Clifford theory for graded fusion categories

César Galindo (University of the Andes, Colombia) cesarneyit@gmail.com

I will report on progress towards the classification of module categories over graded fusion categories. We develop a categorical analogue over graded fusion categories of Clifford theory for strongly graded rings. We describe module categories over a fusion category graded by a group G as induced from module categories over fusion subcategories associated with the subgroups of G. We define invariant C_e -module categories and extensions of C_e -module categories. The construction of module categories over C is reduced to determine invariant module categories for subgroups of G and the indecomposable extensions of this modules categories. We associate a G-crossed product fusion category to each G-invariant C_e -module category and give a criterion for a graded fusion category to be a group-theoretical fusion category. We give necessary and sufficient conditions for an indecomposable module category to be extended.

Clifford theory for fusion categories

César Neyit Galindo

Universidad de los Andes

Hopf algebras and tensor categories Almeria, July 6, 2011.

イロト イポト イヨト イヨト

- C. G., *Clifford theory for fusion categories*, accepted by Israel Journal of Mathematics. ArXiv:1010.5283
- C. G., *Clifford theory for tensor categories*, J. Lond. Math. Soc., (2) 83 (2011) 57–78. ArXiv:0902.1088
- C. G., Seung-Moon Hong, Eric Rowell, *Generalized and quasi-localizations of braid group representations*. ArXiv:1105.5048

- E. Meir and E. Musicantov, *Module categories over graded fusion categories*, preprint arxiv:1010.4333.
- Camille Mével, Exemples et applications des groupoïdes quantiques finis, Ph.D. Thesis. Université de Caen Basse-Normandie.

Let $\mathcal C$ be a fusion category and let G be a finite group. $\mathcal C$ is G-graded if

$$\mathcal{C} = \oplus_{\sigma \in \mathbf{G}} \mathcal{C}_{\sigma}, \quad (\mathcal{C}_{\mathbf{g}} \neq \mathbf{0}),$$

・ロト ・聞 ト ・ ヨト ・ ヨト

for any $\sigma, \tau \in G$, one has $\otimes : \mathcal{C}_{\sigma} \times \mathcal{C}_{\tau} \to \mathcal{C}_{\sigma\tau}$.

A (left) C-module category is a (semisimple) category \mathcal{M} together with a bifunctor $\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ and natural isomorphisms

$$m_{X, YM}$$
: $(X \otimes Y) \otimes M \rightarrow X \otimes (Y \otimes M)$,

for all $M \in \mathcal{M}, X, Y \in \mathcal{C}$, satisfying the pentagon and triangular axioms.

ヘロン 人間 とくほ とくほ とう

A *C*-module functor $(F, \phi) : \mathcal{M} \to \mathcal{N}$ consists of a functor $F : \mathcal{M} \to \mathcal{N}$ and natural isomorphisms

$$\phi_{X,M}: F(X \otimes M) \to X \otimes F(M),$$

such that

$$(X \otimes \phi_{Y,M})\phi_{X,Y \otimes M}F(m_{X,Y,M}) = m_{X,Y,F(M)}\phi_{X \otimes Y,M}$$
(1)

イロト イポト イヨト イヨト

for all $X, Y \in C$, $M \in M$.

We shall denote by $\mathcal{C}^*_{\mathcal{M}}$ the tensor category of $\mathcal{C}\text{-module}$ functor from \mathcal{M} to $\mathcal{M}.$

Tensor product of module categories [ENO3]

For $\mathcal C\text{-module}$ categories $\mathcal M$ and $\mathcal N$ their tensor product

 $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$

using a universal property.

If \mathcal{M} is a \mathcal{C} -bimodule category, then

 $\mathcal{M}\boxtimes_{\mathcal{C}}\mathcal{N}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

is again a left C-module categories.

From now on C shall denote a *G*-graded fusion category

Let \mathcal{M} be a \mathcal{C} -module category, and let $\mathcal{N} \subset \mathcal{M}$ be a full abelian subcategory. We shall denote by $\mathcal{C}_{\sigma} \overline{\otimes} \mathcal{N}$ the full abelian subcategory given by $Ob(\mathcal{C} \overline{\otimes} \mathcal{N}) = \{$ subquotients of $V \otimes N : V \in \mathcal{C}_{\sigma}, N \in N \}.$

Remark: If $\mathcal{N} \subset \mathcal{M}$ is a \mathcal{C}_{e} -module, the bifunctor \otimes induces a canonical \mathcal{C}_{e} -module equivalence $\mu_{\sigma} : \mathcal{C}_{\sigma} \boxtimes_{\mathcal{C}_{e}} \mathcal{N} \to \mathcal{C}_{\sigma} \overline{\otimes} \mathcal{N}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Given a C-module category \mathcal{M} , we shall denote by $\Omega_{\mathcal{C}_e}(\mathcal{M})$ the set of equivalence classes of indecomposable \mathcal{C}_e -submodule categories of \mathcal{M} .

The group *G* acts on $\Omega_{\mathcal{C}_e}(\mathcal{M})$ by

$$egin{aligned} {m G} imes \Omega_{\mathcal{C}_{m{e}}}(\mathcal{M}) & o \Omega_{\mathcal{C}_{m{e}}}(\mathcal{M}) \ ({m g}, [\mathcal{N}]) &\mapsto [\mathcal{C}_{\sigma} oxtimes_{\mathcal{C}_{m{e}}} \mathcal{N}] \end{aligned}$$

イロト イポト イヨト イヨト

Theorem

Let C be a G-graded fusion category and let M be an indecomposable C-module category. Then:

- The action of G on $\Omega_{\mathcal{C}_e}(\mathcal{M})$ is transitive,
- 2 Let N be an indecomposable C_e-submodule subcategory of M. Let H = st([N]) be the stabilizer subgroup of [N] ∈ Ω_{C_e}(M), and let also

$$\mathcal{M}_{\mathcal{N}} = \sum_{h \in H} \mathcal{C}_H \overline{\otimes} \mathcal{N}.$$

Then $\mathcal{M}_{\mathcal{N}}$ is an indecomposable \mathcal{C}_{H} -module category and \mathcal{M} is equivalent to $\operatorname{Ind}_{\mathcal{C}_{H}}^{\mathcal{C}}(\mathcal{M}_{\mathcal{N}}) = \mathcal{C} \boxtimes_{\mathcal{C}_{H}} \mathcal{M}_{\mathcal{N}}$ as \mathcal{C} -module categories.

ヘロト ヘアト ヘヨト ヘ

Let C be a G-graded fusion category. If (\mathcal{M}, \otimes) is a C_e -module category, then a C-extension of \mathcal{M} is a C-module category (\mathcal{M}, \odot) such that (\mathcal{M}, \otimes) is obtained by restriction to C_e .

Corollary

Let \mathcal{M} be an indecomposable \mathcal{C} -category, and \mathcal{N} an indecomposable \mathcal{C}_e -submodule category. Then there exists a subgroup $S \subset G$, and a \mathcal{C}_S -extension (\mathcal{N}, \odot) of \mathcal{N} , such that $\mathcal{M} \cong \mathcal{C} \boxtimes_{\mathcal{C}_S} \mathcal{N}$ as \mathcal{C} -module categories.

ヘロト 人間 とくほとくほとう

Remark: The subgroup $S = \{ \sigma \in G | C_{\sigma} \overline{\otimes} \mathcal{N} = \mathcal{N} \}.$

A C_e -module category \mathcal{M} is called G-invariant if $C_{\sigma} \boxtimes_{C_e} \mathcal{M}$ is equivalent to \mathcal{M} as C_e -module categories, for all $\sigma \in G$.

Definition

A graded tensor category over a group G will be called a crossed product tensor category if every homogeneous component has at least one multiplicatively invertible object.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Proposition

Let C be a G-graded fusion category. An indecomposable C_e -module category \mathcal{N} is invariant if and only if $\mathcal{C}^*_{C\boxtimes_{C_e}\mathcal{N}}$ is G^{op} -crossed product fusion category.

イロト イポト イヨト イヨト

Semi-direct product fusion category

Given $*: \underline{G} \to \underline{Aut_{\otimes}(\mathcal{C})}$, the semi-direct product fusion category $\mathcal{C} \rtimes G$, is defined as follows: As an abelian category $\mathcal{C} \rtimes G = \bigoplus_{\sigma \in G} \mathcal{C}_{\sigma}$, where $\mathcal{C}_{\sigma} = \mathcal{C}$ as an abelian category, the tensor product is

$$[X,\sigma]\otimes [Y,\tau]:=[X\otimes \sigma_*(Y),\sigma\tau], \quad X,Y\in \mathcal{C}, \ \sigma,\tau\in G,$$

and the unit object is [1, e].

 $\mathcal{C} \rtimes G$ is *G*-graded by

$$\mathcal{C} \rtimes \mathcal{G} = \bigoplus_{\sigma \in \mathcal{G}} (\mathcal{C} \rtimes \mathcal{G})_{\sigma}, \text{ where } (\mathcal{C} \rtimes \mathcal{G})_{\sigma} = \mathcal{C}_{\sigma},$$

イロト イポト イヨト イヨト

and the objects $[\mathbf{1}, \sigma] \in (\mathcal{C} \rtimes G)_{\sigma}$ are invertible, with inverse $[\mathbf{1}, \sigma^{-1}] \in (\mathcal{C} \rtimes G)_{\sigma^{-1}}$.

Theorem

Let \mathcal{C} be a G-graded fusion category. Then an indecomposable left \mathcal{C}_e -module category \mathcal{M} has an extension (\mathcal{M}, \odot) if and only if $\mathcal{C}^*_{\overline{\mathcal{M}}}$ is a semi-direct product fusion category. There is a one-to-one correspondence between equivalence classes of \mathcal{C} -extensions of \mathcal{M} and conjugacy classes of graded tensor functors $\text{Vec}_{G^{op}} \to \mathcal{C}^*_{\overline{\mathcal{M}}}$.

・ロン ・聞と ・ ヨン・

Theorem 3 and Corollary 1, reduce the problem of constructing module categories over a graded fusion category $C = \bigoplus_{\sigma \in G}$, to the following steps:

- **O** Classifying the indecomposable C_e -module categories.
- Sinding the subgroup *S* and the indecomposable C_e -module categories N, such that N is *S*-invariant.
- Determining if \(\mathcal{F}_{\mathcal{C}_{\mathcal{S}}}(\mathcal{Ind}_{\mathcal{C}_{\mathcal{e}}}^{\mathcal{C}_{\mathcal{S}}}(\mathcal{N}), \mathcal{Ind}_{\mathcal{C}_{\mathcal{e}}}^{\mathcal{C}_{\mathcal{S}}}(\mathcal{N}))\) is equivalent to a semi-direct \(S^{op}\)-product fusion category.
- Finding all graded functors from Vec_{S^{op}} to *F*_{C_S}(*N*, *N*), up to conjugation.

イロト 不得 とくほ とくほ とうほ

A \mathbb{C} -linear category \mathcal{D} is called a **complex** *-category if:

 There is an involutive antilinear contravariant endofunctor * of D which is the identity on objects. The image of f under * will be denoted by f*.

イロト イポト イヨト イヨト

So For each $f \in Hom_{\mathcal{D}}(X, Y)$, $f^*f = 0$ implies f = 0.

Let *X* and *Y* be objects in a *-category. A morphism $u : X \to Y$ is **unitary** if $uu^* = id_Y$ and $u^*u = id_X$. A morphism $a : X \to X$ is **self-adjoint** if $a^* = a$. A natural transformation $\gamma : F \to G$, between functors $F, G : \mathcal{D}_1 \to \mathcal{D}_2$ with \mathcal{D}_2 a *-category is called **unitary natural transformation** if γ_X is unitary for each $X \in \mathcal{D}_1$.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

A unitary fusion category is a fusion category (C, \otimes , α), where C is a *-category, the constraints are unitary natural transformations, and $(f \otimes g)^* = f^* \otimes g^*$, for every pair of morphisms f, g in C.

Example

- Hilb_f, with the tensor product of Hilbert spaces is a unitary fusion category.
- A finite dimensional (quasi) Kac algebra is a (quasi) Hopf algebra H, such that H is a C*-algebra, Δ and ε are *-algebras morphisms, and if H is a quasi-Hopf algebra the associator must satisfy Φ* = Φ⁻¹. In this case the category of unitary H-modules is a unitary fusion category.

Let C be a unitary fusion category. A C-module *-category is a left C-module category $(\mathcal{M}, \overline{\otimes}, \mu)$ such that \mathcal{M} is a *-category, the constraints are unitary natural transformations, and $(f \overline{\otimes} g)^* = f^* \overline{\otimes} g^*$ for all $f \in C, g \in \mathcal{M}$.

ヘロト 人間 ト ヘヨト ヘヨト

Let *C* be a fusion category. We shall say that *C* is **completely unitary** if the following properties are satisfied:

- C is monoidally equivalent to a unique (up to *-monoidal equivalences) unitary fusion category.
- Every C-module category is equivalent to a unique (up to C-module *-functor equivalences) C-module *-category.
- Every C-module functor equivalence between C-module *-categories is equivalent to a unique (up to unitary C-module natural isomorphisms) C-module *-functor equivalence.

イロト イポト イヨト イヨ

Weakly group-theoretical fusion categories are completely unitary

Theorem

Every weakly group theoretical fusion category is a completely unitary fusion category.

ヘロト 人間 ト ヘヨト ヘヨト

Corollary

Every weakly group-theoretical (quasi)-Hopf algebra is isomorphic to a (quasi)-Kac algebra.

- Question 7.8 in [A]: Given a semisimple Hopf algebra H, does it admit a compact involution? Corollary 2 gives an affirmative answer for weakly group theoretical Hopf algebras.
- It is not known ([ENO2] Question 2) if there exist weakly integral fusion categories that are not weakly group-theoretical. Theorem 4 inspires the following **question**: *Is every weakly integral fusion category completely unitary or unitary?*

ヘロト 人間 とくほ とくほ とう

- N. Andruskiewitsch, About finite dimensional Hopf algebras. Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math., 294, 1–57.
- P. Etingof, D. Nikshych and V. Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 (2011) 176–205.
- P. ETINGOF, D. NIKSHYCH and V. OSTRIK, Fusion categories and homotopy theory, Quantum Topol., 1 (3) (2010) 209–273.

ヘロト ヘアト ヘビト ヘビト