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This talk is based on the joint work with A.V. Lara Sagahon and J.L. Garza
Rivera. We use a super computer KanBalam of the UNAM in order to find the total
number rn of the homogeneous right coideal subalgebras containing all group-like
elements for the multiparameter versions of the quantum groups Uq(so2n+1), q

t 6= 1
and uq(so2n+1), q

t = 1, t > 4 for small n :

r2 = 38; r3 = 546; r4 = 10696; r5 = 233216;

r6 = 6257254; r7 = 178413634.

The numerical experiments allow us to conjecture that n!4n < rn < n!n4n for big n.
The similar numbers for Uq(sln+1) was found in [1]:

r2 = 26; r3 = 252; r4 = 3368; r5 = 58810;

r6 = 1290930; r7 = 34604844.

Additionally, in the present work, we get r8 = 1, 107, 490, 596. Recall that, in the G2

case we have r2 = 60; see [2]. For the other types, C,D,E, F, it is already known
from a theorem of Heckenberger and Schneider [3] that the similar numbers rBorel

n

related to the Borel subalgebras coincide with the order of the corresponding Weyl
group W . This implies rn < |W |2, see [4].
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Actions of groups

I Kh. (1977). Let G be a finite group of homogeneous
automorphisms of a free algebra k〈X 〉. The Galois
correspondence

A −→ k〈X 〉A = {f ∈ k〈X 〉 | f a = f , a ∈ A}

is a one-to-one correspondence between all subgroups A of G
and all intermediate free subalgebras of k〈X 〉.
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Actions of Hopf algebras

I Ferreira, Murakami, Paques (2004). Let H be a finite
dimensional Hopf algebra acting homogeneously on a free
algebra k〈X 〉 : ∆(h) =

∑
hi
1 ⊗ hi

2; (xy)h =
∑

xhi
1yhi

2 . The
correspondence

U −→ {f ∈ k〈X 〉 | f h = ε(h)f , h ∈ U}

is a one-to-one correspondence between all right coideal
subalgebras of H and all intermediate free subalgebras.

I A. Milinski (1995, 1996), S. Westreich (1999, 2000, 2001), A.
Masuoka (2003), D.Fichman, T.Yanai (1997, 2001, 2005).
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PBW-bases

I ∆(U) ⊆ H ⊗ U

I Kh. (2006). Let H be a Hopf algebra generated by skew
primitive semi invariants. Every right coideal subalgebra that
contains all group-like elements has a PBW-basis which can
be extended up to a PBW-basis of H.

I I. Heckenberger, H.-J. Schneider (2009). The Drinfeld–Jimbo
quantum universal enveloping algebra Uq(g

+) of a Borel
algebra g+ has precisely |W | right coideal subalgebras over
the coradical, where W is the Weyl group of the semisimple
Lie algebra g.

I Kh., A.V. Lara Sagahon (2007) case An;
Kh. (2008) case Bn; B. Pogorelsky (2008) case G2.
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Triangular decomposition

I Kh. (2010). Every right coideal subalgebra U of Uq(g) has a
triangular decomposition U = U−k[G ]U+, here g is a
Kac-Moody algebra.

I In particular, due to the I. Heckenberger, H.-J. Schneider
theorem, Uq(g) has at most |W |2 r.c.s., provided that g is a
semisimple Lie algebra.
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Probabilities

I If U+, U− are right coideal subalgebras of the quantum Borel
subalgebras, then U−k[G ]U+, is a right coideal but not
always a subalgebra.

I Kh., A.V. Lara Sagahon (2007). The probabilities pn for a
pair U−,U+ to define a right coideal subalgebra of Uq(g),
g = sln+1 are:

p2 = 72.3%; p3 = 43.8%; p4 = 23.4%;

p5 = 11.4%; p6 = 5.1%; p7 = 2.2%; p8 = 0.841%.
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Probabilities

I Kh., A.V. Lara Sagahon, J.L. Garza Rivera (2011). The
probabilities pn for a pair U−,U+ to define a right coideal
subalgebra of Uq(g), g = so2n+1 are:

p2 = 59.4%; p3 = 23.7%; p4 = 7.3%;

p5 = 1.6%; p6 = 0.295%; p7 = 0.043%.

I B. Pogorelsky (2011). If g is the simple Lie algebra of type
G2, then the probability equals 60/144 = 41.7%.
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PBW-generators of the Borel component

I U+
q (so2n+1) = G 〈x1, . . . , xn || q-Serre relations〉,

I ∆(xi ) = xi ⊗ 1 + gi ⊗ xi ; ∆(gi ) = gi ⊗ gi ; xigj = pijgjxi ,
where pij are arbitrary parameters satisfying:

pnn = q, pii = q2, pi i+1pi+1 i = q−2, 1 ≤ i < n;

pijpji = 1, j > i + 1.

I PBW-genearators are [ukm], k ≤ m ≤ 2n − k :
[. . . [[[[. . . [xk , xk+1] · · · xn, ]xn, ]xn−1, ]xn−2, ] · · · x2n−m+1],
here [u, v ] = uv − p(u, v)vu, while the bimultiplicative map
p(u, v) is so that p(xi , xj) = pij .
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PBW-generators of right coideal subalgebras

I S = {s1 < s2 < . . . < sr}, S ⊆ [1, 2n].

ΦS(k,m) = u[k,m]− (1− q−2)
r∑

i=1

αsi
km ΦS(1 + si ,m)u[k, si ],

where αs
km = τsp(u(1 + s,m), u(k, s))−1, while τs = 1 for all

s except that τn = q.

I We display the element ΦS(k,m) schematically:

k−1◦ k◦ k+1◦ k+2• k+3◦ · · · m−2• m−1◦ m•
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The main theoretical result

I Let ΦS(k,m), ΦT
−(i , j) be PBW-generators.

S
k−1◦ · · · i−1• i• i+1◦ · · · m•

T ◦ ◦ • · · · • · · ·
j
•

.

It is balanced if it has no fragments of the form

t◦ · · · s•
◦ · · · •

I THEOREM. A triangular composition U−k[G ]U+ is a
subalgebra if and only if, for each pair ΦS(k,m), ΦT

−(i , j) all
four schemes are balanced or one of them has the form

t◦ · · · ◦ · · · • · · · s•
◦ · · · • · · · ◦ · · · •

.
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Problems and hypothesis

Bn : r2 = 38; r3 = 546; r4 = 10, 696; r5 = 233, 216;

r6 = 6, 257, 254; r7 = 178, 413, 634.

I The C++ -program: A.V. Lara Sagahón r2, r3, r4, r5;

I A parallelization: J.L.Garza Rivera r6 (6 min 128 processors),
r7(22 hours 128 processors) and r8(An)(22.3 hours 128 proc.)

An : r2 = 26; r3 = 252; r4 = 3, 368; r5 = 58, 810;

r6 = 1, 290, 930; r7 = 34, 604, 844; r8 = 1, 107, 490, 596.
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Problems and hypothesis

I Find the number of right coideal subalgebras of Uq(g) when g

is a simple Lie algebra of types F4,E6,E7,E8.

I Bn :
lim

n→∞
n!pn = ∞, lim

n→∞
(n − 1)!pn = 0.

n!4n < rn < n!n4n for big n.

I An :
lim

n→∞
n2npn = ∞, lim

n→∞
2npn = 0.
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Problems and hypothesis

I Due to H-Sch. theorem it is to be expected that there exists a
description of right coideal subalgebras of Uq(g) in terms of
Weyl group combinatorics for g of arbitrary types A–G .

I The given here computational determination of the
probabilities pn (and the numbers rn) for the types A, B, G
will provide a valuable test as soon as a conjecture for such a
description is formulated.
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