Suppose that H is a finite dimensional semisimple Hopf algebra over an algebraically closed field whose characteristic does not divide the dimension of H. We shall assume that for any positive integer $d > 1$ any two irreducible H-modules of dimension d are isomorphic. The category of left H-modules \mathcal{M}_H is a monoidal category. In the talk we shall discuss Clebsch-Gordan coefficients in decompositions in \mathcal{M}_H of tensor products of irreducible H-modules. Some classifications results are obtained in the case when there exists up to an isomorphism a unique irreducible H-module of dimension greater than 1.
Semisimple Hopf algebras

V.A. Artamonov¹

¹Faculty of Mechanics and Mathematics, Moscow State University, RUSSIA
In the talk we consider a problem of a classification up to an isomorphism of semisimple finite dimensional Hopf algebras H over an algebraically closed field k. We shall assume that either $\text{char } k = 0$ or $\text{char } k > \text{dim } H$.
Dual Hopf algebras

If H has finite dimension then the dual space H^* is again a Hopf algebra with *convolutive* multiplication $l_1 * l_2$, comultiplication Δ^*, counit ε^* and an antipode S^* which are defined as follows:

$$l_1 * l_2 = \mu \cdot (l_1 \otimes l_2) \cdot \Delta,$$
$$\Delta^*(l)(x \otimes y) = l(xy),$$
$$(S^* l)(x) = l(S(x)), \quad \varepsilon^*(l) = l(1)$$

for all $x, y \in H$.
Group-like elements

An element $g \in H$ is a group-like element if $\Delta(g) = g \otimes g$ and $\varepsilon(g) = 1$. The set $G(H)$ of all group-like elements is a multiplicative group in H. Elements of $G(H^*)$ of group-like elements in the dual Hopf algebra H^* are just algebra homomorphisms $H \rightarrow k$.
There are left and right actions $H^* \rightarrow H$, $H \leftarrow H^*$ of H^* on H defined as follows: if $f \in H^*$, $x \in H$ and

$$\Delta(x) = \sum_x x_1 \otimes x_2 \in H \otimes H$$

then

$$f \rightarrow x = \sum_x x_1 \langle f, x_2 \rangle, \quad x \leftarrow f = \sum_x \langle f, x_1 \rangle x_2$$

In particular if $g \in G(H^*)$ then $g \rightarrow x$, $x \leftarrow g$ are algebra automorphisms of H.
Direct decomposition of H

In the talk we shall assumed that for any $d > 1$ there exists at most one irreducible H-module of dimension d. It means that H as a semisimple k-algebra has a decomposition

$$H = \left(\bigoplus_{g \in G} ke_g \right) \oplus \text{Mat}(d_1, k) \oplus \cdots \oplus \text{Mat}(d_n, k),$$

(1)

$$1 < d_1 < \cdots < d_n,$$

where $\{e_g \mid g \in G\}$ is a system of central orthogonal idempotents associated with k-algebra homomorphisms $g : H \to k$.

Irreducible H-modules

Let $E_g, \ g \in G$, be the one-dimensional H-module associated with $g \in G$. It means that $hx = \langle h, g \rangle x$ for any $h \in H$. The number of 1-dimensional non-isomorphic H-modules $E_g, \ g \in G$, is equal to the order of G. Denote by M_1, \ldots, M_n irreducible H-modules of dimensions $1 < d_1 <, \cdots < d_n$, respectively. It can be shown that each module M_i is equipped with a non-degenerated (skew-)symmetric bilinear form $\langle x, y \rangle_i$ such that $\langle hx, y \rangle_i = \langle x, S(h)y \rangle_i$ for all $x, y \in M_i$ and for all $h \in H$.
Each matrix component $\text{Mat}(d_i, k)$ in H from (1) is invariant under the antipode S. Let U_i be the Gram matrix of the bilinear form $\langle x, y \rangle_i$ in some base of M_i.

Proposition

$S(x) = U_i^t x U_i^{-1}$ for any $x \in \text{Mat}(d_i, k)$.

Proposition

For any i there exists a faithful projective representation Φ_i of the group G in M_i such that

\[
g \leadsto h = \Phi_i(g) h \Phi_i(g)^{-1}, \quad h \longleftarrow g = S(\Phi_i(g)) h S(\Phi_i(g))^{-1}
\]

*for any $h \in \text{Mat}(d_i, k)$. Moreover the group commutator $[\Phi_i(g), S(\Phi_i(f))] = 1$ in $\text{PGL}(M_i)$ for all $f, g \in G$.***
Proposition

If \(g \in G \) then there are \(H \)-module isomorphisms

\[
E_g \otimes M_i \simeq M_i \otimes E_g \simeq M_i,
\]

\[
M_i \otimes M_j \simeq \delta_{ij} \left(\bigoplus_{g \in G} E_g \right) \oplus \left(\bigoplus_{t=1}^n m_{ij}^t M_t \right),
\]

where \(m_{ij}^t \geq 0 \in \mathbb{Z} \). In particular

\[
d_i d_j = \delta_{ij} |G| + \sum_t m_{ij}^t d_t, \quad |G| \leq d_1^2, \quad m_{ij}^s = m_{js}^i = m_{ji}^s.
\]
We can identify the space $M_i \otimes M_i$ with the space of matrices $\text{Mat}(d_i, k)$ using the bilinear form $\langle x, y \rangle_i$. Namely if $a, b, c \in M_i$ then $a \otimes b$ is the linear operator on M_i such that

$$(a \otimes b)c = a\langle b, c \rangle_i \in M_i.$$

Proposition

*Under this identification the image of the one-dimensional module E_g in $M_i \otimes M_i$ coincides with the linear span of $t^1 \Phi_i(g)^{-1}$. Choosing a special base in M_i we can show that the span is equal to $S(\Phi_i(g)^{-1})$.***
We can associate with H an oriented graph Γ_H whose vertices are indices $\{1, \ldots, n\}$ of irreducible H-modules M_1, \ldots, M_n. Two vertices i, j are connected by an edge $i \to j$ if $m_{tj}^i > 0$ for some $t = 1, \ldots, n$. In other terms the module M_i occurs in $M_t \otimes M_j$ for some index t.

Proposition

Suppose that there is no edge $i \to j$ in Γ_H. Then $i = j = 1$ and $|G| = d_1^2$. Moreover $J = \oplus_{j \geq 2} \text{Mat}(d_j, k)$ is a Hopf ideal in H and H/J is the Hopf algebra from Theorems 7 and 8.
Suppose that there exists an index $1 \leq i \leq n$ such that for any index $j \neq i$ there exists a unique edge $i \to j$. If $i = 1$, then $J = \bigoplus_{j \geq 2} \text{Mat}(d_j, k)$ is a Hopf ideal in H and H/J is the Hopf algebra from Theorems 7 and 8. If $i = n$, then $n = 1$.

Theorem (V.A. Artamonov, R.B. Mukhatov, R. Wisbauer)
Theorem

Let H be a semisimple bialgebra with decomposition (1) where $n \geq 2$. Then $m^t_{n-1,n} \geq 2$ for some index $t = 1, \ldots, n$.
The antipode S

Each matrix constituent $\text{Mat}(d_q, k)$ in (1) is stable under the antipode S. Moreover $S^2 = 1$ and $S(e_g) = e_{g-1}$ for any central idempotent e_g from (1).

Theorem

If the group G is nilpotent then taking an isomorphic copy of each matrix component in (1) we can assume that the matrices $\Phi_i(g), S(\Phi_i(g))$ are monomial.
Theorem

Let H be a semisimple Hopf algebra with semisimple decomposition (1). Suppose that there exists a matrix constituent $\text{Mat}(d_i, k)$ which is a Hopf ideal in H. Then $n = 1$.
Elements \mathcal{R}_q

Denote by \mathcal{R}_q the element

$$\mathcal{R}_q = \frac{1}{d_q} \sum_{i,j=1}^{d_q} E_{ij}^{(q)} \otimes E_{ji}^{(q)}$$

in $\text{Mat}(d_q, k)^{\otimes 2}$. Here $E^{(q)}_{**}$ are matrix units from $\text{Mat}(d_q, k)$. The element \mathcal{R}_q is the unique element in $\text{Mat}(d_q, k)^{\otimes 2}$ up scalar multiple such that

$$(A \otimes B)\mathcal{R}_q = \mathcal{R}_q(B \otimes A)$$

for all $A, B \in \text{Mat}(d_q, k)$.
Theorem

Let G be a finite group whose order is coprime with $\text{char } k$. A projective representation $\Omega : G \rightarrow \text{PGL}(d, k)$ such that

$$\Omega(g^{-1}) = \Omega(g)^{-1}, \quad \Omega(E) = E,$$

is irreducible if and only if

$$R_d = \frac{1}{|G|} \sum_{g \in G} \Omega(g^{-1}) \otimes \Omega(g).$$
Let $g \in G$ and $x \in \text{Mat}(d_r, k)$. Put $\Delta_q = (1 \otimes S)\mathcal{R}_q$. Then $\varepsilon(e_g) = \delta_{1,g}$, $\varepsilon(x) = 0$ and

$$
\Delta(e_g) = \sum_{f \in G} e_f \otimes e_{f^{-1}g} + \sum_{t=1,\ldots,n} (1 \otimes (g \rightarrow)) \Delta_t,
$$

$$
\Delta(x) = \sum_{g \in G} [(g \rightarrow x) \otimes e_g + e_g \otimes (x \leftarrow g)] + \sum_{i,j=1}^n \Delta^r_{ij}(x),
$$

where $\Delta^r_{ij}(x) \in \text{Mat}(d_i, k) \otimes \text{Mat}(d_j, k)$.
Proposition

For indices i, j the following are equivalent:

1. there exists an edge $i \to j$;
2. $\Delta^i_{tj} \neq 0$ for some t;
3. $\Delta^t_{ij} \neq 0$ for some t.
Hopf algebras with $n = 1$ were considered by several authors. If the order of G has maximal possible value d_1^2 then the group G is Abelian. In the paper

Hopf algebra H is classified using monoidal category of its representations in terms of bicharacters of the group G.
If $d_1 = 2$ then there exist up to equivalence four classes of Hopf algebras H, namely group algebras of Abelian groups of order 8, group algebras of dihedral group D_4 and of quaternions Q_8, and G. Kac Hopf algebra H generated by elements x, y, z with defining relations

\[x^2 = y^2 = 1, \ xy = yx, \ zx = yz, \ zy = xz, \]

\[z^2 = \frac{1}{2}(1 + x + y - xy), \]

\[\varepsilon(z) = 1, \ S(z) = z^{-1}, \]

\[\Delta(z) = \frac{1}{2} \ ((1 + y) \otimes 1 + (1 - y) \otimes x) \ (z \otimes z), \]

and x, y are group-like elements.
Interesting results were obtained by

Let H be a semisimple Hopf algebra of dimension $2p^2$, where p is an odd integer. Then either H has a semisimple decomposition (1) with $n = 1$, $d_1 = p$ and $|G| = p^2$ or H is its dual and it has a semisimple decomposition with $2p$ one-dimensional components and $\frac{p(p-1)}{2}$ components isomorphic to Mat(2, k).
Theorem (Artamonov V.A., 2009 — 2010)

Let \(H \) be from (1) with \(n = 1 \) and \(G = G(H^*) \). The order of \(G \) is divisible by \(d_1 \) and is a divisor of \(d_1^2 \).

The following conditions are equivalent.

1. The order of \(G \) is equal to \(d_1^2 \).
2. \(\Delta_{11}^1 = 0 \) in Theorem 6.
3. \(\Phi_1 \) is an irreducible projective representation of \(G \) in \(M_1 \).
Under these restrictions $H = \left(\bigoplus_{g \in G} k e_g \right) \oplus \text{Mat}(d_1, k)$ and $\varepsilon(e_g) = \delta_{1,g}$, $\varepsilon(x) = 0$ where $x \in \text{Mat}(d_1, k)$. Moreover

$$
\Delta(e_g) = \sum_{f \in G} e_f \otimes e_{f^{-1}g} + \frac{1}{d_1} \sum_{i,j=1}^{d_1} E_{ij} \otimes \left(g^{-1} \mapsto \text{S}(E_{ji}) \right),
$$

$$
\Delta(x) = \sum_{g \in G} \left[\left(\Phi_1(g)x\Phi_1(g)^{-1} \right) \otimes e_g \right.
$$

$$
+ e_g \otimes \left(\text{S}(\Phi_i(g)) x\text{S}(\Phi_i(g)^{-1}) \right). \]
$$

Let H be from (1), $n = 1$ and $G = G(H^*)$. If $\Delta_{11}^1 = 0$ then $G = A \times A$ for some Abelian group A of order d_1.

Suppose that G is Abelian group of order d^2 with direct decomposition $G \simeq A \times A$ for some Abelian group A of order d. The group G has a faithful irreducible projective representation Φ of degree d. There exists a (skew-)symmetric matrix $U \in \text{GL}(d, k)$ such that $[\Phi(g), S(\Phi(f))] = 1$ in $\text{PGL}(d, k)$ for all $f, g \in G$. Here $S(x) = U^txU^{-1}$ for any $x \in \text{Mat}(d, k)$. Then an algebra H with direct decomposition (1) admits Hopf algebra structure defined in Theorem 6.

There is a group isomorphism $G \simeq G(H^*)$.

Suppose that G is Abelian group of order d^2 with direct decomposition $G \simeq A \times A$ for some Abelian group A of order d. The group G has a faithful irreducible projective representation Φ of degree d. There exists a (skew-)symmetric matrix $U \in \text{GL}(d, k)$ such that $[\Phi(g), S(\Phi(f))] = 1$ in $\text{PGL}(d, k)$ for all $f, g \in G$. Here $S(x) = U^txU^{-1}$ for any $x \in \text{Mat}(d, k)$. Then an algebra H with direct decomposition (1) admits Hopf algebra structure defined in Theorem 6.

There is a group isomorphism $G \simeq G(H^*)$.

Theorem (Puninsky E., 2009)

Under the assumption of Theorem 8 G(H) is a cyclic group of order $2d_1$, provided d_1 is an odd prime.
Theorem (Artamonov V.A., Chubarov I.A., 2008)

Let $n = 1$, $d_1 > 2$ and H from Theorem 8. Then H^* is not isomorphic to any Hopf algebra belonging to the class of Hopf algebras from Theorem 8.
Previous results use

Theorem (R. Frucht, J. Reine Angew. Math. 166 (1932), 16-29)

Let G be a finite Abelian group of and let k be an algebraically closed field such that $\text{char } k$ does not divide the order of G. The group G admits a faithful irreducible projective representations of dimension d over k if and only if G is a direct product of two isomorphic groups of order d. Dimensions of any irreducible projective representations of the group G are equal either to d or to 1.
Theorem (E. M. Jmud, 1972)

A finite abelian group G of order d^2 has decomposition $G \cong A \times A$ if and only if it admits a non-degenerate bilinear symmetric form. Any irreducible projective representation of G of degree d is obtained from another one by an automorphism of G.