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I will report on progress towards the classification of module categories over
graded fusion categories. We develop a categorical analogue over graded fusion
categories of Clifford theory for strongly graded rings. We describe module categories
over a fusion category graded by a group G as induced from module categories
over fusion subcategories associated with the subgroups of G. We define invariant
Ce-module categories and extensions of Ce-module categories. The construction
of module categories over C is reduced to determine invariant module categories
for subgroups of G and the indecomposable extensions of this modules categories.
We associate a G-crossed product fusion category to each G-invariant Ce-module
category and give a criterion for a graded fusion category to be a group-theoretical
fusion category. We give necessary and sufficient conditions for an indecomposable
module category to be extended.
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Graded fusion categories

Let C be a fusion category and let G be a finite group.
C is G-graded if

C = ⊕σ∈GCσ, (Cg 6= 0),

for any σ, τ ∈ G, one has ⊗ : Cσ × Cτ → Cστ .
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Module categories over tensor categories

A (left) C-module category is a (semisimple) categoryM
together with a bifunctor ⊗ : C ×M→M and natural
isomorphisms

mX ,Y M : (X ⊗ Y )⊗M → X ⊗ (Y ⊗M),

for all M ∈M, X ,Y ∈ C, satisfying the pentagon and triangular
axioms.
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Module functors and C∗M

A C-module functor (F , φ) :M→N consists of a functor
F :M→N and natural isomorphisms

φX ,M : F (X ⊗M)→ X ⊗ F (M),

such that

(X ⊗ φY ,M)φX ,Y⊗MF (mX ,Y ,M) = mX ,Y ,F (M)φX⊗Y ,M (1)

for all X ,Y ∈ C, M ∈ M.

We shall denote by C∗M the tensor category of C-module functor
fromM toM.
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Tensor product of module categories [ENO3]

For C-module categoriesM and N their tensor product

M�C N

using a universal property.

IfM is a C-bimodule category, then

M�C N

is again a left C-module categories.
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Clifford theory for fusion categories

From now on C shall denote a G-graded fusion category

LetM be a C-module category, and let N ⊂M be a full
abelian subcategory. We shall denote by Cσ⊗N the full abelian
subcategory given by Ob(C⊗N ) = {subquotients of
V ⊗ N : V ∈ Cσ,N ∈ N}.

Remark: If N ⊂M is a Ce-module, the bifunctor ⊗ induces a
canonical Ce-module equivalence µσ : Cσ �Ce N → Cσ⊗N .
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Clifford theory for fusion categories

Given a C-module categoryM, we shall denote by ΩCe (M) the
set of equivalence classes of indecomposable Ce-submodule
categories ofM.

The group G acts on ΩCe (M) by

G × ΩCe (M)→ ΩCe (M)

(g, [N ]) 7→ [Cσ �Ce N ]
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Clifford theory for fusion categories

Theorem

Let C be a G-graded fusion category and letM be an
indecomposable C-module category. Then:

1 The action of G on ΩCe (M) is transitive,
2 Let N be an indecomposable Ce-submodule subcategory

ofM. Let H = st([N ]) be the stabilizer subgroup of
[N ] ∈ ΩCe (M), and let also

MN =
∑
h∈H

CH⊗N .

ThenMN is an indecomposable CH -module category and
M is equivalent to IndCCH

(MN ) = C �CH MN as C-module
categories.
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C-extension of a Ce-module categories

Definition
Let C be a G-graded fusion category. If (M,⊗) is a Ce-module
category, then a C-extension ofM is a C-module category
(M,�) such that (M,⊗) is obtained by restriction to Ce.

Corollary

LetM be an indecomposable C-category, and N an
indecomposable Ce-submodule category. Then there exists a
subgroup S ⊂ G, and a CS-extension (N ,�) of N , such that
M∼= C �CS N as C-module categories.

Remark: The subgroup S = {σ ∈ G|Cσ⊗N = N}.
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Invariant and G-graded module categories

Definition
A Ce-module categoryM is called G-invariant if Cσ �Ce M is
equivalent toM as Ce-module categories, for all σ ∈ G.

Definition
A graded tensor category over a group G will be called a
crossed product tensor category if every homogeneous
component has at least one multiplicatively invertible object.
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Invariant and G-graded module categories

Proposition

Let C be a G-graded fusion category. An indecomposable
Ce-module category N is invariant if and only if C∗C�CeN

is
Gop-crossed product fusion category.
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Semi-direct product fusion category

Given ∗ : G→ Aut⊗(C), the semi-direct product fusion category
C o G, is defined as follows: As an abelian category
C o G =

⊕
σ∈G Cσ, where Cσ = C as an abelian category, the

tensor product is

[X , σ]⊗ [Y , τ ] := [X ⊗ σ∗(Y ), στ ], X ,Y ∈ C, σ, τ ∈ G,

and the unit object is [1,e].

C o G is G-graded by

C o G =
⊕
σ∈G

(C o G)σ, where (C o G)σ = Cσ,

and the objects [1, σ] ∈ (C o G)σ are invertible, with inverse
[1, σ−1] ∈ (C o G)σ−1 .
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Classification of C-extension of a Ce-module categories

Theorem

Let C be a G-graded fusion category. Then an indecomposable
left Ce-module categoryM has an extension (M,�) if and only
if C∗M is a semi-direct product fusion category. There is a
one-to-one correspondence between equivalence classes of
C-extensions ofM and conjugacy classes of graded tensor
functors VecGop → C∗M.
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Algorithm for constructing module categories

Theorem 3 and Corollary 1, reduce the problem of constructing
module categories over a graded fusion category C =

⊕
σ∈G, to

the following steps:
1 Classifying the indecomposable Ce-module categories.
2 Finding the subgroup S and the indecomposable
Ce-module categories N , such that N is S-invariant.

3 Determining if FCS (IndCS
Ce

(N ), IndCS
Ce

(N )) is equivalent to a
semi-direct Sop-product fusion category.

4 Finding all graded functors from VecSop to FCS (N ,N ), up to
conjugation.
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Complex ∗-category

Definition
A C-linear category D is called a complex ∗-category if:

1 There is an involutive antilinear contravariant endofunctor ∗
of D which is the identity on objects. The image of f under
∗ will be denoted by f ∗.

2 For each f ∈ HomD(X ,Y ), f ∗f = 0 implies f = 0.
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Complex ∗-category

Let X and Y be objects in a ∗-category. A morphism u : X → Y
is unitary if uu∗ = idY and u∗u = idX . A morphism a : X → X is
self-adjoint if a∗ = a.
A natural transformation γ : F → G, between functors
F ,G : D1 → D2 with D2 a ∗-category is called unitary natural
transformation if γX is unitary for each X ∈ D1.
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Unitary fusion categories

Definition
A unitary fusion category is a fusion category (C,⊗, α),
where C is a ∗-category, the constraints are unitary natural
transformations, and (f ⊗ g)∗ = f ∗ ⊗ g∗, for every pair of
morphisms f ,g in C.

Example
1 Hilbf , with the tensor product of Hilbert spaces is a unitary

fusion category.
2 A finite dimensional (quasi) Kac algebra is a (quasi) Hopf

algebra H, such that H is a C∗-algebra, ∆ and ε are
∗-algebras morphisms, and if H is a quasi-Hopf algebra the
associator must satisfy Φ∗ = Φ−1. In this case the category
of unitary H-modules is a unitary fusion category.
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C-module ∗-category

Definition
Let C be a unitary fusion category. A C-module ∗-category is a
left C-module category (M,⊗, µ) such thatM is a ∗-category,
the constraints are unitary natural transformations, and
(f⊗g)∗ = f ∗⊗g∗ for all f ∈ C,g ∈M.

César Galindo



Completely unitary fusion categories

Definition
Let C be a fusion category. We shall say that C is completely
unitary if the following properties are satisfied:

1 C is monoidally equivalent to a unique (up to ∗-monoidal
equivalences) unitary fusion category.

2 Every C-module category is equivalent to a unique (up to
C-module ∗-functor equivalences) C-module ∗-category.

3 Every C-module functor equivalence between C-module
∗-categories is equivalent to a unique (up to unitary
C-module natural isomorphisms) C-module ∗-functor
equivalence.
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Weakly group-theoretical fusion categories are
completely unitary

Theorem

Every weakly group theoretical fusion category is a completely
unitary fusion category.

Corollary

Every weakly group-theoretical (quasi)-Hopf algebra is
isomorphic to a (quasi)-Kac algebra.
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1 Question 7.8 in [A]: Given a semisimple Hopf algebra H,
does it admit a compact involution? Corollary 2 gives an
affirmative answer for weakly group theoretical Hopf
algebras.

2 It is not known ([ENO2] Question 2) if there exist weakly
integral fusion categories that are not weakly
group-theoretical. Theorem 4 inspires the following
question: Is every weakly integral fusion category
completely unitary or unitary?
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