Medida de aberraciones corneales y oculares

R Montés-Micó

Human Visual Performance Research Group
University of Valencia, Spain

Profesor Titular Óptica
Facultad de Física. Universidad de Valencia
Grupo Rendimiento Visual Humano

Miembro del Consejo Editorial:
Journal of Cataract & Refractive Surgery
Journal of Refractive Surgery
Líneas de Investigación:
1.- Óptica Visual
2.- Calidad Óptica y Visual tras Cirugía Refractiva
3.- Presbicia y Acomodación.

Producción Científica:
Artículos Internacionales: 91
Patentes: 2
4 Proyectos de Investigación en marcha (IP)

Outline
1.- Fundamentals of elevation topography
2.- Irregular astigmatism: Fourier analysis
3.- Wavefront
4.- Wavefront sensing
5.- Zernike polynomials
6.- How does wavefront sensing relate to refractive surgery?
7.- Fourier versus Zernike
1.- FUNDAMENTALS OF ELEVATION MAP TOPOGRAPHY

Two Types

• General: Placido Disc
• Orbscan/Pentacam
ORBSCAN: MAIN FEATURES

• Accurate elevation and curvature information
• Anterior and posterior cornea surface’s
• Full cornea thickness

OPTICAL ACQUISITION HEAD

• Scans the eye using light slits that are projected at a 45-degree angle.
• 40 slits in total.
• Processing and construction of elevation maps of the anterior & posterior cornea.
• Pachimetry: Differences in elevation between the anterior and posterior surface
HOW THE INFORMATION DIFFERS TO PLACIDO BASED SYSTEMS?

Reflective and Slit-scan

- One image, one surface.
- Angle-dependent specular reflection.
- Measures slope (as a function of distance).
- Multiple images, multiple surfaces.
- Omni-directional diffuse backscatter.
- Triangulates elevation.

Placido reflective systems can only measure the anterior cornea. ORBSCAN measures the anterior cornea, posterior cornea, and the anterior lens and iris.
Hybrid Technology of ORBSCAN

1. Measure **surface elevation directly** by triangulation of backscattered slit-beam.

2. Measure **surface slope directly** using specular reflection, supplemented with triangulated elevation.

3. **Unify triangulated and reflective data** to obtain accurate surfaces in elevation, slope, and curvature.

Scanning slits measure several surfaces:

- anterior cornea
- posterior cornea
- anterior lens
- anterior iris

- projector reflex
- fixation reflex
- limbus
HOW TO READ CORNEAL ELEVATION MAPS

- Corneal Elevation Topography is viewed relative to a reference surface
- Standardization of the reference surface

Elevation, whether of the earth or the cornea, is measured relative to some reference surface. The terrestrial reference surface is the "mean sea level".
For the cornea, a reference surface (typically, a sphere) is constructed by fitting the reference surface as close as possible to the data surface.

This is a relative elevation map (measured from a sphere).
Elevation Distortion

As an example of distortion, consider the corneal surface following myopic lasik correction. To see surface features, elevation must be measured with respect to some reference surface. This relative elevation peak is not the highest point on the cornea. This apparent central "concavity" does not exist.

Elevation Topology: Central Hill

The normal cornea is prolate, meaning that meridional prolateness of the normal cornea causes it to rise centrally. Immediately surrounding the central hill is an annular sea. In the far periphery, the prolate cornea again rises above the reference surface, producing peripheral highlands.
Importance of The Post Surface of The Cornea

- Keratoconus will show as localized posterior elevation with associated thinning. Patients with thin corneas without posterior elevation are unlikely to be keratoconic.
2.- IRREGULAR ASTIGMATISM: FOURIER ANALYSIS

Astigmatismo regular ⇒ meridianos principales perpendiculares entre sí, y corrección con lentes esferoclíndricas

Cornea con forma irregular que no puede describirse con una sección esférica, tórica o cónica ⇒ Astigmatismo irregular

Causas comunes: ojo seco, degeneraciones corneales, traumas, cirugía de la catarata y refractiva.
Problem

Impossibility to evaluate topographies without pattern

Análisis de Fourier

Es un procedimiento matemático que permite la descomposición de cualquier objeto periódico en una suma de términos sinusoidales de frecuencias crecientes y amplitudes determinadas, lo que se conoce como espectro de Fourier de dicha función.
To apply Fourier Analysis to videoqueratographic data

Funtion $f(x)$ periodical

Sum of discrete function $f(x)$

Sinusoidal terms:

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cdot \cos\left(\frac{2\pi nx}{p}\right) + \sum_{n=1}^{\infty} b_n \cdot \sin\left(\frac{2\pi nx}{p}\right)$$

$$a_0 = \frac{1}{p_0} \int_{0}^{p_0} f(x) \, dx$$

$$a_n = \frac{1}{p_0} \int_{0}^{p_0} f(x) \cdot \cos\left(\frac{2\pi nx}{p}\right) \, dx$$

$$b_n = \frac{1}{p_0} \int_{0}^{p_0} f(x) \cdot \sin\left(\frac{2\pi nx}{p}\right) \, dx$$
Possibility to apply to non-periodical functions using the Fourier Transform (FT):

$$T.F.\{f(x)\} = F(w) = \int f(x) \cdot \exp(-i2\pi wx)dx$$

To rebuilt the original function $f(x)$ we apply the inverse transform to the function $F(w)$:

$$f(x) = T.F.^{-1}\{F(w)\} = \int F(w) \cdot \exp(i2\pi wx)dw$$

Topographic image is a matrix of data $M_\rho(R_\phi)$ containing radii as a function of the angle (R_ϕ) for each ring of radius ρ.
Fourier Analysis

Topography

Software

Data Matrix $M_{\rho}(R\varphi)$

FT

Data Matrix $MF_{\rho}(f\varphi)$

Frequency filtering FT-1

Data Matrix rebuilt $M_{\rho}(R\varphi)$

Example

1 ring

Rest of the components

First components
0 green; 1 red; 2 blue

Σ 3 components

astig

tilt

sphere
Calculation for all topographic rings

Example

Rest of the components

Σ 3 components

Regular Part

Irregular Part
Conclusions

We can divide topographic information between regular and irregular parts

We can quantify the corneal irregularity by means two parameters, defined from the regular and irregular parts.

3.- Wavefront

We will describe the wavefront. This is the one of the most fundamental and useful description of the optical properties of the eye, from which most of the image quality metrics can be derived.
What is the Wavefront?

parallel beam = plane wavefront
converging beam = spherical wavefront

parallel beam = plane wavefront
ideal wavefront
defocused wavefront
What is the Wavefront?

parallel beam = plane wavefront

ideal wavefront

aberrated beam = irregular wavefront

diverging beam = spherical wavefront

aberrated beam = irregular wavefront

ideal wavefront
What is the Wave Aberration?

Wave aberration is a measure of the difference between the ideal wavefront and the actual wavefront. You are able to choose whatever ideal wavefront you want, but you commonly choose the ideal wavefront as one that would focus the light to the image plane.

Wave Aberration of a Surface

The diagrams illustrate the wavefront aberration in both the superior-inferior and left-right directions.
4.- Wavefront Sensing
Optical Anatomy of the Eye

- Cornea
- Pupil
- Lens
- Retina

Wavefront Sensing Clinical Utility

- Measures integrated function of optical system
- Allows accurate calculation of effective clinical prescription
- Also provides details of higher order aberrations
- Quick measurement easily made in clinical setting
Ideal Vision

Parallel Light Rays

Plane Wavefront

Sharp Focus on Retina
Simple Near-Sightedness (myopia)

Parallel Light Rays
Focus in Front of Retina

Simple Near-Sightedness (myopia)

Diverging Light Rays
Sharp Focus on Retina
Simple Near-Sightedness (myopia)

The Reversible Nature of Light Propagation
Wavefront Sensing: Turn the Rays Around!

Probe Light Beam

Re-Emitted Wavefront for an Ideal Eye

Plane Wavefront
Wavefront Displays for Ideal Vision

3-D Representation 2-D Color Map

Re-Emitted Wavefront for an Near-Sighted Eye (myopic)

Spherical Wavefront
Wavefront Displays for Near-Sightedness

3-D Representation 2-D Color Map

How do We Make the Wavefront Measurement?
Wavefront sensors
Usually use ray-tracing methods to reconstruct the wavefront and are classified into the following 3 types:

- Outgoing wavefront aberrometry
 (Hartmann-Shack)
- Ingoing retinal imaging aberrometry
 (cross cylinder, Tscherning aberroscope)
- Ingoing feedback aberrometer
 (spatially resolved refractometer, optical path difference)
Focussed Spot Associations

Comparison to Ideal Pattern
What Are We Comparing With Our System?

- Perfect Wavefront
- Micro-Lenslet Array
- Video Sensor
- Ideal Wavefront
- Front Side
- Front Side
- Micro-Lenslet Array
- Video Sensor
- Aberrated Wavefront
- Aberrated Wavefront
- Front Side
- Front Side

Ideal Wavefront VS Aberrated Wavefront

How Do Shack-Hartmann Systems Measure Aberrations?

- Wavefront Focusing
- CCD
- Lenslet
- Wavefront Focusing
- Δx
- f
Principle of Outgoing Wavefront Analyzer Hartmann-Shack

Displacement of spots from reference grid indicates local slope of aberrated wavefront
Wavefront Analyzer Hartmann-Shack

Montaje laboratorio en banco de óptica

Comercial

Examples of spots position in a Hartmann-Shack

Emmetropic Model Eye 4D Myopic Model Eye

LASIK Keratoconus
Wavefront shape

Examples of higher-order aberration maps from eyes with four different clinical conditions.

Zernike orders 0-2 omitted for clarity.

5.- Zernike polynomials
Introducción

La aproximación más familiar para cuantificar las aberraciones ópticas es la de Seidel, definida para sistemas rotacionalmente simétricos.

Cuando describimos las aberraciones oculares, Seidel no se utiliza ya que la óptica del ojo no es totalmente simétrica.

Los polinomios de Taylor también han sido utilizados para describir las aberraciones del ojo.

Recientemente se han utilizado los polinomios de Zernike debido a sus propiedades matemáticas adecuadas para pupilas circulares.

Introducción

Polinomios de Zernike: consisten en un conjunto ortogonal de polinomios que presentan las aberraciones y además están relacionados con las aberraciones ópticas clásicas.

Parecen el método más deseable para estimaciones precisas del error de frente de onda, debido a sus propiedades de ortogonalidad (independencia de los términos entre sí) y pueden ajustarse por el método de mínimos cuadrados, que es lineal en parámetros.
Introducción: Topografía

- Los topógrafos miden la elevación corneal sólo en un número discreto de puntos y los polinómios de Zernike no son ortogonales sobre un conjunto discreto de puntos.

- La técnica de ortogonalización de Gram-Smith permite expandir el conjunto discreto de datos de elevación corneal, en términos de polinómios de Zernike y conseguir las ventajas de una expansión ortogonal. Una vez completada la expansión, las funciones ortogonales se transforman en términos de polinomios de Zernike, resultando un conjunto único de coeficientes de Zernike.

Definición y notaciones

Los polinomios de Zernike son un conjunto infinito de funciones polinómicas, ortogonales en el círculo de radio unidad.

Son muy útiles para representar la forma del frente de onda en sistemas ópticos. Su uso está muy extendido y son muy comunes distintas notaciones, normalizaciones y criterios en la asignación de signos.
Los polinomios de Zernike pueden expresarse en coordenadas polares, siendo \(\rho \) la coordenada radial (intervalo de variación \([0,1]\)) y \(\theta \) la componente azimutal (intervalo de variación es \([0,2\pi]\)].

Distinguiamos tres componentes:
- el factor de normalización \(N \),
- la dependencia radial
- y la dependencia azimutal.

La dependencia radial es polinómica y la azimutal es armónica.

Se identifica al polinomio con dos índices “n” y “m”, donde “n” indica la potencia más alta (orden) en la componente polinómica radial y “m” es la frecuencia azimutal en la componente armónica.

Representación de las aberraciones.

La función aberración de onda \(W(\rho, \theta) \) puede expresarse como combinación lineal de los polinomios de Zernike:

\[
W = \Sigma_{j=1...N} C_j Z_j
\]

donde \(C_j \) son los Coeficientes de Zernike que se expresan en micras y miden el valor de las distintas aberraciones presentes en el sistema.
Para describir las aberraciones oculares se toma como sistema de referencia un triedro a derechas con origen en la pupila de entrada del ojo, el semieje positivo Y apuntando hacia arriba, el X apuntando hacia la izquierda del sujeto y Z apuntando en dirección emergente al ojo.

Al usar coordenadas polares θ se mide respecto del semieje positivo X y ρ es la distancia respecto del origen medida en unidades normalizadas al radio pupilar.

La siguiente figura muestra la forma del frente de onda representada por cada polinomio de Zernike, la aberración total se expresa como combinación lineal de esos patrones característicos.

Visualización los 14 primeros polinomios de Zernike en escala de grises (color claro para adelanto de fase y oscuro para retraso). Cada patrón se identifica con su índice j, cada fila corresponde a un orden n y cada columna a una frecuencia m.
Las aberraciones de bajo orden vienen representadas por los polinomios de ordenes $n = 0, 1$ y 2.

Para $n = 0$ tenemos un único polinomio de valor constante unidad y para $n = 1$ encontramos dos polinomios denominados "tilts". Éstos representan traslaciones y rotaciones del sistema de referencia.

Las aberraciones de 2º orden están descritas por los 3 polinomios de Zernike correspondientes a $n = 2$. Estos polinomios representan el desenfoque ($j=4$) y astigmatismo ($j=3$ y 5).

Las aberraciones de alto orden vienen representadas por los polinomios de Zernike de orden $n \geq 3$. Son de tercer orden el astigmatismo triangular ($j = 6$ y 9) así como el coma vertical y el coma horizontal ($j = 7$ y 8) mientras que la aberración esférica ($j=12$) es de cuarto orden.

Listado de polinomios de Zernike hasta 6º orden, notación estándar de la OSA.
Zernike polynomials

<table>
<thead>
<tr>
<th>Zernike coefficient</th>
<th>Radial order</th>
<th>Angular frequency</th>
<th>Aberration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Tip, Tol (Prisms)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>Astigmatism</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Defocus</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>Astigmatism</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-3</td>
<td>Trefoil 3-fold</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>-1</td>
<td>Coma (vertical)</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>Coma (horizontal)</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>-3</td>
<td>Trefoil 3-fold</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>-4</td>
<td>Astigmatism</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>-2</td>
<td>Astigmatism</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>0</td>
<td>Spherical aberration</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>-2</td>
<td>Astigmatism</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>4</td>
<td>4-fold</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>-1</td>
<td>5-fold</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>-3</td>
<td>5-fold</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>3</td>
<td>5-fold</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>-1</td>
<td>Coma (horizontal)</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>3</td>
<td>Coma (horizontal)</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>5</td>
<td>5-fold</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>-6</td>
<td>6-fold</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>-4</td>
<td>6-fold</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>3</td>
<td>6-fold</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>Spherical aberration</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>2</td>
<td>Astigmatism</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>4</td>
<td>4-fold</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>6</td>
<td>4-fold</td>
</tr>
</tbody>
</table>
Zernike polynomials

Higher-order aberrations

Wavefront 2-D Map

Wavefront 3-D Map
Zernike Polynomials

The Root-Mean-Square (RMS) Wavefront Error

The Root Mean Square Error (RMS) is a measure of the difference between the measured and ideal wavefronts.
Visual Effects of Aberrations

Visual Acuity Chart Image Used in Vision Simulation
What Are The Visual Effects of Under Correcting Aberrations?

Wavefront Error and Simulated Visual Function
Wavefront Error and Simulated Visual Function

2nd Order Mixed Astigmatism

Simulated Chart Image

Wavefront Error and Simulated Visual Function

3rd Order Coma

Simulated Chart Image
Wavefront Error and Simulated Visual Function

- 4th Order Spherical Aberration
- Simulated Chart Image

Wavefront Error and Simulated Visual Function

- 4th Order Secondary Astigmatism
- Simulated Chart Image
Wavefront Error and Simulated Visual Function

Flat Wavefront
Simulated Chart Image

Wavefront Error and Simulated Visual Function

Defocus Error
Simulated Chart Image
Wavefront Error and Simulated Visual Function

Mixed Astigmatism Simulated Chart Image

Wavefront Error and Simulated Visual Function

Coma Simulated Chart Image
6.- How Does Wavefront Sensing Relate to Refractive Surgery?
Higher-Order Aberrations: Conventional LASIK Myopes

Coma significantly worse
Spherical aberration significantly worse

N = 40

CustomCornea: Wavefront Guided Laser Surgery

Measured Wavefront
CustomCornea: Wavefront Guided Laser Surgery

Desired Wavefront
CustomCornea: Wavefront Guided Laser Surgery

Conventional Treatment

CustomCornea: Wavefront Guided Laser Surgery

Remove a little extra here.

Back off a bit here.
Wavefront-Guided Myopic Results

REFRACTION
ZERNIKE DATA

TREATMENT
-2 D × 180° Simple Myopic Astigmatism
6 mm OZ, 1.0 mm Blend

Ablation Profile
Laser Shot Pattern

Treatment Zone 6 × 8 mm
+2D, -2 D × 180°, Simple Hyperopic Astigmatism, 6.5 mm OZ, 1.25 mm Blend

Ablation Profile
Laser Shot Pattern

Treatment Zone 9mm

Customized LASIK Example: Pre-Op Aberrations

Total Aberration
Higher Order

RMS 1.51μm
UCVA 20/200
RMS 0.31μm
BCVA 20/20

Diameter = 5mm
Customized LASIK Example: Post-Op Aberrations

Diameter = 5mm

RMS 0.14μm
UCVA 20/16

RMS 0.09μm
BCVA 20/12.5

Total Aberration

Higher Order

4.5μm

-2.5μm

1.5μm

-1.0μm

Customized LASIK Example:

Post-Op Aberrations

STANDARD
Preop: -7 D BCVA 20/15

CUSTOM CORNEA
Preop: -7 D BCVA 20/15

POSTOP Rx -0.25 D BCVA 20/20

POSTOP Rx +0.25 D BCVA 20/15
Summary

• Wavefront sensing is a powerful tool for understanding the optical functioning of the eye.

• With the right technology, measurement of the wavefront can readily be accomplished in the clinical setting.

• Wavefront data has powerful clinical utility, both in diagnosing visual complaints and in customizing refractive procedures.
Mediante un número determinado de ondas sinusoidales podemos describir una onda cuadrada.
W (r,θ) Frente de onda

Córnea

Cristalino

\[W = \sum a_i z_i \Rightarrow \text{Zernike} \]
\[W = \sum a_i \sin z_i \Rightarrow \text{Fourier} \]

Mayor reproducción con menores ondas en Fourier que órdenes en Zernike para una misma superficie de referencia
Reconstrucción de la Pupila

1. Zernike necesita de una simetría de revolución
 Pupila Circular

2. Fourier no necesita de una simetría de revolución
 Pupila no Circular (Elíptica)
7 mm pupil

Bigger blur circle

2 mm pupil

Smaller blur circle
Posibles Ventajas Fourier

1. Menos cálculos de computación
2. Mayor resolución con menos órdenes (o menor información)
3. Aplicable a pupilas más reales
4. Reconstrucción más real del frente de onda

Thank you

Human Visual Performance Research Group
University of Valencia, Spain

robert.montes@uv.es