Interpolating sequences in weighted Bergman spaces

Oscar Blasco

Let $W : \mathbb{D} \to [0, \infty)$ be a measurable function and $0 . <math>A^p(W)$ is the space of all analytic functions f in \mathbb{D} such that

$$\|f\|_{p,W}^p = \int_{\mathbb{D}} |f(z)|^p W(z) dA(z) < \infty.$$

A sequence $(z_n) \subset \mathbb{D}$ is said to be an interpolating sequence for $A^p(W)$ if for any $(a_n) \in \ell^p$ there exists $f \in A^p(W)$ such that

$$f(z_n)(1 - |z_n|^2)^{-2/p} (\inf_{w \in D(z_n, r)} W(w))^{-1/p} = a_n, \quad n \in \mathbb{N}(0$$

and

$$f(z_n)(1 - |z_n|^2)^{2/p} \left(\frac{1}{|D(z_n, r)|} \int_{D(z_n, r)} W^{-p'/p}\right)^{-1/p'} = a_n, \quad n \in \mathbb{N}(1$$

where D(z, r) denotes the hyperbolic disk.

Aleman and Vukotic proved [1]) that any uniformly separated sequence is interpolating for $A^p(W)$ in the case of radial weights which are normal. We extend this result to non radial weights under certain A_1 -condition for the averaging operator, extending the previously mentioned result.

Keywords. Interpolating sequences, weighted Bergman spaces, A_1 -condition

References

 Aleman, A, Vukotic, D. On Blaschke products with derivatives in Bergman spaces with normal weights, J.Math. Anal. Appl., 361 (2010), 492–505.

Departamento de Análisis Matemático Universidad de Valencia oscar.blasco@uv.es