m

We use these and the fact that D(H) is fac-
torizable to prove:
Let H be a quasitriangular Hopf algebra.
Then the product of two class sums is an
integral combination up to a factor of d−2

of the class sums of H.

The character table of a quasitriangular Hopf
algebra H is strongly related to the S-matrix
of D(H). We show:

If (H,R) is quasitriangular and (ξsj) is its char-
acter table, then ξsj = d−1

i sij for all i ∈ Is,

where sit arise from the S-matrix of D(H).

The factor d−2 can not be avoided as will be
demonstrated in the next example - the char-
acter table of D(kS3).



Conjugacy classes of S3 are given by:

C1 = {1} C(12) = {(12), (13), (23)}

C(123) = {(123), (132)}

The centralizers are given by:

CG(1) = S3 CG(12) = {1, (12)} ∼= ZZ2

CG(123) = {1, (123), (132)} ∼= ZZ3

For σ = 1 we have 3 irreducible representations

of S3.

• M1 is the trivial representation of S3.

• M2 is the sign representation of S3.

• M3 is the 2 irreducible dimension of S3 with

χM3
(123) = −1, χM3

(12) = 0.



For σ = (12) we have two representations:

• M4 is the trivial representation of ZZ2.

• M5 the unique non-trivial representation of

ZZ2.

For σ = (123) we have 3 representations:

• M6 is the trivial representation of ZZ3.

• M7 is the representation with χM7
(123) =

ω, χM7
(132) = ω2, ω a third root of unity.

• M8 is the representation with χM8
(123) =

ω2, χM8
(132) = ω.



We can compute now the S-matrix which is
actually well known known (e.g [BK]) Finally,
Denote 1

di
Ci by ηi. Then the generalized char-

acter table of D(kS3) is given by



η1 η2 η3 η4 η5 η6 η7 η8

χ1 1 1 1 1 1 1 1 1

χ2 1 1 1 −1 −1 1 1 1

χ3 2 2 2 0 0 −1 −1 −1

χ4 3 −3 0 1 −1 0 0 0

χ5 3 −3 0 −1 1 0 0 0

χ6 2 2 −1 0 0 2 −1 −1

χ7 2 2 −1 0 0 −1 −1 2

χ8 2 2 −1 0 0 −1 2 −1


We can check that:

χ4χ5 = χ2 + χ3 + χ6 + χ7 + χ8

Hence

C4C5 = 9fQ(χ4χ5) = 9C2 +
9

2
C3 + . . .
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