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Golomb and Weinberger [1] described a variational approach to interpolation which
reduced the problem to minimizing a norm in a reproducing kernel Hilbert space
generated by means of a small number of data points. Later, Duchon [2] defined
radial basis function interpolants as functions which minimize a suitable seminorm
given by a weight in spaces of distributions closely related to Sobolev spaces. These
minimal interpolants could be written as a linear combination of translates of a single
function φ, the so-called basis function, plus a polynomial. Light and Wayne [3]
extended Duchon’s class of weight functions, which in turn allowed for non-radial
basis functions in their scheme. Following the approach of Light and Wayne, we
discuss interpolation of complex-valued functions defined on the positive real axis I
by certain spaces of Sobolev type involving the Hankel transformation and powers of
the Bessel operator. The set of interpolation points will be a subset {a1, . . . , an} of I
and the interpolants will take the form

u(x) =

n∑
i=1

αi (τaiφ) (x) +

m−1∑
j=0

βjpµ,j(x) (x ∈ I),

where µ > −1/2, φ is the basis function, pµ,j(x) = x2j+µ+1/2 (j ∈ Z+, 0 ≤ j ≤ m−1)
is a Müntz monomial, τz (z ∈ I) denotes the Hankel translation operator of order
µ, and αi, βj (i, j ∈ Z+, 1 ≤ i ≤ n, 0 ≤ j ≤ m − 1) are complex coefficients. An
estimate for the pointwise error of the interpolants is also given.
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