Deformations of a class of graded Hopf algebras with quadratic relations
Jiwei He (Shaoxing University, China)
jwhe@usx.edu.cn

We consider a special class of graded Hopf algebras, which are finitely generated quadratic algebras with anti-symmetric generating relations. We discuss the automorphism group and Calabi-Yau property of a PBW-deformation of such a Hopf algebra. We show that the Calabi-Yau property of a PBW-deformation of such a Hopf algebra is equivalent to that of the corresponding augmented PBW-deformation under some mild conditions.
Deformations of graded Hopf algebras with quadratic relations

Jiwei He
Shaoxing University

Hopf algebras and tensor categories
July 4–8, 2011, Almeria
(I) Hopf algebras with quadratic relations

(II) Poincaré-Birkhoff-Witt (PBW) deformation

(III) Calabi-Yau algebras

(IV) Main results
(1) Hopf algebras with quadratic relations
Notions

- We work over an algebraically closed field \mathbb{k} of characteristic zero.
We work over an algebraically closed field \mathbb{K} of characteristic zero.

Let V be an n-dimensional vector space ($n \geq 2$), x_1, \ldots, x_n be a basis of V.
We work over an algebraically closed field \mathbb{k} of characteristic zero.

Let V be an n-dimensional vector space ($n \geq 2$), x_1, \ldots, x_n be a basis of V.

A quadratic algebra is a positively graded algebra U defined as

$$U = T(V)/(R),$$

where $R \subseteq V \otimes V$.
We work over an algebraically closed field \mathbb{k} of characteristic zero.

Let V be an n-dimensional vector space ($n \geq 2$), x_1, \ldots, x_n be a basis of V.

A **quadratic algebra** is a positively graded algebra U defined as

$$U = T(V)/(R),$$

where $R \subseteq V \otimes V$.

The **quadratic dual** of U is defined to be the algebra $U^! = T(V^*)/(R^\perp)$, where R^\perp is the orthogonal complement of R in $V^* \otimes V^*$.
We work over an algebraically closed field \mathbb{k} of characteristic zero.

Let V be an n-dimensional vector space ($n \geq 2$), x_1, \ldots, x_n be a basis of V.

A quadratic algebra is a positively graded algebra U defined as

$$U = T(V)/(R),$$

where $R \subseteq V \otimes V$.

The quadratic dual of U is defined to be the algebra $U^! = T(V^*)/(R^\perp)$, where R^\perp is the orthogonal complement of R in $V^* \otimes V^*$.

Example. The polynomial algebra $U = \mathbb{k}[x_1, \ldots, x_n]$ is a quadratic algebra, its quadratic dual is the exterior algebra $U^! = \bigwedge\{y_1, \ldots, y_n\}$.

Jiwei He Šaoxing University

Deformations of quadratic Hopf algebras
An element \(r \in V \otimes V \) is called an antisymmetric element if \(\tau(r) = -r \).
An element \(r \in V \otimes V \) is called an *antisymmetric* element if \(\tau(r) = -r \).

An antisymmetric element may be written as \(r = x^t M x \), where \(x^t = (x_1, \ldots, x_n) \) and \(M \) is an antisymmetric \(n \times n \)-matrix.
An element \(r \in V \otimes V \) is called an **antisymmetric** element if \(\tau(r) = -r \).

An antisymmetric element may be written as \(r = x^t M x \), where \(x^t = (x_1, \ldots, x_n) \) and \(M \) is an antisymmetric \(n \times n \)-matrix.

Let \(U = T(V)/(r_1, \ldots, r_m) \) be a quadratic algebra with antisymmetric generating relations \(r_i \in V \otimes V \) for \(1 \leq i \leq m \). We call such a quadratic algebra \(U \) as a **weakly symmetric** algebra.
An weakly symmetric algebra U is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

Example. Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = x^t M x$ where $x^t = (x_1, \ldots, x_n)$. Let $U = I_k \langle x_1, \ldots, x_n \rangle / (r)$. Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

(ii) [Berger, 2009] U is a Calabi-Yau algebra of dimension 2.

(iii) [Berger, Bocklandt] Any (connected graded) Calabi-Yau algebra of dimension 2 is obtained in this way.
An weakly symmetric algebra U is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

Example. Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = x^t M x$ where $x^t = (x_1, \ldots, x_n)$.

Let $U = \mathbb{K}\langle x_1, \ldots, x_n \rangle/(r)$.

\[\Delta(x) = x \otimes 1 + 1 \otimes x,\]
An weakly symmetric algebra U is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

Example. Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = x^t M x$ where $x^t = (x_1, \ldots, x_n)$.

Let $U = \mathbb{k}\langle x_1, \ldots, x_n \rangle/(r)$.

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

(ii) [Berger, 2009] U is a Calabi-Yau algebra of dimension 2.

(iii) [Berger, Bocklandt] Any (connected graded) Calabi-Yau algebra of dimension 2 is obtained in this way.
Weakly symmetric algebras

- An weakly symmetric algebra U is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

Example. Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = x^t M x$ where $x^t = (x_1, \ldots, x_n)$.

Let $U = \mathbb{K}\langle x_1, \ldots, x_n \rangle/(r)$.

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.
Weakly symmetric algebras

- An weakly symmetric algebra U is a graded Hopf algebra with coproducts and antipode

$$\Delta(x) = x \otimes 1 + 1 \otimes x,$$

for $x \in V$.

- **Example.** Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = x^t M x$ where $x^t = (x_1, \ldots, x_n)$.

Let $U = \mathbb{K}\langle x_1, \ldots, x_n \rangle/(r)$.

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

(ii) [Berger, 2009] U is a Calabi-Yau algebra of dimension 2.
Weakly symmetric algebras

- An weakly symmetric algebra U is a graded Hopf algebra with coproducts and antipode

\[\Delta(x) = x \otimes 1 + 1 \otimes x, \]

for $x \in V$.

Example. Let M be an $n \times n$ antisymmetric invertible matrix, and let $r = x^t M x$ where $x^t = (x_1, \ldots, x_n)$.

Let $U = \mathbb{k}\langle x_1, \ldots, x_n \rangle/(r)$.

Then

(i) [Dubois-Violette, 2007] U is a Koszul algebra.

(ii) [Berger, 2009] U is a Calabi-Yau algebra of dimension 2.

(iii) [Berger, Bocklandt] Any (connected graded) Calabi-Yau algebra of dimension 2 is obtained in this way.
(II) PBW-deformations
Let $U = \bigoplus_{n \geq 0} U_n$ be a positively graded algebra. A \textbf{PBW-deformation} of U is a filtered algebra A with filtration $0 \subseteq F_0 A \subseteq F_1 A \subseteq \cdots \subseteq F_n A \subseteq \cdots$, together with a graded algebra isomorphism $p : U \to gr(A)$.
A PBW-deformation A of a quadratic algebra $U = T(V)/(R)$ is determined by two linear maps:

$$\varphi : R \to V \text{ and } \theta : R \to \mathbb{K},$$

so that

$$A = T(V)/(I_2), \text{ where } I_2 = \{ r - \varphi(r) - \theta(r) | r \in R \}.$$

If $\theta = 0$, the PBW-deformation is called an augmented deformation of U.
A PBW-deformation A of a quadratic algebra $U = T(V)/(R)$ is determined by two linear maps:

$$
\varphi : R \to V \text{ and } \theta : R \to \mathbb{K},
$$

so that

$$
A = T(V)/(l_2), \text{ where } l_2 = \{r - \varphi(r) - \theta(r) | r \in R\}.
$$

If $\theta = 0$, the PBW-deformation is called an augmented deformation of U.

It is more convenient to consider the augmented PBW-deformations than the nonaugmented cases. Especially, when we consider the PBW-deformations of a graded Hopf algebra, we have the tool homological integrals to do with the homological properties of augmented PBW-deformations.
Examples. (i) A universal enveloping algebra a finite dimensional algebra is an augmented PBW-deformation of a polynomial algebra.

(ii) Weyl algebra A_1 is a PBW-deformation of the polynomial algebra $\mathbb{k}[x_1, x_2]$.

(iii) Sridharan enveloping algebras: \mathfrak{g} is a finite dimensional algebra, $f : \mathfrak{g} \times \mathfrak{g} \to \mathbb{k}$ is a 2-cocycle of \mathfrak{g}, then

$$U_f(\mathfrak{g}) = T(\mathfrak{g})/I,$$

where the ideal I is generated by

$$x \otimes y - y \otimes x - [x, y] - f(x, y), \text{ for all } x, y \in \mathfrak{g}.$$
Let $U = T(V)/(R)$ be a quadratic algebra, and let $\phi : R \to V$ be a linear map that provides an augment PBW-deformation of U.

Theorem (Polishchuk-Positselski) The dual map $\phi^* : V^* \to R^*$ induces a differential d on the quadratic dual $U^!$ of U so that $(U^!, d)$ is a differential graded algebra.

Moreover, the set of possible augmented PBW-deformations of U is in one-to-one correspondence with the set of all the possible differential structures on $U^!$.

Jiwei He Shaoxing University
Deformations of quadratic Hopf algebras
Let $U = T(V)/(R)$ be a quadratic algebra, and let $\phi : R \to V$ be a linear map that provides an augmented PBW-deformation of U.

Theorem (Polishchuk-Positselski)

The dual map $\phi^* : V^* \to R^*$ induces a differential d on the quadratic dual $U^!$ of U so that $(U^!, d)$ is a differential graded algebra.

Moreover, the set of possible augmented PBW-deformations of U is in one-to-one correspondence with the set of all the possible differential structures on $U^!$.
(III) Calabi-Yau algebras
For the background of Calabi-Yau algebra, see Xiaolan Yu’s talk yesterday.

Definition. [Ginzburg] An algebra \(A \) is said to be a Calabi-Yau algebra of dimension \(d \) (CY-\(d \), for short) if:

1. \(A \) is homologically smooth, that is; \(A \) has a bounded resolution of finitely generated projective \(A \)-\(A \)-bimodules,
2. \(\text{Ext}^i_A(A, A_{\text{en}}) = 0 \) if \(i \neq d \) and \(\text{Ext}^d_A(A, A_{\text{en}}) \sim A \) as \(A \)-\(A \)-bimodules, where \(A_{\text{en}} = A \otimes A^{\text{op}} \) is the enveloping algebra of \(A \).

We call \(d \) the Calabi-Yau dimension of \(A \).
For the background of Calabi-Yau algebra, see Xiaolan Yu’s talk yesterday.

Definition. [Ginzburg] An algebra A is said to be a **Calabi-Yau algebra of dimension d (CY-d, for short)** if

(i) A is homologically smooth, that is; A has a bounded resolution of finitely generated projective A-A-bimodules,

(ii) $\text{Ext}^i_{A^e}(A, A^e) = 0$ if $i \neq d$ and $\text{Ext}^d_{A^e}(A, A^e) \cong A$ as A-A-bimodules, where $A^e = A \otimes A^{op}$ is the enveloping algebra of A.

We call d the **Calabi-Yau dimension** of A.

Jiwei He
Shaoxing University
Deformations of quadratic Hopf algebras
Examples of Calabi-Yau algebras

- The polynomial algebra $\mathbb{k}[x_1, \ldots, x_n]$ is CY-n
Examples of Calabi-Yau algebras

- The polynomial algebra $\mathbb{k}[x_1, \ldots, x_n]$ is CY-n

Examples of Calabi-Yau algebras

- The polynomial algebra $\mathbb{k}[x_1, \ldots, x_n]$ is CY-n

- An interesting question is to find out the relation between the global dimension and the CY dimension of a CY algebra.
(IV) Main results
Theorem. [Yekutieli] If A is a (positively) filtered algebra such that $gr(A)$ is a Calabi-Yau algebra, then A differs from being Calabi-Yau by a filtration-preserving automorphism σ: that is, $\text{RHom}_{A^e}(A, A^e) \cong {}^1A^\sigma[d]$.
Theorem. [Yekutieli] If A is a (positively) filtered algebra such that $gr(A)$ is a Calabi-Yau algebra, then A differs from being Calabi-Yau by a filtration-preserving automorphism σ: that is, $\text{RHom}_{A^e}(A, A^e) \cong 1 A^\sigma [d]$.

Denote by $\text{Aut}_{\text{filt}}(A)$ the group of automorphisms of A which preserve the filtration of A.
Main results

Theorem (H-Zhang)

Let $U = T(V)/(R)$ be a weakly symmetric algebra, and let $A = T(V)/(r - \varphi(r) : r \in R)$ be an augmented PBW-deformation of U. Then $\text{Aut}_{\text{filt}}(A) \cong Z^1(U^!, d)$, where $Z^1(U^!, d)$ is the group of 1-cocycles of the differential graded algebra $(U^!, d)$.

Moreover, if the quadratic algebra U is Koszul then $\text{Aut}_{\text{filt}}(A) \cong \text{Ext}^1_A(A \mathbb{k}, A \mathbb{k})$.
Main results

Theorem (H-Zhang)

Let $U = T(V)/(R)$ be a weakly symmetric algebra, and let $A = T(V)/(r - \varphi(r) : r \in R)$ be an augmented PBW-deformation of U. Then $\text{Aut}_{\text{filt}}(A) \cong Z^1(U^!, d)$, where $Z^1(U^!, d)$ is the group of 1-cocycles of the differential graded algebra $(U^!, d)$.

Moreover, if the quadratic algebra U is Koszul then $\text{Aut}_{\text{filt}}(A) \cong \text{Ext}^1_A(A\mathbb{1}, A\mathbb{1})$.

Corollary. [Well known] Any universal enveloping algebra of a finite dimensional semisimple Lie algebra is Calabi-Yau.
Let $U = T(V)/(R)$ be a weakly symmetric algebra, and $\varphi : R \to V$ and $\theta : R \to \mathbb{k}$ be linear maps.

Set

$$I_2 = \{ r - \varphi(r) | r \in R \},$$

$$I'_2 = \{ r - \varphi(r) - \theta(r) | r \in R \}.$$
Let $U = T(V)/(R)$ be a weakly symmetric algebra, and $\varphi : R \to V$ and $\theta : R \to \mathbb{I}_k$ be linear maps. Set

$$l_2 = \{ r - \varphi(r) | r \in R \},$$

$$l'_2 = \{ r - \varphi(r) - \theta(r) | r \in R \}.$$

Assume that both $A = T(V)/(l_2)$ and $A' = T(V)/(l'_2)$ are PBW-deformations of U.

Define

$$D : T(V) \to A' \otimes A'^{op},$$

$$D(x) = x \otimes 1 - 1 \otimes x, \quad \text{for all } x \in V.$$
A lemma

Let \(U = T(V)/(R) \) be a weakly symmetric algebra, and \(\varphi : R \to V \) and \(\theta : R \to \mathbb{K} \) be linear maps.

Set

\[
I_2 = \{ r - \varphi(r) | r \in R \},
\]

\[
I'_2 = \{ r - \varphi(r) - \theta(r) | r \in R \}.
\]

Assume that both \(A = T(V)/(I_2) \) and \(A' = T(V)/(I'_2) \) are PBW-deformations of \(U \).

Define

\[
D : T(V) \to A' \otimes A'^\text{op},
\]

\[
D(x) = x \otimes 1 - 1 \otimes x,
\]

for all \(x \in V \).

\(D \) induces an algebra morphism (also denoted by \(D \))

\[
D : A \to A' \otimes A'^\text{op}.
\]
Lemma. $A' \otimes A'^{\text{op}}$ is projective either as a left A-module or as a right A-module.
Lemma. \(A' \otimes A'^{\text{op}} \) is projective either as a left \(A \)-module or as a right \(A \)-module.

The key point to prove the lemma is that \(U \) is a graded Hopf algebra. Then \(U \otimes U^{\text{op}} \) is a free module either as a left \(U \)-module or as a right \(U \)-module.
Main results

Theorem (H-Zhang)

Let $U = T(V)/(R)$ be a weakly symmetric algebra. Assume that both $A = T(V)/(r - \varphi(r) : r \in R)$ and $A' = T(V)/(r - \varphi(r) - \theta(r) : r \in R)$ are PBW-deformations of U. If A is CY-d, then so is A'.
Main results

Theorem (H-Zhang)

Let $U = T(V)/(R)$ be a weakly symmetric algebra. Assume that both $A = T(V)/(r - \varphi(r) : r \in R)$ and $A' = T(V)/(r - \varphi(r) - \theta(r) : r \in R)$ are PBW-deformations of U. If A is CY-d, then so is A'. Conversely, assume further that U is a noetherian domain and Artin-Schelter regular. If A' is CY-d, then so is A.

Jiwei He Shaoxing University

Deformations of quadratic Hopf algebras
Theorem (H-Van Oystaeyen-Zhang)

Let \(\mathfrak{g} \) be a finite dimensional Lie algebra. Then for any 2-cocycle \(f \in Z^2(\mathfrak{g}, \mathbb{k}) \), the following statements are equivalent.

(i) The Sridharan enveloping algebra \(U_f(\mathfrak{g}) \) is CY-d.

(ii) The universal enveloping algebra \(U(\mathfrak{g}) \) is CY-d.

(iii) \(\dim \mathfrak{g} = d \) and \(\mathfrak{g} \) is unimodular, that is, for any \(x \in \mathfrak{g} \), \(\text{tr}(\text{ad}_x) = 0 \).
Main results

Theorem (H-Van Oystaeyen-Zhang)

Let A be a noetherian CY filtered algebra of dimension 3 such that $\text{gr}(A)$ is commutative and generated in degree 1, then A is isomorphic to $\mathbb{k}\langle x, y, z \rangle/(R)$ with the commuting relations R listed in the following table:

<table>
<thead>
<tr>
<th>Case</th>
<th>${x, y}$</th>
<th>${x, z}$</th>
<th>${y, z}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>$-2x$</td>
<td>$2y$</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td>$-z$</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>y</td>
<td>$-z$</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>z</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

where $\{x, y\} = xy - yx$.
Remarks.

- This is a small step towards our aim to find all the possible noetherian connected filtered Calabi-Yau algebras of dimension 3.
Remarks.

- This is a small step towards our aim to find all the possible noetherian connected filtered Calabi-Yau algebras of dimension 3.

- The results can be generalized without too much difficulty to the nonquadratic algebras. That is, if the graded Hopf algebra U is N-homogeneous with some “anti-symmetric” relations, then the same results still hold.

For example, $U = T(V)/(r)$, where

$$r = \sum_{\sigma \in S_n} \text{sgn}(\sigma)x_{\sigma(1)}x_{\sigma(2)} \cdots x_{\sigma(n)}.$$
Thank you!