
 

 

POLITECNICO DI BARI 

 

Dipartimento di Ingegneria Civile, Ambientale, 

del Territorio, Edile e di Chimica – DICATECh 

 

CORSO DI LAUREA MAGISTRALE IN  

INGEGNERIA PER L’AMBIENTE E IL 

TERRITORIO  

Anno Accademico 2020-2021 

 

TESI DI LAUREA IN 

An OBIA approach for mapping plastic greenhouses 

in the Bari area using Deimos-2 and Sentinel-2 

satellite images 

 

Relatori: Prof. Eufemia Tarantino; Prof. Manuel Angel Aguilar 

Laureando: Claudio Ladisa 

 
  



1 
 

Summary 

1 Introduction ............................................................................................... 3 

1.1 Object based image analysis for remote sensing............................................. 3 

1.1.1 Segmentation technique ...................................................................................................... 5 

1.1.2 Remaining problems ........................................................................................................... 7 

1.1.3 OBIA approach perspective ................................................................................................ 8 

1.2 OBIA approach in the Sentinel-GH project .................................................. 10 

1.2.1 Development of agricultural activity under plastic ........................................................... 10 

1.2.2 Horticultural crop identification ....................................................................................... 12 

1.2.3 Greenhouses mapping ....................................................................................................... 14 

1.2.4 Aims .................................................................................................................................. 16 

1.3 Study site ....................................................................................................... 17 

1.3.1 Location ............................................................................................................................ 17 

1.3.2 Apulian viticulture ............................................................................................................. 18 

1.3.3 Technique of using plastic covers ..................................................................................... 19 

1.3.4 Effects on the landscape and rural territory ..................................................................... 20 

1.4 Datasets ......................................................................................................... 21 

1.4.1 Deimos-2 ........................................................................................................................... 21 

1.4.2 Sentinel-2 .......................................................................................................................... 23 

2 Methodology ............................................................................................ 31 

2.1 OBIA approach ............................................................................................. 31 

2.2 Multi-resolution segmentation ...................................................................... 32 

2.2.1 Segmentation Assessment .................................................................................................. 34 

2.2.2 Segmentation results ......................................................................................................... 35 

2.3 Classification................................................................................................. 37 

2.3.1 Binary Pre-Classification .................................................................................................. 37 

2.3.2 Features ............................................................................................................................ 39 

2.3.3 Feature extraction ............................................................................................................. 45 

2.3.4 Calculation of statistical features...................................................................................... 48 

2.3.5 Decision tree modeling ..................................................................................................... 49 

2.3.6 Statistic analysis ................................................................................................................ 50 

2.4 Results ........................................................................................................... 52 

2.4.1 DT classification ............................................................................................................... 52 



2 
 

2.4.2 Classification accuracy ..................................................................................................... 61 

2.4.3 Importance of Features ..................................................................................................... 68 

2.4.4 Pixel-based accuracy ........................................................................................................ 71 

2.4.5 Comparison procedure...................................................................................................... 72 

3 Conclusions .............................................................................................. 78 

 

  



3 
 

1 Introduction 

1.1 Object based image analysis for remote sensing 

Environmental monitoring requirements, conservation objectives, the 

application of spatial planning or ecosystem-oriented management of natural 

resources, to name a few factors, give considerable urgency to the 

development of operational solutions capable of extracting tangible 

information from remote sensing data. Remote sensing images need to be 

converted into tangible information that can be used in conjunction with other 

data sets, often within widely used geographic information systems (GIS). As 

long as the pixel dimensions have typically remained coarser or, at best, 

similar in size to the objects of interest, emphasis has been placed on per-

pixel analysis or even sub-pixel analysis for this conversion, but with 

increasing spatial resolutions alternative paths have been followed, aimed at 

obtaining objects made up of more pixels. Object-based methods aim to 

delineate objects that are readily usable by images, while at the same time 

combining image processing and GIS capabilities to use spectral and 

contextual information in an integrative way. In the 2000s GIS and image 

processing began to grow together rapidly through object-based image 

analysis (OBIA - or GEOBIA for geospatial object-based image analysis). In 

contrast to typical Landsat resolutions, high resolution images support 

different scales within their images. Through a comprehensive literature 

review, several thousand abstracts were screened and more than 820 OBIA-

related articles were analyzed in detail comprising 145 journal articles, 84 

book chapters and nearly 600 conference articles. It becomes evident that the 

early years of OBIA / GEOBIA developments were characterized by the 

dominance of "gray" literature, but that the number of peer-reviewed journal 
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articles has increased considerably over the past four to five years. The pixel 

paradigm is starting to show cracks and OBIA methods are making significant 

progress towards a spatially explicit information extraction workflow, as is 

required for spatial planning and many monitoring programs. It should be 

clearly stated that much of the work referred to as OBIA originated around 

software known as "eCognition. Furthermore, very few "early" OBIA 

developers used the term "object-based". Some authors have used the “object 

oriented” (T. Blaschke, 2000), (U.C. Benz, 2004) and some of these 

subsequently switched to' object-based '(with or without hyphen), while some 

authors still use "object-based" objects (Navulur, 2007). So far it has been 

assumed that most authors prefer to use the term" based "as" oriented "may 

be too closely related to the object oriented programming paradigm. The idea 

of incorporating contextual information into the classification of remote 

sensing images can be traced back to the 1970s (R. Kettig D. L., 1976), 

although the importance of embedding texture increases with increasing 

resolution. One of the goals of grouping pixels into image objects is to 

overcome the so-called “salt and pepper effect”. Many researchers have stated 

that OBIA methods are suitable for overcoming this situation, for example 

"Thanks to recent improvements in image segmentation, object-based 

approaches can be used to efficiently delineate and classify land cover (R. 

Kettig D. L., 2008). It has even been stated in recent articles that "object-

oriented processing techniques are becoming more popular than traditional 

pixel-based image analysis" (R. Kettig D. L., 2009). The “workhorses” of 

satellite data generation, such as Landsat and SPOT satellites or ASTER and 

MODIS instruments, have become important in global and regional studies 

on biodiversity, nature conservation, food security, impact deforestation, 

desertification monitoring and other fields applications. With the increasing 

spatial resolution of the 1-m generation of IKONOS (launched in 1999), the 

sensors QuickBird (2001) or OrbView (2003), new fields of application that 

had previously been the domain of aerial remote sensing could be addressed 
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by the satellite remote sensing. At the end of 2007, the first commercial 

satellite with a resolution of less than half a meter (Worldview-1; 0.44m 

panchromatic) became operational, and we currently see security 

applications, vehicle detection and many urban applications developing 

rapidly, in terms both in number and in refinement. For simplification and 

generalization we can distinguish two main trends: (a) an increasing amount 

of data produced in an ever wider range of spatial, spectral, radiometric and 

temporal resolutions, including the high spatial resolutions mentioned above, 

and (b) programs and systems supranationals orchestrated for regular or on-

demand surveys of the earth's surface (e.g. GEOSS, GMES).  

 

1.1.1 Segmentation technique 

Before OBIA, the main task of image segmentation was to produce a set of 

non-overlapping segments (polygons) and this step was completely separate 

from classification. The problem, however, is the scale: the scale is a "window 

of perception" (Marceau, 1999) and we typically end up having different 

scales in the images, if the spatial resolution is finer than the size of the objects 

of interest. A segmentation algorithm is used in the expectation that it divides 

the image into (a) relatively homogeneous and (b) semantically significant 

pixel groups. (D. Marceau, 2003) called these groups "candidate objects" 

which must be recognized by further processing steps and transferred into 

meaningful objects. For a high-resolution aerial image, for example, at coarse 

scales we can discriminate fields or woods, while at finer scales we can 

discriminate individual trees or plants: the parameters and thresholds in a 

typical single-scale segmentation algorithm must therefore be tune into the 

correct scale for analysis. Segments are regions generated by one or more 

homogeneity criteria in one or more dimensions (of a feature space) 

respectively. Therefore the segments have additional spectral information 
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with respect to the individual pixels (e.g. average values per band, and also 

median values, minimum and maximum values, average ratios, variance, 

etc.), but of even greater advantage with respect to the diversification of the 

descriptions of the spectral values of objects is the additional spatial 

information for the objects. It has often been stated that this spatial dimension 

(distances, proximity, topologies, etc.) is crucial for OBIA methods and that 

this is one of the main reasons for the marked increase in the use of 

segmentation-based methods in recent times, compared to the use of image 

segmentation in remote sensing during the 1980s and 1990s. Figure 1 

schematically shows the relationship between the spatial resolution and the 

object under examination. Although we have difficulty defining generically 

applicable thresholds, we can semantically differentiate between these three 

situations. For simplicity, we can consider the pixel in a similar way to the 

spatial resolution. Furthermore, when considering Shannon's sampling 

theorem (sometimes called Nyquist - Shannon's sampling theorem), we can 

conclude that an object should be on the order of one-tenth the size of the 

sampling pattern, the pixel, to ensure that be completely independent of its 

random position and orientation with respect to the sampling scheme. The 

three situations graphically outlined in Figure 1 require completely different 

techniques for unraveling the information from the datasets. It can be assumed 

that situations (a) and (b) leave little choice when the task is to identify, 

classify and characterize a given object as illustrated. Situation (c), however, 

can be considered a “high resolution situation”' and only here can the specific 

advantages of the OBIA approach be used, although regionalization 

approaches have also been applied to other situations, for example Landsat 

images, and recent studies have also used OBIA methods for medium or  

coarse resolution data.  
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(Fig. 1 - Relationship between the objects considered and spatial resolution: (a) low 

resolution: pixels significantly larger than the objects, sub-pixel techniques required. (b) 

medium resolution: pixel and object sizes are of the same order, pixel by pixel techniques 

are appropriate. (c) high resolution: pixels are significantly smaller than objects, pixel 

regionalization into pixel groups is required and finally objects) 

 

1.1.2 Remaining problems 

All studies and publications have demonstrated the potential of OBIA but also 

reveal that other more specific problems can arise for high resolution 

situations. In high resolution images, for example, each pixel is not strictly 

related to the physiognomy of the vegetation as a whole and the vegetation 

always shows heterogeneity as a result of irregular shadows or shadows. 

However, many studies are able to show that the advantage of being able to 

aggregate pixels to segments of objects and to address the characteristics of 

objects through sub-objects allows to explicitly deal with various types of 

heterogeneity within the patch, which allows applications in the study of 

forest gaps, vegetation irregularities or landscape complexity. It is widely 

recognized that advances in sensor technologies, particularly those related to 

the spatial resolution of sensors, are helping to make remote sensing more 

appropriate for detailed studies of the Earth's surface. The resulting massive 

amounts of data present a challenge, and object-based methods are not the 

only way to address this problem. Developments in image classification 

techniques, notably artificial neural networks (ANNs), fuzzy set methods, 

genetic algorithms, and support vector machines, to name a few, may offer 

the prospect of a better representation of complex environments. One of the 
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most recent trends is that OBIA methods become part of dedicated workflows 

and converge with leading GIS applications. This rapidly growing body of 

scientific literature conveys a sense of optimism that OBIA methods generate 

geospatial information on multiple scales, mitigated by a certain concern that 

classification rules and increasingly complex workflows raise at least as many 

research questions as they solve it. 

 

1.1.3 OBIA approach perspective 

One of the most recent trends is that OBIA methods become part of dedicated 

workflows and converge with leading GIS applications. This rapidly growing 

body of scientific literature conveys a sense of optimism that OBIA methods 

generate geospatial information on multiple scales, mitigated by a certain 

concern that classification rules and increasingly complex workflows raise at 

least as many research questions as they solve it. It is recognized that the 

higher resolution and detection detail available using improved optical 

instruments, Radar, LiDAR or even Sonar create problems with the 

"traditional" approach to land use / land cover mapping. OBIA supports 

attempts to overcome the centric view of land cover, which is limited to a 

purely descriptive categorization of the spectral characteristics of pixels, and 

paves the way for a combined use of spectral and spatial (contextual) 

information towards the development of “and use”. The OBIA approach to 

detect PCG and PMF is much more recent than PB analysis. Tarantino and 

Figorito (Tarantino & Figorito, 2012) published the first work based on OBIA 

to map plastic-covered vineyards from true color aerial data in Southern Italy. 

Novelli (Novelli, Nemmaoui, & Aguilar, 2016) carried out the first work 

based on Sentinel-2A Multispectral Instrument (MSI) and Landsat-8 OLI 

images to map PCG by adopting an OBIA approach and RF classifier. In this 

case, the segmentation step was performed on a very high resolution (VHR) 
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image (WV2), thus focusing the classification step on the spectral information 

provided by Landsat-8 and Sentinel-2A data. (Balcik, Senel, & Goksel, 16–

19 July 2019) employed Sentinel-2 images to classify greenhouses in Turkey, 

demonstrating the valuable contribution of the PGI index proposed in (Yang, 

et al., 2017). It is necessary to highlight that the OBIA approach has usually 

performed better than the PB approach, even working on medium resolution 

satellite imagery such as Landsat-8 OLI. 
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1.2 OBIA approach in the Sentinel-GH project 

1.2.1 Development of agricultural activity under plastic 

The practice of under plastic agriculture has had a great development in 

Spain, especially in Almeria, during the past 60 years, assuming a key 

economic driver in the area. In recent times, this productive sector is being 

affected by an unstable and changing geopolitical situation of the markets. In 

this regard, facts like the entry into force of the new agricultural agreement 

between the European Union (EU) and The Kingdom of Morocco adopted in 

2012, or the Russian veto of horticultural products from UE in August, 2014, 

are causing important changes in the market prices of products grown in 

greenhouses, which significantly affect farmers and agribusiness. In order to 

alleviate these changes in market prices, each agricultural cooperative in 

Almeria is already making a planning acreage that their partners must 

dedicate to each product. However, a more globalized planning of 

horticultural productions would be desirable. Certainly, the possibility of 

knowing the crops are being grown under greenhouse in an agricultural 

campaign, both at the local productive sector and at the direct competitors, 

would help decision making and avoid having to destroy tons of horticultural 

products to keep prices. In recent years and in the framework of the National 

Research Plan Project referenced as CTM2010-16573, the capabilities of 

commercial very high resolution (VHR) satellite images to generate highly 

accurate georeferenced products such as orthophotos, digital surface models 

(DSMs) or land cover maps by using object based image analysis (OBIA) 

approaches have been demonstrated. More recently, the results attained from 

the project AGL2014-56017-R have shown the possibility of improving, not 

only the classification of greenhouses by using OBIA techniques and time-

series of satellite imagery but also the horticultural crops that are growing 
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under plastic coverings. To date, an Overall Accuracy value ranging from 

75% to 80% has been achieved in the classification of autumn and spring 

crops in Almería (Fig. 2), being melon, watermelon, pepper and tomato the 

crops that showed better results. Against this background, the overall 

objective of this project in the field of remote sensing is to develop an object-

based image analysis (OBIA) methodology to map and classify, exclusively 

using multi-temporal satellite optical images (WorldView-3, Deimos-2, 

Landsat 8 and Sentinel-2), horticultural crops grown in greenhouses. In order 

to study the possible for methodology transfer between greenhouses areas 

anywhere in the world, in this project we have added three new study areas 

(Agadir, Morocco; Antalya, Turkey; Bari, Italy) to the existing one located in 

the sea of plastic (Almería). 

 

(Fig. 2 – “Plastic sea” in Almeria) 
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1.2.2 Horticultural crop identification 

Detection and mapping of greenhouses by remote sensing is a complex task, 

already addressed in numerous studies. In the research work  (Manuel A. 

Aguilar A. V., 2015), the innovative goal was based on the identification of 

greenhouse horticultural crops growing under plastic covers in the 2013. For 

this goal, object-based image analysis (OBIA) and a decision tree classifier 

(DT) were applied to a set consisting of eight Landsat 8 OLI images collected 

from May to November 2013. In addition, a single WorldView-2 satellite 

image acquired on September 30, 2013 (Fig.3) was also used as a source of 

data. In this approach, basic spectral information, textural features and 

different vegetation indices (VIs) derived from Landsat 8 and WorldView-2 

multitemporal satellite data were calculated on previously segmented image 

objects in order to identify four of the crops. Most popular fall plants grown 

in greenhouses in Almería, Spain (i.e. tomato, pepper, cucumber and 

eggplant). The best classification accuracy (81.3% overall accuracy) was 

obtained using the full Landsat 8 time series. These results were considered 

good in the case of tomato and pepper crops, being significantly worse for 

cucumbers and the eggplants. These results were hardly improved by adding 

WorldView-2 image information. The most important information for the 

correct classification of the different crops under greenhouses was related to 

the management practices of the greenhouse and not to the spectral properties 

of the crops themselves.  
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(Fig. 3 – Horticultural crop identification in Almeria) 

 

A few years later in the (Abderrahim Nemmaoui, 2018) article a direct 

workflow is developed to identify crops growing under plastic covered 

greenhouses (PCG) and based on multi-temporal and multi-sensor satellite 

data. This workflow consists of four phases: (i) data preprocessing, (ii) PCG 

segmentation, (iii) binary pre-classification between greenhouses and non-

greenhouses, and (iv) classification of greenhouse horticultural crops for two 

seasons agronomic (autumn and spring). The segmentation step was 

performed by applying a multi-resolution segmentation algorithm on the 



14 
 

preprocessed WorldView-2 data. The free-access (Eufemia Tarantino, 2017) 

command line tool was used to determine the most suitable multi-resolution 

algorithm parameters. Two decision tree models were made which are used 

on the Plastic Greenhouse index to perform binary classification of 

greenhouse / non from the Landsat 8 and Sentinel-2A time series, obtaining 

an overall accuracy of 92.65% and 93.97%, respectively. Regarding the 

classification of crops in PCG, pepper in autumn and melon and watermelon 

in spring provided the best results (Fβ around 84% and 95% respectively). 

Sentinel-2A time series data showed slightly better accuracies than Landsat 8 

data. 

 

1.2.3 Greenhouses mapping 

The mapping of greenhouses through remote sensing has received great 

attention in recent decades. In the paper authored by  (Manuel A. Aguilar A. 

N., 2016)the innovative objective is based on the mapping of greenhouses 

through the combined use of very high resolution satellite data (WorldView-

2) and Landsat 8 Operational Land Imager (OLI) time series in the context of 

an analysis of the object-based image (OBIA) and the classification of the 

decision tree. Therefore, WorldView-2 in this case was mainly used to 

segment the study area by focusing on the individual greenhouses. Basic 

spectral information, spectral and vegetation indices, textural features, 

seasonal statistics and a spectral metric (Moment Distance Index, MDI) 

derived from Landsat 8 time series and / or WorldView-2 images were 

calculated on previously segmented image objects. To test its temporal 

stability, the same approach was applied for two different years, 2014 and 

2015. In both years, MDI was indicated as the most important feature for 

surveying greenhouses. Furthermore, the threshold value of this spectral 

metric was found to be extremely stable for both Landsat 8 and WorldView-
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2 images. A simple decision tree has finally been proposed that always uses 

the same threshold values for the characteristics of the Landsat 8 and 

WorldView-2 time series. Overall accuracies of 93.0% and 93.3% and kappa 

coefficients of 0.856 and 0.861 were achieved for the 2014 and 2015 datasets, 

respectively. In the (Antonio Novelli, 2016) publication, the first comparison 

between Sentinel-2 (S2) Multi Spectral Instrument (MSI) and Landsat 8 (L8) 

Operational Land Imager (OLI) data aimed at surveying greenhouses. Two 

closely related scenes over time, one for each sensor, were classified using 

Object Based Image Analysis and Random Forest (RF). The RF input 

consisted of several object-based characteristics calculated from spectral 

bands and including mean values, spectral indices and textural characteristics. 

Comparisons of S2 and L8 data were also extended using a common 

segmentation dataset extracted from VHR World-View 2 (WV2) images to 

highlight differences only due to their specific spectral contribution. The best 

combinations of bands to perform segmentation were found through a 

modified version of the Euclidian Distance 2 index. Four different RF 

classification schemes were considered, reaching 89.1%, 91.3%, 90.9 

respectively. % and 93.4% as the best overall accuracies, evaluated over the 

entire study area. (Manuel Ángel Aguilar, 2020) reported that the consistency 

spectrum of the surface reflectance values of the Sentinel-2 MSI (S2 L2A) 

and Landsat 8 OLI (L8 L2 and the pansharpened and atmospheric corrected 

product from the L1T product; L8 PANSH) data was tested in the areas PCG 

located in Spain, Morocco, Italy and Turkey. The six corresponding bands of 

S2 and L8, along with the normalized vegetation difference index (NDVI), 

were generated via an OBIA approach for each PCG study site. The 

coefficient of determination (r2) and mean square error (RMSE) were 

calculated in sixteen pairs of simultaneously cloud-free images acquired from 

the four study sites to assess the coherence between the two sensors. It was 

found that the S2 and L8 correlation (r2> 0.840, RMSE <9.917%) was quite 

good in most bands and NDVI. However, the correlation of the two sensors 
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fluctuated between study sites, showing occasional solar flare on PCG roofs 

relative to the sensor's orbit and the position of the sun. Furthermore, higher 

surface reflectance discrepancies were always observed between the L8 L2 

and L8 PANSH data, mainly in the bands visible in areas with high level 

aerosol values derived from the aerosol quality band included in the L8 L2 

product (aerosol SR). In this way, the coherence between L8 PANSH and S2 

L2A was improved mainly in the high-level aerosol areas according to the SR 

aerosol band. 

 

1.2.4 Aims of this work 

This thesis will analyze innovative classification procedures with the aim of 

reducing the negative impacts related to the spectral ambiguity and spatial 

complexity of the land cover classes of the VHR images in the Bari study 

sites with a high prevalence of plastic coverings for agriculture. In order to 

avoid these disadvantages, the methodology will be based on object-oriented 

classification on Deimos-2 high resolution images (1 m GSD PAN and 4 m 

GSD RGBNir MS) and on the spectral values obtained from a time series of 

Sentinel-2 images. The analysis consists of two phases: multi-resolution 

segmentation and classification of the nearest neighbor of the resulting image 

objects. With this procedure the generated segments act as image objects 

whose physical and contextual characteristics can be described using fuzzy 

logic. Finally, the validity and limits of this methodology for the classification 

of land cover will be evaluated and the results obtained will be compared with 

those of the previous studies in relation also to the characteristics of the study 

site in Bari. 
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1.3 Study site 

1.3.1 Location 

The site is located in the Puglia region (southern Italy), near Bari. Satellite 

imagery were acquired around the point with geographic coordinates 

(WGS84 reference system) 41.0166 N and 16.9119 E (Fig. 4). 

(Fig.4 - Bari study site) 

 In this area there is a monoculture in the vineyard, where they grow using the 

traditional vine cultivation system characterized by a support structure 

covered with plastic sheets in spring and summer. The area has a rectangular 

shape with an area of approx. 8000 ha (8,000 m x 10,000 m) and the 

topography is quite flat. 
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1.3.2 Apulian viticulture 

Table viticulture in Italy is predominantly present in Puglia and Sicily. Puglia 

holds the leading production. Minor productions are also located in Abruzzo. 

The particular climatic conditions, which are characterized by the singular 

poverty of its rainfall, and the stony and calcareous soils, in which the rock 

often emerges, make wheat cultivation unprofitable and allow the farmer only 

the choice of a few plants to cultivate, which in normal periods and for 

exceptional and transitory causes give the greatest income. Apulian 

viticulture greatly affects the economy of the entire region, so much so that it 

determines and constitutes a real social issue (LE STORIE, I 

PROTAGONISTI, LE NOVITÀ., s.d.). All the systems to date are protected 

with plastic roofing materials which differ essentially in polyethylene  films. 

The breeding system that made it possible to better prepare the structures for 

protection with plastic materials was the tent introduced in Puglia in the early 

1900s. The success of the marquee in the cultivation of table grapes, however, 

lies first and foremost in the ability to express an exceptional production 

potential and considerable flexibility in facilitating the contribution of 

agronomic and technological innovation that the production cycle of table 

grapes continuously requires. The awning allows to reach productions of 40 

tons per hectare. Furthermore, the productions of this type of plant have been 

able, over time, to be always characterized by the regularity and uniformity 

of the morphological and commercial characteristics. The results achieved 

were made possible also thanks to the possibility of facilitating the 

management of the production factors of table grapes: water supplies, 

fertilization, soil processing, phytosanitary protection, the ability to host 

protective structures. Plastic film covers are used in viticulture to anticipate 

the ripening period of early and very early table grape varieties (early semi-

forcing) or to delay the ripening period (late semi-forcing) on medium-late 

varieties or late. In the first case the vineyard is covered, on the top and on 
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the sides, from the end of winter until the harvest, with special plastic films. 

In the late semi-hardening, on the other hand, the covering period coincides 

with the veraison phase - before the rains of late summer - and in this case the 

plastic film is applied only on the top. These two classic management systems 

have been joined by a third consisting of the upper covering of the structure 

with plastic film starting from the bud break stage (Luigi Tarricone, 2021). 

 

1.3.3 Technique of using plastic covers 

The placement of these artifacts on the vineyard takes place at bud break. 

Throughout the production cycle they allow to create a confined environment 

in which better growth conditions are determined. In fact, in the central 

periods of summer there is less transpiration and a better relaxation of the 

vegetative structures and bunches. In summary, these breeding conditions 

lead to an increase in production of 10-15% in unit yields per hectare. In the 

technique of postponing harvesting, the nets are placed at bud break and the 

sheets are mounted on them from mid-August until late autumn. The latest 

innovations try to condense the management of the two production 

techniques. Today, in fact, the most recent solution in the management of 

protections provides for the combined use of fabric and net products. The net 

is placed outside while the sheets are mounted inside. This guarantees the 

production against fungal attacks that can occur in particularly rainy springs. 

In this way a better anchoring and protection of the film from the wind and a 

reduction of temperature peaks are also guaranteed. In fact, it is possible to 

collect the flaps of the cloth while maintaining the protection of the net. 

Furthermore, the protective action of the mesh allows you to mount, at the 

bottom, a film of lesser thickness and, therefore, less expensive. 
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1.3.4 Effects on the landscape and rural territory 

The effects that the protection systems of table grape awnings determine on 

the territory concern above all the influence on the rural landscape, due to the 

large surfaces of light and reflective color with chromatic changes and the 

effect of "liquid mirror" or "agricultural landscape as a chessboard”, and the 

impact on the agro-ecosystem. In particular, the problem of impact is 

identified in the need to dispose of large quantities of post-consumer plastics, 

which can cause negative consequences on the environmental compartments 

soil, water and air in the event of abandonment on the territory and 

uncontrolled combustion. The solution consists in a correct management of 

the phases of disposal, collection, transport and recycling of the plastic 

material used, which must be considered not a waste but a secondary raw 

material. 

 

 

 

(Fig.5 – Viticulture near Bari) 
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1.4 Datasets 

1.4.1 Deimos-2 

DEIMOS-2 is a high-resolution satellite that acquires multispectral images in 

4 bands with a resolution of 4 m (resampled to 1 m in the multispectral), and 

1 m (resampled to 75 cm in the panchromatic). As a result, the standard pan-

sharpened (ortho) product has a resolution of 75cm after resampling. 

Launched on 19 June 2014, for a mission lasting about seven years, the 

satellite operates from a helium-synchronous orbit at an altitude of 620 km 

with local time 10.30 in ascending node (Fig. 6). DEIMOS-2 has a high-

resolution on-board sensor with 5 spectral channels (1 panchromatic, 4 

multispectral) and is capable of acquiring both monoscopic and stereoscopic 

images (Table 1). The number of application fields in which DEIMOS-2 

images can be used is considerable. From precision agriculture, to emergency 

management, to environmental and vegetative monitoring, to the updating of 

thematic maps. DEIMOS-2 includes a panchromatic sensor and a 

multispectral sensor that acquire in simultaneous mode. 

 

(Fig. 6 – Deimos-2 satellite) 
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The multispectral band includes the 4 visible channels and the near IR band. 

The images are distributed in two different processing levels.  The Level 1B 

(L1B) product provides calibration and                                                                                                                  

radiometric correction, but does not include resampling on a map grid. This 

basic product includes RPCs (sensor camera model) and metadata with gain 

and bias values for each band. The level 1C product (L1C) turns out to be a 

more elaborate product that has been calibrated and radiometrically corrected. 

 

(Table 1 – Deimos-2 features) 

 

Deimos-2 was designed to provide a cost-effective and highly responsive 

service to cope with the increasing need of fast access to sub-metric imagery. 

As evidence of this, it provides near-real time image tasking, downloading, 

processing and delivery to the end user. It has a collection capacity of more 

than 150,000 km2/day with a two-day average revisit time worldwide. The 

whole Deimos-2 ground segment has been completely developed in-house by 

Elecnor Deimos based on its own gs4EO product suite, born out of the know-

how acquired during more than a decade of work for the European Space 

Multispectral Bands Technical features 

 

Blue: 466 nm – 525 nm 

Green: 532 nm – 599 nm 

Red: 640 nm – 697 nm 

NIR: 770 nm – 892 nm 

Resolution: 1m resampled to 75cm 

Width of the strip: 12 km to the 

nadir 

Acquisition capacity: 200,000 km2 

per day 

Average review time: 2 days 
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Agency. A single Orto pansharpened image taken on July 29, 2020 on the 

study area was acquired. 

 

1.4.2 Sentinel-2 

The Copernicus Sentinel-2 mission includes a constellation of two polar 

orbiting satellites placed in the same orbit synchronous with the sun, in phase 

180° with respect to each other (Sentinel-2A and Sentinel-2B). In recent 

years, the two twin European satellites in polar orbit, Sentinel-2A and 

Sentinel-2B have been used extensively as a single source of data to map 

plastic-covered agricultural areas. It aims at monitoring the variability in the 

earth's surface conditions and its wide swath width (290 km) and high revisit 

time (10 days at the equator with one satellite and 5 days with 2 satellites in 

cloudless conditions which result in 2-3 days at mid-latitudes) will support 

the monitoring of changes in the Earth's surface. The images used in this work 

were acquired by Sentinel-2A (S2A) MultiSpectral Instrument (MSI) which 

was launched in June 2015. The MSI sensor collects up to 13 bands with three 

different geometric resolutions ranging from 60m to 10m GSD. The 

SENTINEL-2 products available to users (generated from the ground 

segment or the SENTINEL-2 Toolbox) are listed in Table 2. 

 

 

(Table 2 - Sentinel-2 Level 1C and Level 2A) 
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Fifteen S2A MSI level 1C (L1C) images, for each study area, well distributed 

over the year 2020, were downloaded free of charge from the website of the 

European Space Agency (ESA) Copernicus Scientific Data Hub tool. They 

were used as input data for the binary pre-classification of greenhouses and 

non-greenhouses and the subsequent classification of the type of greenhouse 

cultivation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Table 3 – Sentinel 2 Images) 

 

 

 
Bari 

 

Date Satellite Orbit 

25/1/2020 2B R036 

9/2/2020 2A R036 

13/3/2020 2A R079 

17/4/2020 2B R079 

9/5/2020 2A R036 

28/6/2020 2A R036 

3/7/2020 2B R036 

23/7/2020 2B R036 

2/8/2020 2B R036 

12/8/2020 2B R036 

27/8/2020 2A R036 

7/9/2020 2A R036 

6/10/2020 2A R036 

31/10/2020 2B R036 

15/11/2020 2A R036 
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After downloading, for each image, all the packages containing the bands for 

the various resolutions, the bands (Table 4) have been selected:  

 

Nº 
orden 
stack 

Band Resolution 

Central 
Wavelenght 

(µm) 

1 Band 2 –Blue (B) Resolution 10 m 0.443 

2 Band 3-Green (G) Resolution 10 m 0.560 

3 Band 4 –Red (R) Resolution 10 m 0.665 

4 Band 5 -Red edge 1 (RE1) Resolution 20 m 0.705 

5 Band 6 -Red edge 2 (RE2) Resolution 20 m 0.740 

6 Band 7 -Red edge 3 (RE3) Resolution 20 m 0.783 

7 Band 8 -Nir 1  (NIR8) Resolution 10 m 0.842 

8 Band 8A -Nir 2 (NIR8a) Resolution 20 m 0.865 

9 Band 11 -Swir 1 (SWIR1) Resolution 20 m 1.610 

10 Band 12 -Swir2 (SWIR2) Resolution 20 m 2.190 

 

(Table 4 - Sentinel-2 L2A image bands) 

 

These bands have been chosen because they are indispensable for the 

calculation of the various indices in the following paragraphs. All bands 

selected, for each Sentinel image, have been uploaded to Qgis. With a plug in 

called SCP (necessarily to be downloaded) it was possible to obtain a single 

image having all 10 bands. Developed by Luca Congedo, the Semi-Automatic 

Classification Plugin (SCP) is a free open source plug-in for QGIS that allows 

semi-automatic classification (also known as supervised classification) of 



26 
 

remotely sensed images. It provides several tools for free image download, 

pre-processing, post-processing and raster computation. The overall goal of 

SCP (Fig.7) is to provide a set of interconnected tools for raster processing in 

order to create an automated workflow and facilitate land cover classification, 

which could also be done by people whose primary field is not the remote 

sensing 

 

 

(Fig.7 – SCP plug in) 

 

The images used in this work (Table 3) were collected according to their 

corresponding study area. Each cropped S2A MSI L2A image was co-

registered with the reference image (Deimos-2 pan-sharpened orthoimage) 

using 44 ground control (Fig. 9, Table 5) points evenly distributed over the 

study area and a first-order polynomial transformation. The RMSE values for 

geometrically corrected images were evaluated on 15 ICPs (Fig. 10), ranging 

from 4.77 m to 5.03 m. 
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(Fig.8 - Sentinel image collected and with joined bands, January 2020) 
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(Fig. 9 - 44 GCP; Fig. 10 – 15 ICP)   

 

GCP Origen X Origen Y Dest. X Dest. Y dX  dY  RMSE 

0 657430 4546630 657426 4546632 3,99 -2,14 3,203 

1 658990 4547050 658985,9 4547054 3,91 -4,04 3,975 

2 660520 4546480 660527 4546476 -6,74 3,73 5,447 

3 660880 4546770 660874,9 4546774 4,87 -4,16 4,529 

4 662090 4547080 662088,6 4547084 1,09 -3,76 2,767 

5 662985 4546925 662982,7 4546926 1,93 -1,55 1,750 

6 664070 4545520 664066,8 4545523 3,41 -3,30 3,353 

7 663020 4546270 663010,9 4546263 8,70 7,85 8,287 

8 661509 4545854 661505,4 4545860 4,05 -6,03 5,137 

9 658821 4545800 658816,7 4545800 4,76 -0,22 3,366 

10 657581 4544600 657578 4544598 2,55 2,38 2,463 

11 660670 4543850 660663,1 4543858 7,11 -8,17 7,659 

12 663361 4544529 663363,1 4544524 -2,22 5,18 3,986 

13 663110 4543400 663104,8 4543407 5,06 -6,90 6,049 

14 660120 4545650 660113,9 4545661 6,00 -10,33 8,447 

15 658140 4542540 658139,1 4542549 1,21 -8,70 6,211 

16 657060 4540050 657055 4540054 4,81 -3,78 4,323 

17 657330 4539004 657327,2 4539010 2,40 -5,99 4,560 

18 658350 4539190 658360,6 4539192 -10,87 -2,66 7,910 

19 659440 4540850 659436,9 4540857 3,03 -6,83 5,284 
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20 659390 4541661 659389,2 4541661 0,42 -0,77 0,617 

21 662661 4542612 662662,5 4542612 -1,43 0,19 1,018 

22 661850 4537851 661857,9 4537848 -7,95 2,40 5,868 

23 662400 4540830 662395,1 4540834 4,76 -3,86 4,333 

24 659750 4543990 659745,9 4544000 4,03 -9,63 7,380 

25 660830 4542190 660831,5 4542197 -1,31 -6,82 4,913 

26 660709 4539411 660702,7 4539413 6,73 -2,59 5,096 

27 664351 4537509 664355 4537516 -4,16 -6,71 5,585 

28 663490 4539710 663483,9 4539713 6,22 -3,09 4,911 

29 662017 4539332 662014,1 4539336 3,00 -4,34 3,729 

30 659599 4537601 659597,1 4537603 1,92 -2,12 2,021 

31 664480 4543058 664479 4543063 1,40 -4,57 3,383 

32 663058 4541784 663055,5 4541788 2,96 -4,17 3,613 

33 661569 4544670 661564,9 4544666 4,40 3,23 3,860 

34 664659 4540869 664649,9 4540866 9,19 2,87 6,804 

35 658880 4543501 658873,8 4543495 6,36 5,12 5,771 

36 657360 4537780 657355,5 4537786 4,26 -6,02 5,215 

37 656870 4541670 656873,5 4541674 -3,65 -3,82 3,735 

38 660360 4541700 660361,6 4541706 -1,66 -6,47 4,725 

39 660900 4543040 660896,6 4543051 3,49 -11,34 8,388 

40 663720 4544080 663714,2 4544075 5,71 4,70 5,229 

41 662416 4537960 662414,2 4537965 1,60 -5,31 3,917 

42 658360 4540880 658357,3 4540883 2,66 -3,52 3,118 

43 661270 4540071 661265,3 4540073 5,00 -2,39 3,917 

      RMSE X 
RMSE 

Y RMSE TOT 

     4,77 5,0339 5,033 

(Table 5 – RMSE GCP) 
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(Table 6 – RMSE ICP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICP origen X origen Y dest. X dest. Y dX  dX  RMSE 

0 657425 4546633 657426,6 4546632 -1,33 1,09 1,215 

1 660834 4545833 660835,2 4545836 -1,34 -3,20 2,455 

2 663976 4545498 663979,1 4545500 -3,37 -1,91 2,737 

3 657519 4544709 657520,9 4544708 -1,43 1,10 1,274 

4 661002 4543387 661005,5 4543389 -3,76 -1,23 2,793 

5 663683 4544163 663686 4544167 -3,45 -3,44 3,446 

6 663582 4538879 663585,8 4538884 -3,67 -4,17 3,929 

7 662988 4541444 662992,4 4541448 -4,63 -3,65 4,167 

8 663293 4542994 663291,8 4542997 1,20 -2,99 2,282 

9 660075 4542292 660079,7 4542294 -4,68 -2,29 3,682 

10 661293 4538506 661297,5 4538510 -4,19 -4,13 4,158 

11 661154 4540685 661160,4 4540685 -5,97 0,08 4,224 

12 656788 4541572 656794,3 4541570 -6,55 1,64 4,776 

13 658501 4539175 658506,2 4539176 -5,51 -0,33 3,899 

14 658355 4540884 658357,5 4540883 -2,54 1,07 1,950 

          RMSE X RMSE Y RMSE TOT 

     3,95 2,52 3,315 
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2 Methodology 

The methodology applied in this work addresses the following aspects: 

• Pre-processing protocol for S2 images (explained in section 1.4.2); 

•  Segmentation of the Orthophoto Deimos-2 with 1 m GSD and 4 

bandas (B1: NIR, B2: RED, B3: GREEN and B4: BLUE) taken in 

Bari (Italy) (29-7-2020) to delineate the greenhouses; 

• Binary pre-classification of the entire study area into two classes (GH 

and Non-GH) by applying an OBIA approach based on Deimos-2 

orthoimage segmentation and data from Sentinel-2 image time series; 

• Calculation of the various indices inherent to the study and statistical 

analysis; 

• Final classification of greenhouses using the most robust statistical 

element; 

• classification accuracy analysis; 

2.1 OBIA approach 

OBIA (Object-based Image Analysis) techniques rely on the aggregation of 

similar pixels to obtain homogeneous segments (often referred to as objects). 

Then image classification is performed on objects (rather than pixels) using 

meaningful characteristics related to spectral information (e.g. average 

spectral values), shape, texture and context associated with each object, so 

that it has great potential for efficiently handle more difficult image analysis 

tasks , especially when working on VHR satellite imagery. The quality of the 

segmentation significantly influences the final results of OBIA approaches 
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since it is this first step that generates image objects and determines their 

corresponding attributes. Image segmentation is affected by many factors 

such as image quality, number of spectral bands, spatial resolution and scene 

complexity. 

 

2.2 Multi-resolution segmentation 

Multi-resolution segmentation (MRS) has been listed as one of the most 

successful image segmentation algorithms in OBIA-type analysis and is 

available in eCognition software (Trimble, Sunnyvale, California, United 

States). The performance of this algorithm depends on the selection of three 

main parameters:  

• The homogeneity criterion or scale parameter (SP) which determines 

the maximum heterogeneity allowed for the resulting segments; 

• The weight of color and shape criteria in the segmentation process 

(Shape); 

• The weight of the compactness and smoothness criteria 

(Compactness).  

In this study, the segmentation (MRS) was carried out by means of a semi-

automatic eCognition rule set characterized by a loop process that varies the 

segmentation parameters as follows: the shape values range from 0.1 to 0.5 ( 

with a step of 0.1); Compactness has been set at 0.5 for all cases as the 

literature has underlined its minor contribution with respect to the parameters 

of shape and, above all, of scale; the scale parameter has varied from 80 to 

250 (with a step of 1). The combination of the bands for the orthoimage is 

fixed on equally weighted blue-green and NIR2 bands. It is necessary to 

consider that the accuracy of the final classification for greenhouses will 
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strongly depend on the automatic segmentation process carried out on the 

Deimos-2 orthoimage. Hence, it was decided to conduct a manual digitization 

to obtain the best possible segmentation file on our objects of interest. Up to 

400 polygons representing individual plastic greenhouses, were manually 

digitized on the whole working area into the Deimos-2 orthoimage, all 

presenting a uniform spatial distribution around the study area, in order to 

have a representative sample of all the greenhouses of the study area. These 

reference geometry sets were applied to study the quality assessment of 

supervised segmentation performed using AssesSeg. 

(Fig.11 – 400 Greenhouse objects) 
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2.2.1 Segmentation Assessment 

Although there are several methods to quantitatively assess the quality of the 

segmentation, the ED2 measure was the one used in this work providing good 

results on plastic greenhouses. In short, ED2 aims to optimize, on a two-

dimensional Euclidean space, both the geometric discrepancy (potential 

segmentation error (PSE)) and the arithmetic discrepancy between image 

objects and reference polygons (segmentation number ratio (NSR)).  

 

 

 

(Fig.12 – ED2 expression) 

 

The modified version of ED2 was included in a command line tool called 

AssesSeg and it was tested on different satellite images (Sentinel-2, Landsat 

8, and WorldView-2). The software deals only with the ESRI polygon 

shapefile (it does not depend on the segmentation software), and its source 

code was written in Python 2.7 given the large availability of open source 

optimization, data analysis, control, and numerical analysis libraries. 

AssesSeg outputs were utilized to find the best band combinations for the 

performed segmentations of the images and showed a clear positive 

correlation between segmentation accuracy and the quantity of available 

reference data. This demonstrates the importance of a high number of 

reference data in supervised segmentation accuracy assessment problems. 

Lastly, AssesSeg is a very powerful tool if coupled with automatic or semi-

automatic algorithms capable of producing many segmentation files 

following a certain criterion. In this work, this was accomplished by means 

of a semi-automatic eCognition rule set characterized by a looping process 
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among prefixed multi-resolution segmentation (MRS) algorithm parameters. 

It is important to note that a modified ED2 value of zero would indicate an 

optimal combination of both geometric and arithmetic match. An optimum 

geometric match would be related to the absence of over-segments or under-

segments. The best arithmetic match would occur when a reference polygon 

only matches a calculated object MRS. The ideal segmentation will be 

pointed out by the minimum value of modified ED2 measure.  

 

2.2.2 Segmentation results 

The best segmentation for the orthoimage was based on the minimum value 

of the modified ED2 computed for the set of reference geometries (400 

polygons). The modified ED2 was a very good result for the visual quality of 

the greenhouse segmentations. In Figure 13 there are the modified ED2 values 

calculated for each segmentation extracted from the Deimos-2 orthoimage 

with respect to the set of 400 reference geometries. The fixed parameters were 

the combination of bands (Blue-Green-NIR2) and Compactness (0.5), while 

Shape and Scale were kept variable.  
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(Fig. 13 - MSR parameters based on the final ED2 values) 

 

 

In this case, the minimum modified ED2 value was obtained for the shape 

and scale values described in Table 7. 

SCALE COMPACTNESS SHAPE ED2 

162 0.5 0.5 0.12232 

(Table 7 – best segmentation) 

 

This figure also allows to appreciate the importance of testing a wide range 

of parameters to find out the ideal segmentation.  
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2.3 Classification 

2.3.1 Binary Pre-Classification 

The binary pre-classification assigned a class (GH or Non-GH) to each 

previously segmented object in the study area. A dataset consisting of 1500 

segments for the GH class and 1500 for the Non-GH class (i.e., any other 

object other than a greenhouse), which were homogeneously distributed in 

the study area. the choice of using 3000 objects in the pre-classification has 

already been used by (Manuel A. Aguilar A. N., 2016) and (Abderrahim 

Nemmaoui, 2018). The best segmentation achieved from the Deimos-2 image 

with AsseSseg was used and a new edited thematic layer was generated from 

it. A new column called "class" has been inserted into the attribute table of 

the SHP file. Non-GH segments were classified with the number 2, while the 

GH objects with the number 1. Furthermore, a new column has been added 

in the attribute table that assigns an ID number to each segment so that they 

can be immediately tracked for any anomalies in future calculations. During 

the classification process it is extremely important to select segments where 

the pixels within are of the same class so that nothing is mixed. The Bari study 

area is characterized by a variable presence of greenhouses throughout the 

year. This is due to the type of seasonal crop present inside the greenhouses. 

Therefore the pre-classification was made based on both the Deimos-2 image 

and the Sentinel-2 time series, in order to achieve a better pre-classification. 

The low geometric resolution of the Sentinel-2 images (10m) compared to the 

Deimos-2 image could be a problem for classification. For this reason, a 

combination of band was selected such as to make clear the spectral 

difference between the areas covered by GH and areas not covered.    
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(Fig. 14 – Sentinel-2 image with spectral combination: R->SWIR2; G->SWIR1; B->B)  

 

 

 

 

 

 

 

 

 

 

 

 

 

(Fig. 15 -Classification of Deimos-2: Red-> GH; Blue->Non-GH) 
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(Fig. 16 – Binary pre-classification) 

 

2.3.2 Features  

The object-based features that were used in this work to accomplish the two-

step OBIA classification (binary pre-classification in GH and Non-GH 

classes) were retrieved from the S2 images (10 bands) image time series. The 

features consist of several spectral and vegetation indices for S2 (14 indices) 

single images. Note that one specific object (a greenhouse, for instance) will 

have 14 single values for each object-feature. Table 8 shows the object 
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features tested in this study. The selection of the features was mainly based 

on the results of previous researches. 

Index 
abbreviaton 

S2 
Description Reference 

Moment Distance from 
the 

Right pivot 
MDRP 

((SWIR2/10000)+((SWIR1/10000)^2+(2.19-
1.61)^2)^0.5+((NIR8a/10000)^2+(2.19-
0.865)^2)^0.5+((NIR8/10000)^2+(2.19-
0.842)^2)^0.5+((RE3/10000)^2+(2.19-
0.783)^2)^0.5+((RE2/10000)^2+(2.19-
0.74)^2)^0.5+((RE1/10000)^2+(2.19-
0.705)^2)^0.5+((R/10000)^2+(2.19-
0.665)^2)^0.5+((G/10000)^2+(2.19-

0.56)^2)^0.5+((B/10000)^2+(2.19-0.49)^2)^0.5) 

Salas and Henebry 
(2012) 

Moment Distance from 
the 

Left pivot 
MDLP 

((B/10000)+((G/10000)^2+(0.56-
0.49)^2)^0.5+((R/10000)^2+(0.665-

0.49)^2)^0.5+((RE1/10000)^2+(0.705-
0.49)^2)^0.5+((RE2/10000)^2+(0.74-

0.49)^2)^0.5+((RE3/10000)^2+(0.783-
0.49)^2)^0.5+((NIR8/10000)^2+(0.842-

0.49)^2)^0.5+((NIR8a/10000)^2+(0.865-
0.49)^2)^0.5+((SWIR1/10000)^2+(1.61-
0.49)^2)^0.5+((SWIR2/10000)^2+(2.19-

0.49)^2)^0.5) 

Salas and Henebry 
(2012 

Moment Distance Index MDI MDRP – MDLP 
Salas and Henebry 

(2012) 

Normalized Difference 
Vegetation Index 

NDVI (NIR8 – R)/(NIR8 + R) Rouse et al. (1973)   

Normalized Difference 
Builtup 
Index 

NDBI (SWIR1 – NIR8)⁄(SWIR1 + NIR8) Zha et al. (2003) 

Plastic Greenhouse Index 
PGI 

(reflectancias 
en 0-10000) 

100 × (B × (NIR8 − R))⁄(1 − (B + G + NIR8)/3) 
PGI = 0 when NDVI>0.73 

PGI = 0 when NDBI>0.005 
Yang et al. (2017) 

Plastic Greenhouse Index 
PGI1 

(reflectancias 
en 0-1) 

100 × ((B/10000) × 
((NIR8/10000))−(R/10000))))⁄(1 − ((B/10000))  + 

(G/10000)) + (NIR8/10000)))/3) 
PGI = 0 when NDVI>0.73 

PGI = 0 when NDBI>0.005 

Yang et al. (2017) 

Retrogressive Plastic 
Greenhouse Index 

RPGI 
(B/10000)/(1− 

((B/10000)+(G/10000)+(NIR8/10000))/3) 
Yang et al. (2017) 

Plastic-Mulched 
Landcover 

Index 
PMLI (SWIR1 – R)⁄(SWIR1 + R) Lu et al. (2014) 

Greenhouse Detection 
Index 

GDI 
(MDI/3) – ((B – (SWIR1 + SWIR2)/2)/(B + (SWIR1 

+ SWIR2)/2)) 
González-Yebra et 

al. (2018) 

Index Greenhouse 
Vegetable 

Vi 
((SWIR1 – NIR8)⁄(SWIR1 + NIR8)) × ((NIR8 − 

R)⁄(NIR8 + R)) 
Zhao et al. (2004) 
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Land Extraction 

Plastic Index PI NIR8/(NIR8 + R) 
Themistocleous et 

al. (2020) 

Floating Debris Index FDI 
(NIR8/10000) – ((RE2/10000)+((SWIR1/10000)–
(RE2/10000))×((λNIR– λRED)/ (λSWIR1– λRED)) ×10) 

λNIR=833 nm; λRED=665 nm; λSWIR1=1613 nm 

Biermann et al. 
(2020) 

(Table 8 – Indices) 

 

 (Dedi Yang, 2017) proposes a new plastic greenhouse index (PGI) based on 

the spectral analysis, sensitivity and separability of plastic greenhouses using 

medium spatial resolution images. The results demonstrated that the proposed 

index can be applied to identify transparent greenhouses in the Landsat image 

with atmospheric correction and has the potential for digital mapping of 

plastic greenhouse coverage over  

(Fig. 17 – PGI equation) 

 

a large area. The PG index is expected to be effective for both the PG 

detection and the PG fraction estimation. Therefore, the design of the PG 

index should consider the spectral characteristics that best differentiate PG 

from the background as well as maximize the range of detectable PG fraction. 

the PG index (PGI) was developed to exaggerate the difference between PGs 
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and other features, as shown in the following equations. In this equation, R-

blue, R-green, R-red, R-nir , and R-sw1 are the reflectance of the blue, green, 

red, NIR, and SW1 band, respectively. The multiplier 100 is used to linearly 

stretch the PGI to a wider range. To offset the effect of dense vegetation (e.g. 

forest) and man-made surfaces, pixels with NDVI greater than 0.73 or NDBI 

greater than 0.005 were treated as non-PG pixels. Anyway, it is problematic 

to apply an absolute criterion (i.e., PGs or no PGs) to estimate PG area. To 

overcome this issue, the result is presented in terms of the PGI and the PG 

fraction. Yang’s study developed a statistical model to estimate the PG 

fraction. The result of (R-nir – R-red) in the PGI may increase the variance of 

PGI, as the types of crops under PGs and their growth status vary to a certain 

extent. To enhance the sensitivity of the new index, a retrogressive PGI 

(RPGI) (Fig. 18), defined by removing the (R-nir – R-red) component and the 

multiplier in the PGI formula, was proposed to develop a more cohesive and 

robust measure. 

 

 

(fig.18 -RPGI equation) 

Another new index used in this work is the GDI, specially designed for PCG 

mapping. It has been studied and tested in the work of (Oscar Gonzalez-

Yebra, 2018). The GDI index integrates the spectral information provided by 

the MDI index (see Table 8), already successfully tested in (Manuel A. 

Aguilar A. N., 2016) for PCG mapping, and the relative ground reflectance 

of PCG in the B band (high) and Swir1 and Swir2 bands (low) (Manuel A. 

Aguilar A. N., 2016). Note that a low MDI index is related to PCG objects 

and vice versa. In this sense, the formulation that supports the GDI index can 

be found in equation on the Figure 19, with the aim of improving the 



43 
 

discrimination of greenhouses in the classification process through correcting 

the MDI index, previously downscaled by dividing it by three to decrease its 

weight, subtracting a normalized index based on B, Swir1 and Swir2 bands.  

 

 

 

(Fig. 19 – GDI equation) 

PI, on the other hand, was introduced for the first time by (Kyriacos 

Themistocleous, 2020). The newly developed Plastic Index (PI) was able to 

identify plastic objects floating on the water surface and was the most  

effective index in identifying the plastic litter target in the sea with Sentinel-

2 images. In a very similar way, the FDI was introduced in the (Lauren 

Biermann, 2020) publication to monitor the plastic debris present in the 

oceans. At 10 m × 10 m, the highest spatial resolution of the Sentinel-2 Multi-

Spectral Instrument, individual items of debris are likely to be below 

detectable limits until aggregated into patches. To improve the detection of 

spots floating on the ocean surface in Sentinel-2 images, the Floating Debris 

Index (FDI) was developed using four of the 10 MSI bands (Table 9). 

Nº 
orden 
stack 

Banda Resolution 

Central 
Wavelenght 

(µm) 

1 Banda 2 –Blue (B) Resolution 10 m 0.443 

2 Banda 3-Green (G) Resolution 10 m 0.560 

3 Banda 4 –Red (R) Resolution 10 m 0.665 

4 Banda 5 -Red edge 1 (RE1) Resolution 20 m 0.705 

5 Banda 6 -Red edge 2 (RE2) Resolution 20 m 0.740 

6 Banda 7 -Red edge 3 (RE3) Resolution 20 m 0.783 

7 Banda 8 -Nir 1  (NIR8) Resolution 10 m 0.842 

8 Banda 8A -Nir 2 (NIR8a) Resolution 20 m 0.865 
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9 Banda 11 -Swir 1 (SWIR1) Resolution 20 m 1.610 

10 Banda 12 -Swir2 (SWIR2) Resolution 20 m 2.190 

(Table 9 – Selected bands for FDI) 

This debris detection index then takes advantage of the difference between 

NIR and the base reflectance of NIR. This baseline is derived from linear 

interpolation between the RE2 and SWIR1 bands flanking NIR: 

(Fig. 20 – FDI equation) 

The FDI was applied for subpixel detection of plastic targets deployed off 

Mytilene in Greece, as well as on dense floating patches of Sargassum 

seaweed off Barbados, rafted tree logs in waters of British Columbia, sea 

foam (spume) off the east coast of Scotland, and floating volcanic rock off 

Tonga. The MDI exploits the available bands of the remote sensing image by 

analyzing the shape of the reflectance spectrum, and at each composite, 

calculating the moment distances among the bands through simple geometric 

operations. The robustness of the method in defining the shape of the spectral 

curve derives from the refereed distances from two points locations 

designated as shorter pivot and longer pivot wavelength region, assuming that 

the reflectance curve is displayed in Cartesian coordinates with the abscissa 

displaying the wavelength (λ) and the ordinate displaying the reflectance (ρ). 

The subscript LP denotes the left pivot (located in a shorter wavelength) and 

subscript RP denotes the right pivot (located in a longer wavelength). λ LP 

and λ RP are the wavelength locations observed at the left and right pivots, 

respectively, where left (right) indicates a shorter (longer) wavelength. NDVI 

was also computed for each polygon, date and study site, using the mean 

values attained from Red and NIR bands. 
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2.3.3 Feature extraction 

The extraction of the individual object-based features was done within the 

eCognition software. The idea of introducing the features from Deimos-2 MS 

orthoimage in the classification process was discarded in order to obtain 

classification results that were totally independent of the VHR data that was 

used to carry out the segmentation stage. In other words, the aim was to build 

a decision tree model only based on S2 features. First, the Sentinel-2 time 

series images were inserted. All band names have been changed by putting 

the time series image number and the letter representing the band type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Fig. 21 - edited band names) 
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After having edited all the names of the bands, the thematic layer was inserted 

containing the pre-classification of the 3000 objects made previously. Before 

starting the data upload, the resolution was set to 0.99984 and the original 

GSD was halved four times by 15m on the design sheet created to increase 

geometric resolution. The chessboard segmentation algorithm included in 

eCognition has been applied on the thematic layer composed of the vector file 

containing the pre-classification. A chessboard segmentation is the simplest 

segmentation available as it just splits the image into square objects with a 

size predefined by the user. The segmentation does not consider the 

underlying data and therefore when large objects are created, the features 

within the data you are trying to classify will not be delineated. This 

segmentation tends to be used in more advanced processes where 

segmentation is undertaken in a number of steps combined with a 

classification. Using this approach, the software projects only the vector file 

into the images in order to obtain an outline adapted to the pixels that compose 

them.  

 

 

 

 

 

 

(Fig. 22 – Input Thematic Layer) 
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At this point it is necessary to introduce the feature formulas into the software, 

in order to extract an excel file which will subsequently be statistically 

analyzed. The first step for the creation of the features is to calculate the 

average value of each band for each image. Therefore 15 mean values were 

calculated for each band. These average values have been used to create new 

"arithmetic features" which will be our indices. 

 

(Fig. 23 - NDVI index calculation) 

However, here too, the indices were calculated for each image in the Sentinel-

2 time series, so there are 15 values for each index. After inserting all the 
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indices of Table 8 into the project, it is possible to note the values of all the 

indices in each polygon. Another important thing to be included in the export 

file is the "class" as it will be a fundamental parameter for the formation of 

the Decision Tree. The assignment of the class for each segment 

(classification), before export, was obtained through two steps: 

• insert 2 classes (GH -> RED, Non-GH ->BLUE) in the "class 

hierarchy" part; 

• add "assign class" in the software process tree and add the following 

conditions. For the segments to be GH, the thematic layer values must 

be "class = 1". Vice versa, for the segments to be Non-GH, the values 

of the thematic layer must be "class = 2"; 

 

 

 

(Fig. 24 - class assignment in ecognition) 

At this point the export has been carried out by inserting the values of all the 

indexes, of the class of each segment, and also of the areas of each segment 

in such a way as to eliminate segments with areas that are too small which 

can lead to errors in the classification. 

 

2.3.4 Calculation of statistical features 

The output obtained from eCognition data processing is an Excel sheet 

containing the values of the 14 indices for all 15 S2 images for each polygon. 
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All polygons not belonging to the GH or Non-GH classification were deleted 

and in addition, five characteristics were also calculated from the time series 

of S2 images. These characteristics were MAX (maximum), MIN 

(minimum), DIF (difference between MAX and MIN), AVERAGE (mean 

value), SD (standard deviation). 

(Table 10 - example calculation of statistical values for the "Vi" index) 

 

2.3.5 Decision tree modeling 

A decision tree (DT) classifier based on the algorithm proposed by (Breiman, 

Friedman, Olshen, & Stone) has been used in this work. This classifier 

presents a very clear structure composed of several splits with single 

threshold values. In this sense, the DT classifier could be implemented 

directly in eCognition by means of rule sets to determine simple and robust 

feature thresholds. DT is a non-parametric rule-based method in which each 

node makes a binary decision that separates either one class or some of the 

MAX_Vi MIN_Vi MEAN_Vi SD_Vi DIF_Vi 

0,030459 -0,202128 -0,080416 0,082902 0,232588 

0,019840 -0,143658 -0,055092 0,045191 0,163498 

0,027774 -0,192034 -0,091837 0,067890 0,219807 

0,030565 -0,174032 -0,050152 0,060678 0,204596 

0,025689 -0,139053 -0,058334 0,058687 0,164743 

0,023551 -0,158216 -0,079293 0,068577 0,181767 

0,026880 -0,234892 -0,108898 0,096896 0,261772 

0,021449 -0,234390 -0,097680 0,082758 0,255840 

0,027033 -0,167320 -0,083014 0,075398 0,194352 

0,028915 -0,254380 -0,089109 0,083231 0,283295 

0,030169 -0,149631 -0,078141 0,065545 0,179800 

… … … … … 
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classes from the remaining class (or classes). Classification through the DT 

algorithm has already been applied in greenhouse mapping via remote sensing 

with very good and robust results (Manuel A. Aguilar A. V., 2015) and 

(Manuel A. Aguilar A. N., 2016). The major reason for its choice lies in that 

the results from this classifier are simple to understand. The DT classifier is 

described as a “white box”, because both its structure (formed by several 

splits) and its final result (terminal leaves) is easy to interpret. Classification 

through the DT algorithm is increasingly applied in remote sensing data. In 

fact, it has been the selected classifier in recent OBIA investigations focused 

on outdoor crop identification. Other advantages of DT classifiers are: 

• They fit well in the OBIA procedure; 

• DTs are computationally fast and make no assumptions regarding the 

distribution of the data; 

• the DT methods provide quantitative measurements of each variable’s 

relative contribution to the classification results, so allowing users to 

rank the importance of input variables; 

 

2.3.6 Statistic analysis 

STATISTICA v10 software was used for classification and analysis of the 

regression decision tree (StatSoft Inc., Tulsa, OK, USA). The software 

includes an array of data analysis, data management, data visualization, and 

data mining procedures; as well as a variety of predictive modeling, 

clustering, classification, and exploratory techniques. in this case study, it was 

essential to obtain a decision tree through categorical classification. The first 

step was to add the CSV file (containing the 3000 objects) into the software 

and select "regression tree model" on "data mining" so that the algorithm can 

be started. The DT algorithm tries to divide the data into segments that are as 
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homogeneous as possible with respect to the dependent or response variable. 

In this case, the categorical dependent variable was the class (GH or Non-

GH), while the continuous variables were all statistical indices. The final 

result with this procedure is not affected by data with very high or very low 

values coming from a single image of the time series. The DT node-splitting 

rule was the Gini index, which is a measure of impurity for a given node 

(Zambon, Lawrence, Bunn, & Powell, 2006). Its application attempts to 

maximize the homogeneity of the child nodes with respect to the values of 

the dependent variable. Cross-validation provided an objective measure of 

quality for the computed DT model (2015). The experimental design was 

implemented within the STATISTICA environment through a stratified 10-

fold cross-validation procedure, leading to one confusion matrix for each fold. 

In 10-fold cross-validation, the data are randomly partitioned into 10 equally-

sized samples. Of the 10 samples, a single sample is used to validate the 

model, and the remaining 9 samples are used to train the model. The cross-

validation process is then repeated 10 times, with each of the 10 samples used 

exactly once as the validation data. The computed DT model was finally 

applied to the validation dataset to obtain the corresponding confusion 

matrices. The DT classifier also provides an assessment of the relative 

importance of the different features or variables during the classification 

process. This aspect is useful for multi-source studies, where data 

dimensionality is very high and it is important to know how each predictive 

variable influences the classification model in order to select the best ones. 

To assess the importance of each feature, the DT switches one of the input 

random variables while keeping constant the remaining ones.  
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2.4 Results 

2.4.1 DT classification 

Figure 25 shows the DT models computed from S2A image time series based 

on the 3000 reference objects manually classified as GH or Non-GH. The 

standard deviation of the Plastic Greenhouse Index (SD_PGI) turned out to 

be the most significant statistical seasonal feature (first split in the DT model). 

The PGI proposed by (Dedi Yang, 2017) is a very correlated index to the 

vegetation under the plastic cover, being higher when the crops inside the 

greenhouse are thriving. The same result was obtained from the study done 

by (Abderrahim Nemmaoui, 2018). In that case the classification was made 

through a comparison of both S2 and L8 time series.  

 

 

(Fig. 25 – DT model) 

Tree 3 graph for Class  Thematic Layer 1

Num. of non-terminal nodes: 1,  Num. of terminal nodes: 2
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1
2
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The same procedure for calculating the decision tree was done for each image 

by placing the features as continuous variables. From this setup, a decision 

tree was extracted for each image in the time series. The highest PGI values 

were obtained during the period from May to the beginning of November, just 

when the cultivation of the vine is widespread inside the greenhouses. on the 

other hand, in the winter months, when there is no large presence of 

greenhouses in the Bari area, the classification is not guided by the PGI index. 

The good performance of SD (PGI) feature was actually based on this high 

range of variability over time to discriminate between GH and Non-GH 

classes. 

 

(Fig. 26 - 25/1/2020 Decision Tree) 
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(Fig. 27,28 - 9/2/2020 and 13/3/2020 DT) 
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(Fig. 29,30 - 17/4/2020 and 9/5/2020 DT) 

Tree 7 graph for Class  Thematic Layer 1
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(Fig. 31,32 - 28/6/2020 and 3/7/2020 DT) 

Tree 3 graph for Class  Thematic Layer 1

Num. of non-terminal nodes: 1,  Num. of terminal nodes: 2
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(Fig. 33,34 - 23/7/2020 and 2/8/2020 DT) 

Tree 2 graph for Class  Thematic Layer 1
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(Fig. 34,35 - 12/8/2020 and 27/8/2020 DT) 

Tree 3 graph for Class  Thematic Layer 1
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(Fig. 35,36 - 7/9/2020 and 6/10/2020 DT) 

Tree 3 graph for Class  Thematic Layer 1

Num. of non-terminal nodes: 2,  Num. of terminal nodes: 3
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(Fig. 37,38 - 31/10/2020 and 15/11/2020 DT) 

Tree 5 graph for Class  Thematic Layer 1
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2.4.2 Classification accuracy 

The evaluation of classification accuracy in this paper was based on two types 

of error matrices (i.e., error matrix based on 3000 objects and those based on 

pixels calculated on three manually digitized ground truth zones). Each 

column of the matrix represents the predicted values, while each row 

represents the real values. The element on row "i" and column "j" is the 

number of cases in which the classifier has classified the "true" class i as class 

j. Through this matrix it is observable if there is "confusion" in the 

classification of different classes. Through the use of the confusion matrix it 

is possible to calculate four coefficients: 

• The kappa coefficient (K), also known as Cohen's kappa coefficient. 

It is a concordance index that takes into account the probability of 

random agreement; the index calculated on the basis of the ratio 

between the excess agreement with respect to the probability of 

random agreement and the maximum obtainable excess; 

• The overall accuracy (OA) is calculated by summing the number of 

correctly classified values and dividing by the total number of values. 

The correctly classified values are located along the upper-left to 

lower-right diagonal of the confusion matrix. The total number of 

values is the number of values in either the truth or predicted-value 

arrays; 

• Producer accuracy (PA) is the probability that a value in a given class 

was classified correctly; 

• User accuracy (UA) is the probability that a value predicted to be in a 

certain class really is that class. The probability is based on the 

fraction of correctly predicted values to the total number of values 

predicted to be in a class; 
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As regards the values of OA and kappa (from Table 11 to Table 25), the 

accuracies achieved by the single S2 images were relatively low in the first 

months of the year when there is not much presence of greenhouses, while in 

the months in which the PGI index is the most significant feature, the results 

were very good reaching the peak precision in July (OA = 98.63%; KIA = 

0.973). 

 

  GH Non-GH   

GH 1425 75 1500 

Non-GH 146 1354 1500 

  1571 1429 3000 

    

Overall accuracy 92,63 KIA 0,853 

 greenhouse non-greenhouse 

Producer's 
accuracy 95,00 90,27  
User's accuracy 90,71 94,75  

(Table 11 – 25/01/2020 error matrix) 

 

 

  GH Non-GH   

GH 1322 178 1500 

Non-GH 120 1380 1500 

  1442 1558 3000 

    

Overall accuracy 90,07 KIA 0,801 

 greenhouse non-greenhouse 

Producer's 
accuracy 88,13 92,00  
User's accuracy 91,68 88,58  

(Table 12 - 9/02/2020 error matrix) 
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  GH Non-GH   

GH 1192 308 1500 

Non-GH 155 1345 1500 

  1347 1653 3000 

    
Overall accuracy 84,57 KIA 0,691 

 greenhouse non-greenhouse 

Producer's 
accuracy 79,47 89,67  
User's accuracy 88,49 81,37  

(Table 13 – 13/03/2020 error matrix) 

  GH Non-GH   

GH 1355 145 1500 

Non-GH 349 1151 1500 

  1704 1296 3000 

    

Overall accuracy 83,53 KIA 0,671 

 greenhouse non-greenhouse 

Producer's 
accuracy 90,33 76,73  
User's accuracy 79,52 88,81  

 

(Table 14 – 17/04/2020 error matrix) 

  GH Non-GH   

GH 1301 199 1500 

Non-GH 113 1387 1500 

  1414 1586 3000 

    

Overall accuracy 89,60 KIA 0,792 

 greenhouse non-greenhouse 

Producer's 
accuracy 86,73 92,47  
User's accuracy 92,01 87,45  

 

(Table 15 – 9/05/2020) 

 



64 
 

 

 

  GH Non-GH   

GH 1467 33 1500 

Non-GH 26 1474 1500 

  1493 1507 3000 

    

Overall accuracy 98,03 KIA 0,961 

 greenhouse non-greenhouse 

Producer's 
accuracy 97,80 98,27  
User's accuracy 98,26 97,81  

 

(Table 16 – 28/06/2020 error matrix) 

  GH Non-GH   

GH 1472 28 1500 

Non-GH 25 1475 1500 

  1497 1503 3000 

    

Overall accuracy 98,23 KIA 0,965 

 greenhouse non-greenhouse 

Producer's 
accuracy 98,13 98,33  
User's accuracy 98,33 98,14  

 

(Table 17 - 3/07/2020 error matrix) 

  GH Non-GH   

GH 1474 26 1500 

Non-GH 15 1485 1500 

  1489 1511 3000 

    

Overall accuracy 98,63 KIA 0,973 

 greenhouse non-greenhouse 

Producer's accuracy 98,27 99,00  
User's accuracy 98,99 98,28  

 

 

(Table 18 – 23/07/2020) 
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  GH Non-GH   

GH 1482 18 1500 

Non-GH 29 1471 1500 

  1511 1489 3000 

    

Overall accuracy 98,43 KIA 0,969 

 greenhouse non-greenhouse 

Producer's 
accuracy 98,80 98,07  
User's accuracy 98,08 98,79  

 

(Table 19 – 2/08/2020 error matrix) 

  GH Non-GH   

GH 1483 17 1500 

Non-GH 27 1473 1500 

  1510 1490 3000 

    

Overall accuracy 98,53 KIA 0,971 

 greenhouse non-greenhouse 

Producer's 
accuracy 98,87 98,20  
User's accuracy 98,21 98,86  

 

(Table 20 – 12/08/2020 error matrix) 

  GH Non-GH   

GH 1466 34 1500 

Non-GH 9 1491 1500 

  1475 1525 3000 

    

Overall accuracy 98,57 KIA 0,971 

 greenhouse non-greenhouse 

Producer's 
accuracy 97,73 99,40  
User's accuracy 99,39 97,77  

 

(Table 21 – 27/08/2020 error matrix) 
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  GH Non-GH   

GH 1457 43 1500 

Non-GH 9 1491 1500 

  1466 1534 3000 

    

Overall accuracy 98,27 KIA 0,965 

 greenhouse non-greenhouse 

Producer's 
accuracy 97,13 99,40  
User's accuracy 99,39 97,20  

 

(Table 22 – 7/09/2020 error matrix) 

  GH Non-GH   

GH 1397 103 1500 

Non-GH 22 1478 1500 

  1419 1581 3000 

    

Overall accuracy 95,83 KIA 0,917 

 greenhouse non-greenhouse 

Producer's 
accuracy 93,13 98,53  
User's accuracy 98,45 93,49  

 

(Table 23 – 6/10/2020 error matrix) 

  GH Non-GH   

GH 1340 160 1500 

Non-GH 166 1334 1500 

  1506 1494 3000 

    

Overall accuracy 89,13 KIA 0,783 

 greenhouse non-greenhouse 

Producer's 
accuracy 89,33 88,93  
User's accuracy 88,98 89,29  

 

(Table 24 – 31/10/2020 error matrix) 
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  GH Non-GH   

GH 1409 91 1500 

Non-GH 227 1273 1500 

  1636 1364 3000 

    

Overall accuracy 89,40 KIA 0,788 

 greenhouse non-greenhouse 

Producer’s 
accuracy 93,93 84,87  
User’s accuracy 86,12 93,33  

 

(Table 25 – 15/11/2020) 

Overall, the error matrix referred to the statistical indices (Table 26) gave 

excellent results. Among the 1500 objects pre-classified as greenhouses, 1456 

greenhouses were well classified while 14 were wrong. Among the 1500 

objects classified as Non-GH 1487 were well classified and 13 were wrong. 

The OA at 99,10% and the K=0,982 are values never reached in previous 

studies and also the affirmation of the PGI index as in the studies done on 

Almeria in (Manuel A. Aguilar A. V., 2015), (Manuel A. Aguilar A. N., 2016) 

can be a very interesting result. Therefore, from very high values of OA and 

K it was possible to begin to ascertain the robustness of this classification 

based on the PGI index. 

 

 

 

 

(Table 26 all statistic features error matrix) 

  GH Non-GH   

GH 1486 14 1500 

Non-GH 13 1487 1500 

  1499 1501 3000 

    
Overall accuracy 99,10 KIA 0,982 

 greenhouse non-greenhouse 

Producer's accuracy 99,07 99,13  
User's accuracy 99,13 99,07  
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2.4.3 Importance of Features 

The ranking of the 10 most important characteristics used for image 

classification is shown in Table 28. The ranking is obtained by combining the 

importance of the characteristics of all images in the S2 time series.  At the 

top of the most important characteristics ranking there is obviously the 

SD_PGI as we have already seen in the DT. Next comes the DIF_PIG 

(importance = 0.994612) and the MIN_PGI (importance = 0.983871). This 

result further demonstrated how decisive the PGI index is in the classification. 

In the rankings of importance of the individual Sentinel-2 images, the trend 

is very similar to that already observed by the decision trees shown above. 

Therefore in the summer months the PGI value stands out and the NDBI value 

occasionally. 

Feature Rank Importance 

SD_PGI 100 1,000000 

DIF_PGI 99 0,994612 

MIN_PGI 98 0,983871 

SD_PGI1 96 0,963691 

MAX_PGI1 95 0,945188 

DIF_PGI1 94 0,935899 

SD_GDI 93 0,928027 

DIF_GDI 91 0,913926 

MEAN_PGI 91 0,907553 

SD_MDI 88 0,880359 

MEAN_PGI1 88 0,877719 

DIF_MDI 85 0,845005 

MEAN_NBDI 81 0,813513 

MIN_NBDI 79 0,789848 
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DIF_PMLI 76 0,760364 

MEAN_Vi 71 0,712151 

SD_MDLP 70 0,701919 

MIN_MDI 69 0,689118 

DIF_MDLP 69 0,685976 

DIF_NBDI 68 0,682576 

MEAN_FDI 68 0,681668 

SD_PMLI 68 0,677653 

MEAN_MDI 63 0,631106 

SD_NBDI 61 0,607550 

MIN_GDI 57 0,567284 

MAX_MDLP 56 0,563391 

MAX_FDI 54 0,544853 

MEAN_MDLP 53 0,525674 

SD_RPGI 48 0,476495 

DIF_NDVI 48 0,475565 

DIF_PI 47 0,472385 

DIF_RPGI 46 0,463589 

SD_Vi 44 0,442238 

MIN_Vi 44 0,439512 

DIF_Vi 44 0,437763 

SD_PI 39 0,389674 

SD_NDVI 39 0,387907 

MEAN_GDI 38 0,382981 

DIF_FDI 38 0,382780 

MIN_PMLI 37 0,371398 

MEAN_RPGI 33 0,326079 
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MAX_RPGI 32 0,324860 

SD_FDI 32 0,322707 

MEAN_MDRP 26 0,255436 

MIN_NDVI 25 0,254720 

MIN_PI 25 0,253019 

MAX_PI 24 0,243945 

MEAN_PMLI 24 0,243025 

MAX_NDVI 24 0,237738 

MAX_MDRP 24 0,235344 

MEAN_PI 23 0,226884 

MEAN_NDVI 22 0,223888 

MAX_GDI 21 0,211141 

MAX_PMLI 21 0,207191 

MIN_RPGI 21 0,207092 

MAX_Vi 20 0,203978 

DIF_MDRP 16 0,164264 

MAX_PGI 13 0,133146 

SD_MDRP 11 0,107086 

MAX_NBDI 10 0,101944 

MIN_MDRP 7 0,068849 

MIN_PGI1 5 0,053814 

MAX_MDI 4 0,038258 

MIN_MDLP 3 0,026483 

MIN_FDI 1 0,011235 

(Table 27 – Importance ranking) 
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2.4.4 Pixel-based accuracy 

After analyzing the most relevant characteristics and the most stable cutting 

values over time, the next step was to consolidate the result obtained until 

now by making a new classification following the decision rule corresponding 

to the DT. The selected feature was obviously the SD_PGI derived from the 

S2 time series (Fig. 25). This procedure was again implemented in eCognition 

to perform pixel-based accuracy assessment. Once the classification was done 

on eCognition, the goal was to create 3 Ground Truth zone masks manually 

digitized. The 3 sub-zones (Fig. 39, 40, 41) were chosen based on the density 

and distribution of greenhouses present within them. Ground truth is the 

information or data collected on the site so that the input data (image) can be 

related to the actual characteristics and is considered very correct and 

appropriate with respect to the input characteristics. This process compares 

the pixel on a satellite image with what is present in reality (at the moment) 

in order to verify the content of the pixel on the image. In addition, the 

commission error and omission for the accuracy assessment can be calculated 

in the same way as the OBIA approach.  

  

(Fig. 39,40,41 – Zone 1 coordinates UTM cornes: Upper-Left: 662000 m, 4546000 m 

Bottom-Right: 664000 m, 4544000 m; Zone 2 coordinates UTM corners: Upper-Left: 

662000 m, 4540000 m Bottom-Right: 664000 m, 4538000 m; Zone 3 coordinates UTM 

corners: Upper-Left: 658000 m, 4540000 m Bottom-Right: 660000 m, 4538000 m) 
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the digitized masks were rasterized in TIF assigning to each pixel the values 

of 1 and 2 (respectively corresponding to GH and Non-GH). The pixels of the 

TIFs of the 3 sub-zones were compared with OBIA classification obtained 

from the DT. From this comparison 3 new dispersion matrixes were 

calculated (one for each zone) similar to those made previously but referring 

to the pixels instead of the objects. Each pixel has an area of 1x1 m (because 

the digitization was made from the Deimos-2 image which has a geometric 

resolution of 1 m) and the sub-zones considered are squares with a side of 2 

km. Therefore each sub-zone contains 4000000 pixels classified and 

compared with the OBIA classification. 

 

2.4.5 Comparison procedure 

New eCognition files have been created for each Ground Truth zone. The 

input data is the same as the previous classification except for the thematic 

layer. In this case the vector file used does not contain the binary pre-

classification (GH or Non-Gh) but all the characteristics and statistical 

indices, calculated in the previous steps, have been integrated into its attribute 

table. Therefore, once the input data has been entered, a new classification 

has been created in the following way. A new "assign class" has been added 

in which all segments of the layer with SD_PGI value greater than 

21153,591680 are classified as greenhouses. Conversely, another class has 

been added in which all segments with SD_PGI values less than 

21153.591680 are classified as Non-Gh. 

 

 

(Fig. 42 - Example classification based on SD_PGI in eCognition) 
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In the Figure 43 it is possible to notice the new classification based on 

SD_PGI compared with the previous one (1500 GH Objects). 

(Fig. 43 – New classification with SD_PGI) 

At this point the masks have been inserted into the software. The procedure 

was done individually for the 3 sub-zones. In order to insert the mask, 

eCognition needs two types of input files: 

• The TIF file with the pixels classified as 1 -> Gh E 2 -> Non-Gh; 
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• An excell table with 4 columns. In the first column there is the ID of 

the pixels (1 or 2), in the second, third and fourth column there is the 

RGB combination and in the last there is the name of the class; 

ID Red Green Blue Class_Names 

1 255 0 0 GH 

2 0 0 255 Non_GH 

(Table 28 - Input table for the mask) 

 

The TIF was created using GIS, transforming the layers (Fig. 44, 45, 46) of 

all the greenhouses into raster (Fig. 47, 48, 49). In the transformation the 

"class" was used as the field value and the pixel measurement was set equal 

to 1 as previously mentioned. 

(Fig. 44,45,46 – GH layers for each sub-zone) 

 (Fig. 47, 48, 49 – TIF masks) 
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After the two types of input file described above have been loaded, the created 

masks appear on the eCognition software (Fig. 50, 51, 52). By zooming into 

one of the 3 masks, divergences between the two types of classification have 

already been noted. it is evident that there are segments of the thematic layer 

in which inside there are pixels of different classification. 

 

(Fig. 50 – eCognition mask zone 1) 

 

(Fig. 51 – eCognition mask zone 2) 
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(Fig. 52 – eCognition mask zone 3) 

 

 

 

 

 

 

 

 

 

(Fig. 53 - example misclassification) 

This led to values of “OA” and “K”, for the respective three areas analyzed, 

lower than those calculated in the OBIA classification made previously. In 

fact, the new error matrix for each mask was calculated and the following 

values were obtained: 
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 TTAMASK ZONE 1BARI  

    

  GH Non-GH   

GH 428083 117737 545820 

Non-GH 21037 3437144 3458181 

  449120 3554881 4004001 

    

Overall accuracy 96,53 KIA 0,841 

 greenhouse non-greenhouse 

Producer's accuracy 78,43 99,39  
User's accuracy 95,32 96,69  

(Table 29 – error matrix zone 1) 

 TTAMASK ZONE 2 BARI  

    

  GH Non-GH   

GH 1388482 283268 1671750 

Non-GH 67661 2266591 2334252 

  1456143 2549859 4006002 

    

Overall accuracy 91,24 KIA 0,817 

 greenhouse non-greenhouse 

Producer's accuracy 83,06 97,10  
User's accuracy 95,35 88,89  

 

(Table 30 error matrix zone 2) 

 TTAMASK ZONE 3 BARI  

    

  GH Non-GH   

GH 951350 245350 1196700 

Non-GH 133260 2676042 2809302 

  1084610 2921392 4006002 

    

Overall accuracy 90,55 KIA 0,768 

 greenhouse non-greenhouse 

Producer's accuracy 79,50 95,26  
User's accuracy 87,71 91,60  

 

(Table 31 error matrix zone 3) 
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The accuracy values are obviously lower than the OBIA classification but are 

still high enough to confirm the robustness of the SD_PGI parameter in the 

classification of greenhouses in the area under study. 

 

3 Conclusions 

In this work, an approach similar to that made in previous publications was 

presented to address the problem of mapping greenhouses but with a different 

type of starting images. A greater verification of the accuracy of the 

classification and above all an area was studied (Bari) containing a typology 

and a temporal distribution of greenhouses different from those studied in 

previous studies such as Almeria. The workflow carried out for the 

classification with the OBIA approach was based on the Sentinel-2 and 

Deimos-2 data pair, which until now had never been used for this type of task 

in the Bari area. The first phase focused on achieving the optimal 

segmentation for the individual greenhouses using the MRS algorithm on the 

single Deimos-2 orthoimage. The use of the free access control tool called 

AssesSeg allowed to find an ED with excellent relationship with the visual 

quality of the greenhouse segmentations, allowing to select the main MRS 

parameters (i.e., Scale, Shape and Compactness) for the orthoimage. It is 

worth mentioning that the AssesSeg tool can work with segmentation 

algorithms other than MRS. Therefore, segmentation evaluation is not strictly 

dependent on the use of eCognition. The next step was to do binary 

preclassification of the previously segmented objects into GH or Non-GH. 

The DT classifier was applied to determine the best statistical seasonal 

characteristics (MEAN, MAX, MIN, DIF, SD) derived from different groups 

of indices based on a single object (spectral, vegetation indices and plastic 
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detection indices). The individual object-based features have been extracted 

from every single pre-processed S2 scene. The standard deviation of the 

Plastic Greenhouse Index (SD (PGI)) was the most important statistical 

seasonal characteristic for the time series. This result is of considerable 

importance because it is the same obtained by the DT in the publication of  

(Abderrahim Nemmaoui, 2018) for the Almeria site. Although the 

greenhouses of Almeria are different both from the structural point of view 

and, regarding to the crops present inside, this work has brought great 

confirmation about the robustness of this statistical data for the classification 

of greenhouses. Also from a temporal point of view, the PGI index reported 

by (Dedi Yang, 2017) proved to be the most exceptional following the 

seasonal trend of the presence of greenhouses in the Bari area with good 

results. The OA and kappa accuracy values for binary classification obtained 

from S2A DT (OA = 99.10%; Kappa = 0.8982) give further confirmation on 

the use of the Sentinel time series as has already been demonstrated by 

Nemmaoui et al. (2018). Furthermore, in the pixel-based verification of the 

classification, despite the values of OA and K are lower for obvious reasons, 

however, they have values high enough to confirm the robustness of the data. 

In conclusion, overall, the proposed workflow was successfully demonstrated 

using Deimos-2 and Sentinel-2 satellite images, demonstrating that the S2 

time series produced slightly better accuracies than L8 used in previous 

publications, mainly in the binary pre-classification phase. However, more 

work is needed to learn much more about the influence on crop classification 

under PCG of several factors such as crop varieties, type, age and thickness 

of the plastic cover, and the geometry of the greenhouse roof. 
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