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In this talk we present some new results on stability properties for systems of equations

u′′(t) + P (t)u(t) = 0, t ∈ R, (1)

where the matrix function P (·) ∈ Λ, and Λ is defined as

[Λ]

The set of real n×n symmetric matrix valued function P (·), with
continuous and T−periodic element functions pij(t), 1 ≤ i, j ≤ n,
such that (1) has not nontrivial constant solutions and

∫ T

0

〈P (t)k, k〉 dt ≥ 0, ∀ k ∈ Rn.

Here, 〈·, ·〉 denotes the usual inner product in Rn.
Equation (1) models many phenomena in applied sciences (for example in enginee-
ring and physics, including problems in mechanics, astronomy, the theory of electric
circuits, of the electric conductivity of metals, of the cyclotron, etc., see [5]). In
particular, if n = 1, (1) is the very well known Hill equation.
The study of stability properties of (1) is of special interest. To this respect, the
results proved by Krein in [4] show that the problem is closely related to Lyapunov-
Sobolev inequalities. In fact, the stability properties of (1) strongly depend on the
fact that the smallest positive eigenvalue of the antiperiodic eigenvalue problem

u′′(t) + λP (t)u(t) = 0, t ∈ R, u(0) + u(T ) = u′(0) + u′(T ) = 0 (2)

be greater than one.
We establish some new conditions to get this last property (the detailed proofs can
be seen in [1], [2], [3]).
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