The Orlicz-Pettis Theorem for Multiplier Convergent Series

Charles Swartz¹

An Orlicz-Pettis Theorem is a result which asserts that a series in a topological vector space which converges in a weak topology converges in a stronger topology. The original Orlicz-Pettis Theorem asserts that a series in a normed space which is subseries convergent in the weak topology is subseries convergent in the norm topology. We consider versions of the Orlicz-Pettis Theorem for multiplier convergent series.. If λ is a scalar sequence spaces and Z is a topological vector space a series $\sum_{j=1}^{j} t_{j} z_{j}$ converges in Z for every $t = \{t_{j}\} \in \lambda$. For example, if $\lambda = m_{0}$, the space of sequences with finite range, a series is m_{0} multiplier convergent iff the series is subseries convergent. We consider conditions on the multiplier space λ which guarantee that a series which is λ multiplier convergent in the weak topology of a locally convex space is λ multiplier convergent in some stronger topology such as the Mackey topology.

¹ New Mexico State University Las Cruces, NM 88003, USA