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Abstract English 
 

In this thesis, the attention was focused on the enhancement of the pre-processing 

stage for passive remotely sensed data. The proposed enhancements were firstly related 

to a single land cover class and then to the relative radiometric corrections of passive mul-

tispectral satellite data. The first of the two big chapters was related to the extraction of 

Plastic Covered Greenhouse (PCG) and to the development of new procedures and tools 

that demonstrated their usefulness by achieving high accuracies. Although the specific LC 

considered, the solutions showed in this chapter can be considered valid also in other en-

vironments.  

In the second chapter a new algorithm is proposed for PIF (Pseudo Invariant Fea-

tures) extraction and relative radiometric normalization. The new Threshold Relative Radi-

ometric Correction Algorithm (TRRCA) can be labelled as a supervised one and combines 

three methods for the detection of PIF: Moment distance index (MDI), Normalized Differ-

ence Vegetation Index (NDVI) masks, morphological erosion and dilate operators. To prove 

its effectiveness, the algorithm was tested by using L8 scenes in different environments 

over the world. Lastly, the results achieved with the TRRCA were compared with the well-

known IR-MAD (Iteratively Reweighted Multivariate Alteration Detection). These compari-

sons have shown that the proposed algorithm can be a valid, and in some cases better, 

alternative to existing approaches. 

 

 

 

key words: Pre-processing; Relative Radiometric Correction; Plastic Cover 

Greenhouse; OBIA; Sentinel-2; Landsat 8 
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Abstract Italiano 
 

L’obbiettivo di questa tesi è il miglioramento della fase di pre-propcessing per dati 

satellitari telerilevati passivi. I miglioramenti proposti sono stati in primis rivolti ad una sin-

gola classe di copertura del territorio e, in seguito, alla generale correzione radiometrica 

relativa di dati satellitari multispettrali passivi. Il primo dei due grandi capitoli è connesso 

alla problematica dell’estrazione coperture plastiche in ambito agricolo e allo sviluppo di 

nuove procedure e strumenti che hanno dimostrato la loro efficacia ottenendo elevate ac-

curatezze nei risultati. Sebbene i risultati ottenuti nel primo capitolo siano specifici per una 

singola classe di copertura dei suoli, le soluzioni ottenute possono essere considerate va-

lide anche per problematiche simili ma relative ad altre classi di copertura. 

Nel secondo capitolo è stato proposto un nuovo algoritmo per l’individuazione di 

PIF (psudo invariant features) e correzione radiometrica relativa di dati satellitari passivi. Il 

nuovo algoritmo (TRRCA, Threshold Relative Radiometric Correction Algorithm) può es-

sere definito come un algoritmo supervisionato che combina tre metodi per il rilevamento 

dei PIF: Momentum Distance Index (MDI), maschere di Normalized Differenced Vegetation 

Index (NDVI), operatori morfologici di erosione e dilatazione. Per testare l’efficacia dell’al-

goritmo TRRCCA sono state selezionate scene satellitari L8 acquisite in differenti regioni 

sparse per il mondo. Infine, i risultati ottenuti con l’algoritmo TRRCA sono stati confrontati 

con il celeberrimo algoritmo IR-MAD (Iteratively Reweighted Multivariate Alteration Detec-

tion) mostrando come l’algoritmo proposto possa essere una valida, e in alcuni casi mi-

gliore, alternativa agli approcci esistenti. 

 

key words: Pre-processing; Relative Radiometric Correction; Plastic Cover 

Greenhouse; OBIA; Sentinel-2; Landsat 8 
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INTRODUCTION 
 

 

In the last decades, the technical and research communities have seen an enor-

mous increasing of geospatial/geolocated data. Land use, fauna and flora, permanent ice 

monitoring, drought, traffic and cultural heritage need a constant and multitemporal moni-

toring. Coupled with the increased availability of resources there is the need for timely and 

accurate information about the type, quantity, and extent of them.  

For example, to assess the risk and plan effective emergency response, is im-

portant to know the position of roads to fire and police stations, hospitals, and emergency 

shelters; for rare species is important to improve the habitat conditions and to know: what 

the habitat constraints are, where a specific habitat is located, where one or more species 

lives and how variations to the habitat (and its neighbourhoods) could possibly interact with 

species distribution. It is clear that the understanding of the location and distribution of re-

sources over time is crucial to plan an effective management of them.  

The simplest way to represent geolocated information is with maps. Maps can pro-

vide a measure of the extent, location and density of resources. However, a map can be 

considered as a model (Reddy, 2008) that for its conception reduces the complexity of the 

real world. The use of geolocated information inevitably introduces errors and the problem 

of the accuracy of the information that we are using.  

From this point of view, the accuracy of any spatial data set is a combination of 

both positional and thematic accuracy. In particular, the problem of the accuracy and of the 

extraction of reliable information is not negligible when economic resources can be saved 

because of this. However, because the thematic accuracy is much more complex than the 

positional accuracy (Congalton and Green, 2008) this thesis work was mainly focused on 

the first one and in the enhancement of data pre-processing in order to extract high quality 

thematic information from processed data.     

In this thesis, the improvement of the pre-processing of the satellite data is corre-

lated to the retrieval of information stored in them data but not directly usable. This topic 

was analysed within two different themes, described in two big chapters. The first one is 

related to the enhancement of plastic covered greenhouse extraction and the second one 

on relative radiometric corrections of satellite data.  
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In the first chapter the extraction of thematic information is the main topic. Both 

pixel and Object Based Image Analysis (OBIA) approaches were tested. Particularly, inno-

vative tools and procedures were implemented and directly developed for this purpose add-

ing a scientific contribute in the related field. This chapter takes also into account the geo-

metric accuracy of the extracted areas and the development of an executable tool to assess 

the geometric accuracy after a digital image segmentation process.  Although the proce-

dure and tools showed in this chapter are related to plastic greenhouse extraction, the 

achieved results and the showed methods can be considered valid also in other environ-

ments.  

 The second chapter adds a contribute in the field of pre-processing for change 

detection analysis. A new and performant relative radiometric normalization algorithm was 

developed and tested. The algorithm is related to the retrieval of pseudo invariant features 

between two multitemporal satellite images with a novel method and then compared with 

the most well-known relative radiometric correction algorithm. 

Each chapter will be organized with its own introduction and description of the im-

plemented data, chosen test areas, methods and results. This was necessary to properly 

introduce each exanimated topic and to show the application of the developed procedures 

and tools. The theory and methods that were not directly developed during this thesis work 

will be introduced only if strictly necessary. Indeed, a rich bibliography is provided in order 

to build a strong theoretical framework for the two chapters.   

It is worth noting that part of the material showed in this thesis was already pub-

lished in prestigious journals and as conferences proceedings with a peer review process.   
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CHAPTER 1:  The extraction of Plastic Covered Greenhouse 
 

 

In this first chapter are showed procedures and new methods to enhance the de-

tection of a specific Land Cover (LC) typology. The effort was focused on the extraction of 

Plastic Covered Greenhouse (PCG) and in the development of new procedures and tools 

that demonstrated their usefulness by achieving high accuracies. Indeed, the spread of 

agricultural plastic coverings is a consequence of their positive impact on plants protected 

by their action. This, along with an equivalent positive impact on the local economy, ex-

plains why plastic coverings have become a common practice in some agricultural fields. 

On the other hand, plasticulture raises both environmental and landscape issues. Since 

agriculture is one of the most important economic activities of the examined study areas, a 

detailed site mapping is crucial both for the protection of the local economy and for the 

preservation of local environment and landscape. To this purpose: 

- Four normalized difference indices were combined to extract PCG with Land-

sat 8 (L8) data;  

- Were compared for the first time the performance between Sentinel-2 (S2) 

Multi Spectral Instrument (MSI) and L8 Operational Land Imager (OLI) headed 

up to greenhouse detection; 

- Were developed and described the capabilities of a command line tool created 

to assess the quality of segmented digital images. 

Although the specific LC considered, the solutions showed in this chapter can be 

considered valid also in other environments. Lastly, it is worth noting that part of the showed 

results were already published in peer reviewed journals (Novelli and Tarantino, 2015a, 

Novelli et al., 2016a, Aguilar et al., 2016c). 

 

 

1.1 Introduction 
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Environmental modelling and spatial planning need the development of operational 

tools able to simplify the extraction of information from available data. This is especially 

true when the considered data are remotely sensed and the extracted information has an 

economic relevance (Blaschke, 2010).  

This chapter is focused on the extraction of PCG. Plastic polymers have been ex-

tensively used in agriculture. Nowadays "plasticulture" (Lamont, 1996) is the term that spec-

ifies an agricultural practice in which plastic polymers are used to protect specific plantation. 

All over the world plasticulture applications range from plastic mulch film, row coverings, 

high and low tunnels, to plastic greenhouses (Espi et al., 2006). Although the implementa-

tion of plastic coverings in agricultural practices produces positive effects (especially in 

semi-arid environments), its widespread has negative consequences on the original land-

scape (Briassoulis et al., 2013). Indeed, plastic coverings alter the natural rainwater paths 

on the soil affecting both recharge and quality of groundwater. A typical effect caused by 

plastic covered areas is the concentration of the rainwater along the borders and the strips 

of fields, precluding water infiltration. This particular circumstance increases the probability 

of rainwater runoff to the detriment of groundwater recharge. Since agriculture is one of the 

most important economic activities within the analysed study areas, its adequate monitoring 

is necessary in order to avoid an uncontrolled development (and its related consequences) 

of rural areas (Aguilar et al., 2014, Picuno et al., 2011, Tarantino and Figorito, 2012).  

Due to its peculiar characteristics, remote sensing PCG mapping is far to be solved 

(Agüera et al., 2008, Agüera et al., 2006, Aguilar et al., 2014, Levin et al., 2007, Tarantino 

and Figorito, 2012) as demonstrated by the increasing number of scientific works produced 

in the last decade (see section 1.2). In fact, different plastic materials with varying thickness, 

transparencies, ultraviolet and infrared reflection and transmission properties, additives, 

age and colours add complexity in PCG detection. Moreover, as plastic sheets are semi-

transparent, the changing reflectance of the crops underneath them affects the greenhouse 

spectral reflectance itself (Levin et al., 2007). 

The topic of PCG extraction is relevant with passive remotely sensed data with 

which PCG detection has been carried out through two main approaches: Pixel-Based (PB) 

and Object Based Image Analysis (OBIA). In this chapter the main focus will be on the 

enhancement of PCG detection by means of OBIA, although will be shown also how to 
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exploit an artefact within the L8 Quality Assessment (QA) band to extract PCG in a pixel-

based approach. 

 On the other hand, when there is the need to extract a particular LC by means of 

an OBIA procedure, it is important to point out two critical issues. Firstly, the shape of the 

real individual objects (in this case PCG) should be represented in the best way by the 

segments to classify; then the classification should be simple, accurate, robust, temporally 

stable and fast. This means that geometrically accurate segments should be identified by 

means of a small training sample size or even without training. Many reasons justify the 

use of an OBIA approach (e.g. geometric and neighbourhood information availability, re-

duction of salt and pepper effect in classifications, etc.). A general review of pros and cons 

of OBIA can be found in Blaschke (2010) and Blaschke et al. (2014). In this chapter the 

segmentation stage was performed by means of the Multi-Resolution Segmentation (MRS) 

algorithm (Baatz and Schäpe, 2000) included in the eCognition Developer software (Trim-

ble, Sunnyvale, California, United States). MRS is one of the most widely used methods to 

perform image segmentation (Blaschke, 2010) and has already been successfully per-

formed on plastic greenhouses by Tarantino and Figorito (2012) and Wu et al. (2016). How-

ever, in both cases the key parameters of the algorithm (scale, shape and compactness) 

were set up with a trial-and-error approach only validated by visual inspection. Indeed, it is 

important to note that segmentation quality evaluation controls the quality of the whole 

OBIA workflow. Among a variety of segmentation evaluation methods and criteria, discrep-

ancy measurement is believed to be the most useful and is therefore one of the most com-

monly employed techniques in many applications (Clinton et al., 2010, Liu et al., 2012, 

Yang et al., 2015).  

 

 

1.1.2 Introduction: Pixel-based approach 

 

 

In this thesis work a PB approach was tested to produce a fast PCG extraction. For 

this last proposed method, also L8 Thermal Infrared Sensor (TIRS) data were implemented. 

Commonly, satellite TIRS data are used for retrieving land surface temperature (Bai et al., 
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2015) and sea surface temperature (Tarantino, 2012). Yet TIRS data can also be used as 

ancillary information to better discriminate surfaces with similar spectral response, hardly 

ever recognizable when applying the most consolidated methods (Crocetto and Tarantino, 

2009). With regard to PGC, in-situ thermal data are generally necessary to study and as-

sess growing conditions, air flow and evapotranspiration and to define experiment condi-

tions (Villarreal-Guerrero et al., 2012).  

For the implemented PB approach the conjunct use of four normalized difference 

indices were proposed: the Normalized Difference Vegetation Index (NDVI) green index 

and three spectral indices purposely created for this study (rescaled brightness tempera-

ture, Plastic Surface Index and Normalized Difference Sandy Index) (Novelli and Tarantino, 

2015a, Novelli and Tarantino, 2015b). In the PB approach the preliminary QA band analysis 

was found to be crucial in the sampling process of plastic covered surfaces. Lastly, this is 

the first work that exploited the L8 QA band for PCG extraction.  

 

 

1.1.3 Introduction: OBIA approach 

 

 

PCG extraction through OBIA considered the above mentioned problems (see sec-

tion 1.1). Particularly, the focus was related to the evaluation of performances, in PCG 

extraction, between the two free of charge sensor L8 OLI and S2 MSI (Novelli et al., 2016a). 

This is the first time in which is proposed both a comparison regarding PCG detection be-

tween satellite data provided by the novel Sentinel-2A (S2) MSI and L8 OLI. Moreover, in 

this work S2 MSI Level 1C data (L1C, top of atmosphere reflectance) were atmospherically 

corrected (bottom of atmosphere reflectance values) by means of the Sen2Cor algorithm 

(Muller-Wilm et al., 2013) to generate a S2 MSI L2A product (Level 2 data). This is one of 

the first work to implement such user generated product. In fact, recent literature has shown 

many studies with simulated S2 MSI data but at the moment, only a few scientific papers 

have dealt with S2 MSI data (e.g.  Du et al. (2016), Immitzer et al. (2016), Fernández-

Manso et al. (2016), Pesaresi et al. (2016)). However, in the above mentioned studies were 

used S2 MSI L1C data for vegetation classification purposes (Immitzer et al., 2016), for 
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burn severity discrimination (Fernández-Manso et al., 2016), to detect build-up areas 

(Pesaresi et al., 2016) and to map water bodies (Du et al., 2016).  

The proposed comparisons were undertaken by applying an OBIA approach cou-

pled with Random Forest (RF) classifier (Breiman, 2001).  Moreover, a further improvement 

was proposed for the segmentation quality assessment by means of discrepancy meas-

urements. Specifically, this was achieved from a modified version of the Euclidean Distance 

2 (ED2) index originally proposed by Liu et al. (2012). Besides the S2 and L8 based seg-

mentations, it was also considered a more accurate segmentation obtained from a higher 

resolution WorldView-2 (WV2) image. In this sense, WV2 segmentation was employed as 

the basis to test the differences between S2 and L8 classification results connected to their 

only informative content. Very high Overall Accuracy (OA) values were obtained testing 

four different RF classification schemes by using a very small training set: L8 features with 

L8-based segmentation, L8 features with WV2-based segmentation, S2 features with S2-

based segmentation and S2 features with WV2-based segmentation. 

Lastly, in this chapter will be showed also the capability of a created command line 

tool (AssesSeg) that implements the above mentioned modified version of the supervised 

discrepancy measure ED2. Indeed, scientific literature proposes different methods to as-

sess the segmentation quality both from unsupervised and supervised approaches (e.g. 

Drăguţ et al. (2014), Liu et al. (2012)). However, in remote sensing OBIA applications, the 

proposed methods are not always coupled with tools able to automatically compute the 

described metrics. Specifically, in this thesis work, AssesSeg.exe was used to detect the 

best Band Combinations (BCs) for PCG detection from the three multispectral satellite data 

(S2, L8 and WV2).  

 

 

1.2 Related works 

 
 

Over the last decade, greenhouse detection has mainly been addressed by using 

different PB approaches supported by single satellite data, such as Landsat Thematic Map-

per (TM) (e.g. Picuno et al. (2011)), L8 OLI/TIRS (e.g. Novelli and Tarantino (2015b)), IKO-

NOS or QuickBird (Agüera et al., 2008, Agüera et al., 2006, Arcidiacono and Porto, 2010, 
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Arcidiacono and Porto, 2012, Carvajal et al., 2010) and WV2 (Tasdemir and Koc-San, 

2014, Koc-San, 2013, Pala et al., 2015).  

Specifically, in the most recent works, Colby and Keating (1998) carried out differ-

ent classifications on Landsat TM scenes in which greenhouses were one of the researched 

classes. Thunnissen and De Wit (2000) used Landsat TM and Spot XS data in the updating 

of the national LC/land-use of the Netherlands (LGN3). Greenhouses were one of the 39 

classes obtained through an integrated procedure characterized by multitemporal satellite 

imagery and the support of digital and analogue ancillary data. Mesev et al. (2000) used a 

modification of the MLC, on Landsat TM data, to find the increasing of built up areas to the 

detriment of agricultural lands with a high percentage of greenhouses. A specific study on 

greenhouses coverage was carried out by Zhao et al. (2004) with the implementation of an 

index model on Landsat TM data. Agüera et al. (2006) tried different band combinations 

with a Maximum Likelihood (MLC) classifier in order to enhance the detection of green-

houses with QuickBird satellite data. SÖNMEZ and Sari (2006) carried out a study in which 

was created a GIS-based database for greenhouse in the Antalya region (Turkey). In that 

work, greenhouses fields were vectorised by visual analysis of Ikonos data. Carvajal et al. 

(2006) presented a methodology to detect greenhouses based on the use of an Artificial 

Neural Network classifier from QuickBird data. Capobianco and Picuno (2008) and Picuno 

et al. (2011) performed supervised classifications and GIS analysis on Landsat TM data to 

evaluate the landscape impact of agricultural plastic coverings. Agüera et al. (2008) used 

MLC and texture analysis in order to compare IKONOS and QuickBird satellite data in LC 

(especially plasticulture) detection. Agüera and Liu (2009) proposed MLC with Extraction 

and Classification of Homogeneous Objects (ECHO) to identify the borders of PCG using 

IKONOS and QuickBird data. Then the irregular contours belonging to polygons were con-

verted into straight lines using an algorithm based on the Hough transform. Carvajal et al. 

(2010) implemented four increasing levels of atmospheric correction as pre-processing for 

greenhouse detection. They used QuickBird and Ikonos data and then showed the accu-

racy obtained related to the specific pre-processing. Arcidiacono C. and S.M.C. Porto de-

scribed their experiences in crop-shelter classification in many works (Arcidiacono and 

Porto, 2010, Arcidiacono and Porto, 2007, Arcidiacono and Porto, 2012). Particularly in 

their experiments were used both digital aerial photographs and a QuickBird scene. The 
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results were carried out through unsupervised and supervised classifications, texture anal-

ysis and object-oriented classification. Koc-San (2013) compared three different classifica-

tion techniques (MLC, random forest and support vector machine) in order to extract plastic 

and glass greenhouses. An unsupervised classification approach and Gabor features were 

followed by Tasdemir and Koc-San (2014) in greenhouses detection. Working with mul-

titemporal imagery, Lu et al. (2014) achieved a very simple but consistent decision tree 

classifier for extracting transparent plastic-mulched landcover from a very short Landsat 5 

TM time series composed of only two images during an agricultural season. They proposed 

a plastic-mulched LC index (PMLI) by using the reflectance of red band (b3) and SWIR1 

(b5). Furthermore, also large time series of MODIS surface reflectance daily L2G (250 m 

ground sample distance) covering the cotton crop period from the 85th day to the 150th 

day of the year were used by (Lu et al., 2015) for plastic-mulched LC extraction and “A 

simple threshold model for plastic-mulched land cover” was designed. It was based on the 

temporal-spectral features in the early stage of a growing season and on the number of 

days after planting. The implemented discriminator was a NDVI threshold. This rule 

achieved very good results along three different years. Novelli and Tarantino (2015b) used 

both Landsat 8 OLI and TIRS data to propose a normalized difference index for agricultural 

plastic cover detection. They worked on a test area under simplified conditions (e.g. all non-

agricultural pixels were excluded with a mask). Hasituya et al. (2016) monitored plastic-

mulched farmland by a single Landsat 8 OLI image using spectral and textural features. 

OBIA approach is much more recent. Tarantino and Figorito (2012) worked with 

OBIA and RGB aerial photographs. Particularly, the selection of the optimal segmentations 

parameters was performed by visual inspection. GeoEye-1 and WV2 stereo imagery were 

compared by Aguilar et al. (2014) in order to evaluate the enhancement in the extraction of 

greenhouses obtained from the combined use of spectral information, elevation data, band 

indexes and texture analysis. They showed that the elevation data was an important feature 

for greenhouse classification. Furthermore, a comparison between traditional per-pixel and 

OBIA greenhouse classification was carried out by Wu et al. (2016) achieving that the OBIA 

scheme resulted in significant improvement.  

The latest recent works connected with this chapter are described in Aguilar et al. 

(2015) and Aguilar et al. (2016c). In Aguilar et al. (2015) the authors addressed the identi-

fication of greenhouse horticultural crops that were growing under plastic coverings. To this 
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end, OBIA and a Decision Tree (DT) classifier were applied to a L8 OLI time series and a 

single WV2 satellite image. They used a sample of 694 individual greenhouses whose in-

formation such as the type of crop, date of planting and date of removal were known. They 

achieved an OA of 81.3% identifying four of the most popular crops cultivated under green-

house in Almería (Spain). However, in this research two important issues remained out-

standing. On the one hand, the segmentation process (i.e., in that paper the authors de-

cided to conduct a manual digitizing over the WV2 image to obtain the best possible seg-

mentation on their 694 greenhouses). On the other hand, the authors did not deal with the 

greenhouse and non-greenhouse pre-classification (i.e., all the 694 segments had already 

been pre-classified as greenhouse). 

In Aguilar et al. (2016c) was tested the combined use of very high resolution satel-

lite data and multitemporal L8 OLI imagery using an OBIA approach to map and detect 

individual greenhouses through decision tree classifier. Particularly this is the first research 

work coping with this topic using OBIA techniques and L8 time series. Subjects regarding 

this specific topic are: (1) the identification of  the optimal segmentation focused on individ-

ual greenhouses by means of segmentation evaluation methods; (2) the evaluation of the 

most important and useful features for plastic greenhouse detection (basic spectral infor-

mation, textural features, several spectral and vegetation indices, seasonal statistics and 

spectral metric); (3) the comparison between the classification accuracies achieved from 

single satellite imagery and through time series; and lastly (4) the determination of a simple 

decision tree temporally stable by using robust threshold values based on L8 time series 

for greenhouse classification. 

 

 

1.3 Study areas 
 

 

The analysed study areas belong to the Province of Taranto in the Apulia Region 

(Southern Italy) and the Province of Almería in the southern Spain (Andalucía). Particularly, 

the Italian study area was used for the PB approach whereas the Spanish one for the OBIA 

proposed method.  
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The Italian study area (Figure 1) western and the eastern bounds are respectively 

within the municipalities of Ginosa and Palagiano, close to the Ionian Sea. 

 

The dominant landscape in the northern part of the selected area is characterized 

by karst with moderate hills alternated with flat territory in the southern part of the area. The 

climate is semi-arid and typically Mediterranean: summers are hot and dry and winters are 

moderately cold and rainy (annual mean air temperature 16.28 °C, total annual precipitation 

555mm). These conditions facilitate agriculture as the main productive activity. Common 

cultivations are vineyards, citruses, olives, stone fruits and summer vegetables. Particu-

larly, vineyards grow using the traditional "tendone" technique (Picuno et al., 2011), a grape 

cultivation system with a supporting structure generally covered with plastic nets and plastic 

sheets. Plastic nets are fixed to the supporting structure to protect vineyards from adverse 

atmospheric conditions (such as wind and hail). Plastic sheets are placed above the nets 

 

Figure 1. The Study area (RGB visualization) within the Province of Taranto in the Apulia Region 
(Southern Italy). Reference System: UTM WGS84 Zone 33N. 
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during the winter season to bring forward the harvest or during the summer season (August) 

to postpone the harvest. Since most of the Apulian grape cultivations implement plastic 

protections to postpone the harvest period, in this study only scenes of August or Septem-

ber were used. 

The Spanish study area falls in Almería, southern Spain, which has become the 

site of the greatest concentration of greenhouses in the world, known as the “Sea of Plastic” 

or the “Poniente” region (Figure 2). The types of greenhouse plastic covers in the Spanish 

study area are very variable. The most common materials are polyethylene films (e.g., low 

density, long life, thermic, with or without additives) and ethylene-vinyl acetate copolymer, 

also known as EVA. Furthermore, both materials can present different thickness (180 μm 

or 200 μm) and colours (white, yellow or green). The intensive agriculture in Almería was 

mainly dedicated to tomato, pepper, zucchini, cucumber, aubergine, green bean, melon, 

watermelon and Chinese cabbage. 

 

 

1.4 Satellite data bands  
 

 

Figure 2. Location of the Spanish study area depicted by means of the Red band of the Sentinel-2 im-
age. Coordinate system: ETRS89 UTM Zone 30N 
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In this chapter were used three different satellite sensors data: L8, S2 and WV2.  

The L8 satellite, launched in February 2013, carries a two-sensor payload, the OLI 

and the TIRS. The OLI sensor is able to capture eight multispectral (MS) bands with 30m 

Ground Sample Distance (GSD): coastal aerosol (CA, 430–450 nm), blue (B, 450–510 nm), 

green (G, 530–590 nm), red (R, 640–670 nm), near infrared (NIR, 850–880 nm), shortwave 

infrared-1 (SWIR1, 1570–1650 nm), shortwave infrared-2 (SWIR2, 2110–2290 nm) and 

cirrus (CI, 1360–1380 nm). In addition, L8 OLI presents one panchromatic band (P, 500–

680 nm) with 15 m GSD and one QA band. The TIRS is able to capture two thermal infrared 

bands: TIRS1 (10600-11190 nm) and TIRS 2 (11500-12510 nm). The two bands are ac-

quired at 100 m resolution and then resampled to 30 m in delivered data product. The L8 

scenes were taken with a dynamic range of 12 bit and as level 1T data (for further details 

see Chapter 2). 

 WV2 is a very high resolution (VHR) satellite launched in October 2009. This sen-

sor is capable of acquiring optical images with 0.46 m and 1.84 m GSD at nadir in panchro-

matic (PAN) and MS mode, respectively. Moreover, it was the first VHR commercially avail-

able 8-band MS satellite: coastal (C, 400–450 nm), blue (B, 450–510 nm), green (G, 510–

580 nm), yellow (Y, 585–625 nm), red (R, 630–690 nm), red edge (RE, 705–745 nm), near 

infrared-1 (NIR1, 760–895 nm) and near infrared-2 (NIR2, 860–1040 nm). All delivered 

products were ordered with a dynamic range of 11-bit and without the application of the 

dynamic range adjustment pre-processing (for further details see OBIA sections). 

The Sentinel-2A satellite was launched on 23 July 2015. MSI sensor collects up to 

thirteen bands with three different geometric resolutions: 60m, 20m and 10m. Costal (C, 

443 nm), water vapor (WV, 1375 nm) and cirrus (CI, 1376 nm) at 60 m resolution. Four red 

edge/NIR bands with central wavelength at 705 nm, 740 nm, 783 nm and 865 nm respec-

tively, short wave infrared-1 (SWIR1, 1610 nm) and short wave infrared-2 (SWIR2, 2190 

nm) at 20m resolution. Blue (B, 490 nm), Green (G, 560 nm), Red (R, 665 nm) and Near 

Infrared (NIR, 842 nm) at 10m resolution. The S2 MSI data was downloaded as Level 1C 

data and with a dynamic range of 12-bit (for further details see OBIA sections). 
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1.5 Pixel-based Approach 
 

 

The proposed PB methodology was aimed at the fast extraction of agricultural plas-

tic covered area under the hypothesis of lacking updated ancillary data (i.e. technical car-

tography) and using only free imagery. The method included the following steps: OLI and 

TIRS data pre-processing, the definition of normalized difference indices and surface ex-

traction.  

 

To this purpose four L8 scenes (OLI and TIRS data), along the same path-row, 

were processed (Table 1), considering the summer period in which the plastic cover density 

is the highest for the Italian study area. L8 OLI and TIRS sensors data can be freely se-

lected through the USGS EROS website (http://glovis.usgs.gov/) and are nominally pro-

cessed as Level 1 terrain corrected (L1T) (Roy et al., 2014b).  

The OLI digital numbers of the four Landsat images were linearly converted to sen-

sor Top Of Atmosphere (TOA) reflectance and then corrected for the sun angle using gains, 

offsets and local sun elevation values stored in each scene metadata (radiometric calibra-

tion). No atmospheric correction was performed to test the efficiency of the proposed PB 

approach apart from the local atmospheric noise and to reduce computation time.   

Acquisition date Scene ID Subset 
Average Cloud Cover 

[%] 

08 September 2013 LC81880322013251LGN00 A 1.56 

07 August 2013 LC81880322013219LGN00 B 0.46 

24 September 2014 LC81880322013267LGN00 C 0.31 

10 August 2014 LC81880322014222LGN00 D 0.64 

Table 1. Landsat 8 OLI and TIRS scenes used in the Pixel-Based approach proposed in this Chapter. 
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Landsat 8 OLI sensor data include a quality assessment (QA) band (Roy et al., 

2014b). Each pixel in the QA band contains a decimal value that represents a bit-packed 

combination of surface, atmosphere and sensor conditions that can affect the overall use-

fulness of a given pixel. QA band’s bits may improve the quality of scientific investigations 

and could be used to mask a raster file. Particularly, QA bands were used with that aim. 

Moreover, was tested their usefulness for possible contribution to the proposed approach. 

Nine different bands can be extracted for every QA band. Three of them are1-bit bands (fill, 

dropped frame, terrain occlusion) and six of them are 2-bit bands (water, cloud shadow, 

vegetation, snow ice, cirrus, cloud). QA band data were unpacked though the L-LDOPE 

Toolbelt, a no-cost tool available from the USGS Landsat-8 website (Roy et al., 2002). In 

this case, all the nine bands were extracted at the default confidence level (34-66%) and 

only the Water and Cloud QA bands revealed a large occurrence in the study area. 

  
Subset A Subset B 

  
Subset C Subset D 

Figure 3. Examples of sampled pixels (in a RGB visualization) belonging to plastic covered areas col-
lected for the four L8 scenes of the Apulian test area. 
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The Water QA band showed a positive occurrence for luxuriant vegetation as well 

as for water. The Cloud QA band showed a positive occurrence not only for clouds but also 

for plastic covers and some urban areas. This last occurrence was found negligible if com-

pared to the analogous agricultural plastic covered areas. The Cloud QA band misclassified 

pixels were exploited in the next phase of the procedure for time-saving in the sampling 

process of ground reference plastic covered areas. For this purpose, the pixels common in 

each scene were collected by intersecting the four Cloud QA bands. The results of this 

computation highlighted an evident connection between the Cloud quality band and agri-

cultural plastic covered surfaces. Therefore, a slight manual input was required to sample 

more than 5000 pixels as ground reference for plastic covered areas starting from the pixels 

common to the four scenes (Equation 1).  

With CQBi = i-th Cloud quality assessment band. Figure 3 shows a subset of col-

lected pixels by intersecting the four cloud QA bands (Equation 1). 

With regards to L8 TIRS data, recent literature has shown the presence of some 

calibration problems related to Landsat 8 TIRS radiometric calibration for land surface tem-

perature retrieval (Montanaro et al., 2014). This drawback was not considered because the 

first of the two TIRS channels was only used as ancillary information. Particularly, for each 

scene, TIRS data were converted to at-satellite brightness temperature using the constants 

and the logarithmic equation provided by the USGS EROS website.  

 

 

1.5.1 Pixel-Based Approach: Defining ad hoc normalized difference indices to ex-
tract plastic cover surfaces 

 
 

 

Four normalized difference indices were used to extract PCG areas. Normalized 

indices proved to be easy to compute and provided accurate results. Moreover, they per-

formed better than a simple band ratio and, as dimensionless numbers, they were less 

⋂ CQBi
4

i=1
 

Equation 1.Sampled plastic covered pixels by means of quality assessment band. 
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sensitive to local conditions within the scene. The general approach for such index typology 

is to find out the strongest and weakest bands for the interested LC type (Xu, 2010). Indeed, 

normalized difference bands combinations can maximize the contrast between the inter-

ested cover type and others areas (referred as noise). The four indices were used simulta-

neously to reduce the misclassification error between vegetation and bright plastic covered 

surfaces.  

The first index (Equation 2) was created to rescale the brightness temperature do-

main by standardizing its values range with the OLI-TOA reflectance values which were 

defined into a closed interval [0;1]. 

where Tbres is the rescaled brightness temperature; Tb, Tbmin and Tbmax are 

respectively the brightness temperature, the maximum and the minimum brightness tem-

perature values for each subset.  

To better discriminate PCG areas from vegetation, the NDVIgreen (Equation 3) 

was implemented due to its better sensitivity to chlorophyll pigment (Gitelson et al., 2002, 

Rivero et al., 2009): 

Where ρNIR and ρgreen are respectively the reflectances in the green and near 

infrared spectral bands.  

The last two indices were created by using the information gained through sampled 

pixels with the aim to emphasize agricultural PCG areas and to highlight bright surfaces to 

be removed. A small group of pixels corresponding to sandy shore areas was manually 

collected as representative of high reflectance surfaces in the visible domain. Figure 4 shows 

the mean values of the sampled pixels related to PCG areas and sandy areas for each 

considered channel.  

 𝑇𝑏𝑟𝑒𝑠 =
𝑇𝑏 − 𝑇𝑏𝑚𝑖𝑛

𝑇𝑏𝑚𝑎𝑥 − 𝑇𝑏𝑚𝑖𝑛
 

Equation 2. Rescaled brightness temperature . 

NDVIgreen =
ρNIR − ρgreen

ρNIR + ρgreen
 

Equation 3. Normalized green Difference Vegetation Index.  
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For plastic covered areas, the strongest responses were in the NIR and in the Tbres 

channels while the weakest responses were in the red channel and in the SWIR2 (second 

shortwave infrared) band.  

 

 

Figure 4. Mean values of sampled pixels over the four subsets for the Apulian test Area (Pixel-Based ap-
proach). The thermal channel was used only for plastic covered areas to enhance their detection. 

 

High reflectance in the NIR band was not considered due to the high vegetation 

response in that channel. Based on the above assumptions, the most feasible channels for 

plastic covered areas were the Tbres, the Red and SWIR2 channels. The SWIR2 channel 

was combined with the Tbres channel through an arithmetic mean due to better results 

produced by this configuration. The formulation of Plastic Surface Index (PSI) (Novelli and 

Tarantino, 2015b) is shown in Equation 4. 

 

The last created index involved the strongest response of the SWIR1 band and the 

weakest response of the Costal Aerosol (CA) band for the sandy areas. It was named Nor-

malized Difference Sandy Index (NDSI) (Novelli and Tarantino, 2015a) and it assumed the 

following formulation (Equation 5): 

𝑃𝑆𝐼 =
𝜌𝑟𝑒𝑑 − (

𝑇𝑏𝑟𝑒𝑠  +  𝜌𝑆𝑊𝐼𝑅2
2 )

𝜌𝑟𝑒𝑑 + (
𝑇𝑏𝑟𝑒𝑠  +  𝜌𝑆𝑊𝐼𝑅2

2 )
 

Equation 4. Plastic Surface Index (PSI) equation. 
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1.5.2 Pixel-Based Approach: Using binary confusion matrixes for extracting plas-
tic covered areas. 

 
 

The above-mentioned indices were used to generate four binary raster masks 

(Equation 6). Then, the plastic cover extraction was carried out by simply intersecting the 

masks (Equation 7). 

Plastic Surfaces =  ⋂ Mask𝑖
4

𝑖=1
 

Equation 7. Plastic Surface Extraction equation for the Pixel-Based approach. 

where for each i-th normalized difference index (i.e. Tbres, NDVIgreen, PSI, NDSI) 

the threshold is a value extracted from an investigated range of the i-th index values (see 

Table 2).  

 

Index Tbres NDVIgreen PSI NDSI 

Inequality Greater than Less than Greater than Less than 

Value range [0.00; 0.29] [-0.40; -0.11] [-0.40; -0.11] [0.00; 0.29] 

Table 2. Ranges of the investigated thresholds for each proposed index implemented in the Pixel-Based approach. 

The final extraction was considered as a binary classification of the examined 

scenes into the “plastic surfaces” class and the general “other” class. Lastly, the perfor-

mance of the method was evaluated through the OA computed through the error matrix. 

𝑁𝐷𝑆𝐼 =
𝜌𝑆𝑊𝐼𝑅1 − 𝜌𝐶𝐴
𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝐶𝐴

 

Equation 5.  Normalized Difference Sandy Index (NDSI) equation. 

𝑀𝑎𝑠𝑘𝑖 = 𝑖𝑛𝑑𝑒𝑥𝑖 < (𝑜𝑟 >) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Equation 6. I-th Mask definition for the Pixel-Based approach.  
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The classical accuracy assessment proposed after a classification is generally pro-

vided by means of a confusion matrix. The confusion matrix is a cross-tabulation matrix 

that compares reference and classified data (Congalton and Green, 2008). If reference data 

are available for all pixels (as occurred in section 1.6), then the confusion matrix provides 

a real information concerning the relationship between the reference and classified data 

otherwise, in all the other cases, the confusion matrix provides an estimate of the accuracy 

of the classification. Indeed, this is the most common occurrence because of time and fi-

nancial constraints. In these occurrences, a sampling strategy is followed in order to collect 

reference data for the computation of the confusion matrix whereas an unbiased summary 

statistics would require the computation of a population matrix (Pontius Jr and Millones, 

2011) or the statistical validation of the achieved results (Foody, 2004). 

This PB approach was not focused, for computation time purposes, in the above 

validations (or unbiased estimations) since the evaluated confusion matrices were used 

only as a benchmark for the performed computations. The objective was the identification 

of the best confusion matrix. The i-th error matrix was evaluated using a similar number of 

ground reference for the two classes (more than 5000 pixels per class). References related 

to the “other” class were chosen within the most problematic areas: mixed classes and 

urban areas near the sampled pixels retrieved through the Cloud QA bands. The thresholds 

of each index were then evaluated by means of an IDL procedure (written ad hoc for this 

purpose) seeking the combinations of the four thresholds which maximize the OA: the ap-

propriate thresholds were searched within ranges of the index values associated with the 

sampled pixels of plastic covered areas. Table 2 shows the range of values investigated 

(810000 iterations) for each index and the inequality typology between the i-th index and 

its associated threshold. 

For each combination of indices, the Equation 6 and the Equation 7 were applied, 

the related error matrix was evaluated and then the OA of the extraction computed. The 

values of the index thresholds corresponding to the highest OA achieved for each subset 

where, at the end, inserted in the Equation 6 carrying out the final extraction by means of 

Equation 7. 
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1.5.3 Pixel-Based Approach: Results 

 
 

The best results, representative of the extractions performed for each scene, are 

shown in Table 3 whereas Figure 5 and Figure 6 show the capability of the performed 

method and examples of misclassification errors respectively. 

From the computations, the method performs well for plastic sheet placed above 

plastic net, generally bright in a true colour visualization. 

The method revealed some commission errors within urban areas (Figure 6). These 

errors are a consequence of the use of the QA band for sampling purposes’.  

Lastly, a manually drawn binary mask was used for a further countercheck of the 

maximum OA found (89%).  

The binary mask covered built-up areas and by intersecting the extracted pixels 

with the mask it was possible to isolate and count commission pixels. The ratio between 

the number of commission pixels and the number of all extracted pixels showed that 11% 

of the extracted pixels are part of built-up areas. It is possible to conclude that the evaluated 

OA, in the IDL procedure, is a good estimate of the real achieved accuracy. Despite plastic 

nets can be very difficult to detect through Landsat data, due to their high transmittance, 

the proposed method also extracts plastic nets with dense mesh.  

This method was able to produce accuracy above 80% for the four scenes by using 

information gained from L8 QA band. However, this method required many iterations to 

obtain mean OA values below the ones achievable through OBIA. For these reasons, the 

subsequent sections will be focused on testing the OBIA approach. 

 

Id (scene) Tbres NDVIgreen PSI NDSA OA acc [%] 

A 0.25 -0.21 -0.38 0.27 86 

B 0.29 -0.21 -0.39 0.27 89 

C 0.12 -0.18 -0.35 0.29 84 

D 0.25 -0.11 -0.4 0.28 82 

Table 3. Combination of the index thresholds with the highest OA achieved for the PB Method 
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Figure 5. Pixel-Based method: Results for a small sample area related to the A, B, C, D subsets visual-

ized in RGB to enhance the presence of plastic covers and in white to show the final detected areas. 

 
Figure 6. Pixel-Based method: Results for a small urban/rural sample area related to the A, B, C, D sub-
sets visualized in RGB to enhance the presence of plastic covers and in white to show the final detected 

objects mixed with false positive areas. 
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1.6 OBIA approach: dataset 

 
 

As stated in the introduction, the OBIA approach was characterized by the use of 

L8, S2 and WV2 data. In each scene, the study area was not affected by clouds presence. 

The WV2 scene was used to test differences, only due to the spectral informative content, 

between the S2 and the L8 PCG extractions. 

For this study, a WV2 bundle images (PAN + MS, Panchromatic + Multi Spectral) 

in Ortho Ready Standard Level-2A (ORS2A) format was acquired. The image over the 

study area was taken on 5 July 2015 and presented a 0.5 m PAN GSD and 2.0 m MS GSD. 

All delivered products were ordered with a dynamic range of 11-bit and without the appli-

cation of the dynamic range adjustment pre-processing. From the WV2 ORS2A bundle 

image, a pan-sharpened image with 0.5 m GSD was attained by means of the PANSHARP 

module included in Geomatica v. 2014 (PCI Geomatics, Richmond Hill, ON, Canada). The 

coordinates of seven ground control points (GCPs) and 32 independent check points (ICPs) 

obtained by differential global positioning system were used to perform the sensor orienta-

tion stage. The seven GCPs were used to compute the sensor model based on rational 

functions refined by a zero order transformation in the image space (RPC0). A medium 

resolution 10 m grid spacing DEM was used to carry out the orthorectification process. The 

DEM was characterized by a vertical accuracy of 1.34 m (root mean square error; RMSE) 

and was provided by the Andalusian Government. The planimetric accuracy (RMSE2D) at-

tained on the orthorectified pan-sharpened image was of around 0.5 m. 

Moreover, from the MS data was produced an orthoimage of 2 m GSD and con-

taining the full 8-band spectral information. The same seven GCPs, RPC0 model and DEM 

were used to attain the MS orthoimage. It is worth noting that atmospheric correction is 

especially important in those cases where multitemporal or multi-sensor images are ana-

lysed (Canty and Nielsen, 2008, Pacifici et al., 2014, Schroeder et al., 2006, Wulder et al., 

2009). Thus, in this case and as a prior step to the orthorectification process, the original 
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WV2 MS image was atmospherically corrected by using the ATCOR (atmospheric correc-

tion) module included in Geomatica v. 2014. This absolute atmospheric correction algo-

rithm involves the conversion of the original raw digital numbers to ground reflectance val-

ues, and it is based on the MODTRAN (MODerate resolution atmospheric TRANsmission) 

radiative transfer code (Berk et al., 1998). Particularly, in this chapter was used the atmos-

pheric corrected WV2 MS orthoimage data only as reference for the L8 and S2 sensors 

data whereas the orthorectified pan-sharpened WV2 data was used only for co-registration 

purposes. 

The L8 OLI scene (8 January 2016), Path 200 and Row 34, was downloaded at no 

cost from the USGS EROS website as Level 1 Terrain Corrected (L1T) product with 30m 

of geometric resolution (Roy et al., 2014b). The OLI PAN band and the TIRS bands were 

not used in the OBIA test. The extracted subset was atmospherically corrected by applying 

the ATCOR algorithm and co-registered with the WV2 pan-sharpened orthoimage through 

Geomatica v. 2014. It is important to note that a very accurate spatial matching is required 

to perform multi-sensor comparisons (Townshend et al., 1992, Zhang et al., 2014). 

The S2 MSI image (12 January 2016, orbit R051) was downloaded at no cost from 

the Copernicus Scientific Data Hub website as a Level 1C product. S2 MSI L1C product is 

characterized by Top Of Atmosphere (TOA) reflectance values, cartographic projection, 12-

bit dynamic range and tiles/granules consisting of 100 km2 ortho-images in UTM/WGS84 

projection. The Sen2Cor algorithm (Muller-Wilm et al., 2013) was used to obtain a Level 

2A SE2 MSI product characterized by atmospherically corrected Bottom Of Atmosphere 

(BOA) reflectance values. Finally, the S2 study area was extracted from the selected gran-

ule and co-registered with the WV2 pan-sharpened orthoimage by using Geomatica v. 

2014. In this study the 60m bands were not used since their contribution was considered 

negligible in an OBIA approach. 

   

 

1.6.1 OBIA approach: segmentation stage 
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In this chapter, the MRS algorithm provided by eCognition v. 8.8 was used. MRS 

is a bottom-up region merging object algorithm starting with one-pixel objects (see Baatz 

and Schäpe (2000) and Tian and Chen (2007)) for a complete mathematical description). 

It takes into account each pixel as a separate object and subsequently pairs of image ob-

jects are merged to form bigger segments (Darwish et al., 2003). But this task is not easy, 

and it highly depends on the desired objects to be segmented (Tian and Chen, 2007). The 

outcome of the MRS algorithm requires user driven parameters. A tuning phase is required 

to obtain a satisfactory segmentation for the required objects (Tian and Chen, 2007). In-

deed, the MRS algorithm output depends on three main factors or parameters: (i) the ho-

mogeneity criteria or scale parameter (SP) that determines the maximum allowed hetero-

geneity for the resulting segments, (ii) the weight of colour and shape criteria in the seg-

mentation process (Shape), and (iii) the weight of the compactness and smoothness criteria 

(Compactness). The SP or heterogeneity criteria is the most influent since it controls the 

size of segments and thus the over-segmentation and under-segmentation error (Frauman 

and Wolff, 2005). Moreover, other input information such as the considered band combina-

tion (or band weight) has to be fixed into MRS algorithm.    

Hundreds of segmentation test files were produced, for the three satellite data, by 

means of a looping algorithm created in eCognition (see section 1.7). It is worth noting that 

the initial pixel grid size of the corrected L8 image (30m GSD) was increased to 1.875 m 

by simply halving four times the original pixel size. The same procedure was applied to the 

corrected S2 image, being the 10 m and 20 m GSD bands split, without any resampling 

with subsequent interpolation, in 2m GSD bands. This was necessary to enhance the fit 

between the S2-L8 image segmentations and WV2 image segmentation. Lastly, using the 

chessboard segmentation algorithm included in eCognition v.8.8., the higher resolution 

WV2-based segmentation was applied to test the classification results attained from a com-

mon and accurately segmented dataset. 

 

 

1.6.2 OBIA approach: Segmentation quality assessment 
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The selection of the best three MRS parameters (scale, shape and compactness) 

was carried out with a modified version of the supervised discrepancy measure named ED2 

(Liu et al., 2012). As a supervised segmentation quality metric, the modified ED2 works 

with a set of reference objects used to evaluate the goodness of the segmentation. More-

over, it can be assessed through the capabilities of GIS software. 

For this thesis 400 reference plastic covered greenhouse objects, manually delim-

itated on the pan-sharpened WV2 orthoimage, were taken as reference objects. The 400 

reference geometries were manually digitized considering only the plastic covered green-

houses common to the three satellite images. Although the ED2 can be evaluated in GIS 

software, in this thesis work the segmentation quality assessment computations were car-

ried out thanks to a command line tool created for this purpose (AssesSeg.exe). The com-

mand line tool capabilities will be explained and shown in section 1.7. 

ED2, in its original formulation, starts the computations with the definition of the 

corresponding segment dataset. For each considered image segmentation output the cor-

responding segment dataset owns the segments that spatially overlap the reference poly-

gons. A further constraint is imposed over the corresponding segment dataset (Clinton et 

al., 2010): a considered segment can be labelled as a corresponding segment if the area 

of intersection between a reference polygon and the candidate segment is more than half 

the area of either the reference polygon or the candidate segment (overlapping criteria).  
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According to Liu et al. (2012) the relationship between reference polygon and cor-

responding segments can be divided in three basic types (Figure 7): 

• Overlapped area: the area shared between the reference polygon and the 

corresponding segment; 

• Over-segmentation area (occurs in the case of less than optimal match): 

when a reference polygon is split by the boundary of a corresponding seg-

ment into at least two parts. The parts of the reference polygon that fall 

inside the area of the corresponding segment (which is the overlapped 

area) and the other parts that fall outside. The areas, of the reference 

polygon, that fall outside are called over-segments; 

• Under-segmentation area (occurs in the case of less than optimal match): 

where the boundary of reference polygons splits a corresponding seg-

ment into at least two parts. The parts of the corresponding segment that 

fall inside the area of the reference polygon (overlapped area) and the 

other parts fall outside. The areas that fall outside are called under-seg-

ments and are the areas committed to the corresponding segment.  

According to the overlapping criteria, over-segments and under-segments must be 

smaller than their associated overlapped areas. 

After defining the corresponding segments dataset, the ED2 index (Equation 8) 

evaluates the segmentation quality in a two-dimensional Euclidean space by means of the 

Potential Segmentation Error (PSE) and the Number-of-Segments Ratio (NSR). The PSE 

(Equation 9) metric measures the geometric discrepancy as the ratio between the total area 

of under-segments and the total area of reference polygons (PSE = 0 means no under-

segmentation). The NRS (Equation 10) measures the arithmetic discrepancy between the 

reference geometries and the candidate segments, being defined as the absolute differ-

ence between the number of reference polygons (m) and the number of corresponding 

segments (v) divided by the number of reference polygons. A NRS value of zero indicates 

Figure 7. Discrepancies examples between reference polygon and corresponding segments: (a) one ref-
erence polygon vs. many corresponding segments; (b) one reference polygon vs. one corresponding 
segments; (c) many reference polygon vs. many corresponding segments. Source (Liu et al. (2012)). 
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the optimal condition of a one to one correspondence between the reference and corre-

sponding polygons. 

ED2 =  √(PSE)2 + (NSR)2 

Equation 8. Euclidean Distance 2 Equation. 

PSE =  
∑ |si − rk|

∑ |rk|
 

Equation 9. Potential Segmentation Error Equation. 

NSR =  
|m − v|

m
 

Equation 10. Number-of-Segment Ratio Equation. 

In which rk is the k-th reference polygon and si is the i-th corresponding segment. 

A high ED2 value indicates a significant geometric discrepancy, otherwise a significant 

arithmetic discrepancy, or both. 

The implemented modification of the ED2 index was introduced to consider the 

side effects of the overlapping criteria that act as a filter both on candidate corresponding 

segments and on reference geometries. When both the number of reference geometries 

and segmented polygons rise, there are often reference geometries without any corre-

sponding segments. In those cases, the true number of employed reference geometries 

will be lower than the original one. Therefore, the ED2 index should take this into account 

to avoid bias when computing both PSE and NSR.  

In this thesis, the overlapping criteria side effect was corrected by increasing both 

the PSE and NSR values when not all reference geometries are considered in the ED2 

computations. Being n the number of excluded reference geometries, the new computed 

PSE (Equation 11) and NSR (Equation 12) will be: 

 

PSEnew = 
∑|si − rk| + n×max (|si − rk|)

∑ |rk|
 

Equation 11. New Potential Segmentation Error Equation. 

NSRnew = 
|m − v − n×vmax|

m − n
 

Equation 12. New Number-of-Segment Ratio Equation 
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Where max (|si − rk|) is the maximum under-segmented area found for a single 

reference geometry, vmax represents the maximum number of corresponding segments 

found for one single reference geometry and ∑ |rk| computes the total area of the m – n 

reference geometries.  

The best input segmentations were computed by using the MRS algorithm and the 

modified ED2 index firstly by varying only the SP value and fixing shape and compactness 

to 0.5. Then, when a local optimum SP was found, the research continued considering: SP 

values within an interval of the local optimum, shape values from 0.1 to 0.9 and compact-

ness fixed to 0.5. For each calculation, SP and shape parameters were incremented in 

steps of 1.0 and 0.1 respectively (further details about the performed segmentation can be 

found in section 1.7). 

 

 

1.6.3 OBIA approach: Training set and Features extraction 

 
 

Three training sets of 60, 90 and 120 segments were created from the three best-

estimated segmentations for L8, S2 and WV2. For each training set, one half of the geom-

etries was related to the “Greenhouse” class and the other half to the class labelled as 

“Other”. Special attention was given to the selection of each single training segment. They 

were manually selected and considered as “pseudo-invariant” objects (similar geometry 

and same LC class) for the two classes and the three segmented satellite images. It is 

worth nothing that “pseudo-invariant” objects have to be considered different from Pseudo 

Invariant Features (PIF) that will be properly described in Chapter 2. 

S2 and L8 comparisons were obtained from the following classification schemes: 

L8 with L8-based segmentation (L8_SEG_L8), L8 with WV2-based segmentation 

(L8_SEG_WV2), S2 with S2-based segmentation (S2_SEG_S2) and S2 with WV2-based 

segmentation (S2_SEG_WV2). Notice that the geometric information provided by the WV2 

segmentation (i.e., common input segmentation) was used to test differences only due to 

S2 and L8 informative content (i.e. to test the presence of a difference only due to spectral 
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properties of the S2 MSI and L8 OLI sensor data). The comparisons were repeated for the 

three different training sets.  

Features included in the classification process were computed at object level, com-

piling for each considered object a vector containing spectral information, texture data and 

spectral indices. Texture data were obtained from the Haralick Grey Level Co-occurrence 

Matrix (GLCM) (Haralick et al., 1973).  

The best achieved segmentation, for each classification scheme, provided the ge-

ometric attributes for the classification input features computed by using eCognition v8.8. 

Table 4 summarizes the content of each i-th vector composed by 126 features for the S2 

image and 87 features in the case of the L8 image. The larger number of S2 object features 

was mainly due to the iteration of 20m red edge/NIR bands in the place of 10m S2 NIR 

band (i.e., was also tested the 20m red edge/NIR bands instead of the 10m NIR one to 

compute some indices in Table 4). This was made to test the enhanced spectral resolution 

of the novel S2 MSI sensor. 

 

 

1.6.4 OBIA approach: Random Forest classifier design and classification accu-
racy assessment 

 

 

In this chapter the RF classifier was used as a tool to perform comparisons be-

tween S2 MSI and L8 OLI scene in PCG detection. RF performed good classification results 

in several remote sensing studies demonstrating its robustness against a high number of 

variables (Breiman, 2001, Rodriguez-Galiano et al., 2012, Smith, 2010) proving to be rela-

tively robust in spite of training size reduction and noise. A detailed review of the RF clas-

sifier algorithm is beyond the scope of this thesis work. More information about the mathe-

matical formulation and its parameters can be found in the literature (e.g. Breiman (2001) 

and Dietterich (2000)). 

 

Typology Tested feat. 
L8 No. of 
feat. 

S2 No. of 
feat. 

Description Reference 
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RF is an ensemble, supervised and non-parametric classifier in which a majority 

vote over several bootstrapped decision trees is carried out (Aguilar et al., 2016a). Partic-

ularly the dataset (training data) is sampled with replacement to form a training set. For this 

reason, a n records dataset is sampled n times. In this thesis around 2/3 of the available 

data were used to train the classifier and the remaining 1/3 as the test or validation dataset, 

which is also known as out-of-bag data (OOB). Furthermore, the algorithm can estimate 

Spectral infor-
mation 

Mean and Stand-
ard deviation (SD) 

16 20 Mean and SD of each band 
(Definiens, 

2009) 

Indices 

NDVI (Normalized 
Vegetation Index) 

1 5 (NIR−R) / (NIR+R) 
(Rouse Jr 

et al., 1974) 

GNDVI (Green 
NDVI) 

1 5 (NIR−G) / (NIR+G) 
(Gitelson et 
al., 2002) 

PMLI (Plastic-
mulched land-
cover index) 

1 1 (SWIR1-R) / (SWIR1+R) 
(Lu et al., 

2014) 

SWIR1_NIR 1 5 (SWIR1-NIR) / (SWIR1+NIR) 
(Aguilar et 
al., 2016c) 

SWIR2_NIR 1 5 (SWIR2-NIR) / (SWIR2+NIR) 
(Aguilar et 
al., 2016c) 

SW1_SW2_NIR 1 5 
(((SWIR1+SWIR2)/2)-NIR)/ 
(((SWIR1+SWIR2)/2)+NIR) 

(Aguilar et 
al., 2016c) 

CIRRUS_NIR 1 - (CIRRUS-NIR) / (CIRRUS+NIR) 
(Aguilar et 
al., 2016c) 

Texture 

GLCM_h 8 10 GLCM homogeneity all directions 
(Haralick et 
al., 1973) 

GLCM_d 8 10 GLCM dissimilarity all directions 
(Haralick et 
al., 1973) 

GLCM_e 8 10 GLCM entropy all directions 
(Haralick et 
al., 1973) 

GLCM_c 8 10 GLCM contrast all directions 
(Haralick et 
al., 1973) 

GLCM_a 8 10 
GLCM angular 2nd moment all direc-

tions 
(Haralick et 
al., 1973) 

GLCM_cor 8 10 GLCM correlation all directions 
(Haralick et 
al., 1973) 

GLCM_sd 8 10 
GLCM standard deviation all direc-

tions 
(Haralick et 
al., 1973) 

GLCM_m 8 10 GLCM mean all directions 
(Haralick et 
al., 1973) 

Table 4. Sentinel-2 (S2) and Landsat 8 (L8) object based features (feat.). 
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the importance of implemented features both for classification and non-parametric regres-

sions by means of the Gini Index and OOB estimation (Rodriguez-Galiano et al., 2012). 

The Gini index measures also the impurity of a given element with respect the rest of the 

classes and was calculated as the sum of the products of all pairs of class proportions for 

classes present at the node. It reaches its maximum value when the class sizes at the node 

are equal whereas it is equal to zero if all cases in a node belong to the same class 

(Breiman et al., 1984). 

The RF algorithm was applied by means of STATISTICA v10® (StatSoft Inc., 

Tulsa, OK, United States) and need two essential input to work: the number of classification 

tree and the number of predictor variables. The number of predictors affects both the cor-

relations between the trees and the strength of the individual trees. A small number of pre-

dictors reduces correlation and strength and vice versa. Taking this into account, it is pref-

erable to use a large number of trees and a small number of split variables to reduce the 

generalization error and the correlation between trees (Rodriguez-Galiano et al., 2012). 

With regard to STATISTICA v10®, if the number of input trees is large enough, by 

default the software will determine the best final model as the one (i.e., as the specific 

number of trees) that yields the smallest error estimate for the testing sample. 

In this thesis, a precautionary value of 500 trees (always above the best solution 

found by the software) was chosen and the number of random predictive variables was 

computed from the expression 𝑝 =  𝑙𝑜𝑔2(𝑀 + 1), being M the total number of predictor 

variables (features) (Hill and Lewicki, 2007). 

Although the OOB accuracy is an unbiased estimator of the classification OA 

achieved at the classification stage, in this thesis a different accuracy assessment approach 

was used. Indeed, OOB accuracy estimation would be based on objects more than pixels 

and thus the error due to an erroneous segmentation would not be considered. 
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In this way, and to provide a more reliable and complete accuracy indicator, pixel-based 

confusion matrices based on ground truths manually digitized were computed. 

To obtain an unbiased and real accuracy estimator, the whole study area was man-

ually digitized to provide ground truth data for confusion matrices computations (Figure 8). 

 
Figure 8. OBIA Approach: Manually digitized ground truth of the whole study area. Coordinate system: 

ETRS89 UTM Zone 30N. 
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Figure 8 shows the digitized ground truth of the whole study area thus divided in the “Green-

house” and the general “Other” classes. Figure 8 was built up over the geometric base of the 

pan-sharpened WV2 orthoimage, considering the LC of the S2 and L8 images. Hence, the 

accuracy measures computed were user’s accuracy (UA), producer’s accuracy (PA), OA 

and kappa Index of Agreement (KIA) (Congalton, 1991). 

 

 

1.6.5 OBIA approach: Segmentation procedure result  

 

Several band combinations were tested for the three satellite data. The visible and 

near infrared bands turned out to be the most important regarding the final quality of the 

segmentations. Table 5 summarizes the characteristics of the best estimated segmentations 

performed over the three atmospherically and geometrically corrected images. During the 

computations, the compactness parameter was always fixed to 0.5 since in literature there 

are evidence of its negligible weight in the final output of the MRS algorithm (if compared 

to shape and, above all, SP parameter) (Drăguţ et al., 2014, Liu and Xia, 2010). Finally, for 

the S2 data the 10 m GSD bands were considered the most valuable to produce a high 

quality segmentation results. 

 

Satellite data 
Band combina-

tion 
No. objects 

Scale Shape 
Compact-

ness 
Modified 

ED2 

Landsat 8 Blue-Green-NIR 9596 43.0 0.3 0.5 0.424 

Sentinel 2 Blue-Green-NIR 10561 39.0 0.2 0.5 0.319 

WorldView2 
Blue-Green-

NIR2 
10990 

37.0 0.4 0.5 0.198 

Table 5. OBIA Approach: Best estimate ED2 values and their associated input bands and Scale, Shape 
and Compactness parameters. 
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Figure 9. OBIA Approach: Visual comparison over the WV2 orthoimage (RGB visualization) of different 
best segmentations depending on the image data: a) best estimate L8-based segmentation; b) best esti-
mate S2-based segmentation; c) best estimate WV2-based segmentation.  Coordinate system: ETRS89 

UTM Zone 30N. 
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Table 5 shows that the best greenhouse segmentation results in the case of L8 

and S2 satellite images were obtained from using the same bands combination. Moreover, 

a very similar ED2 result (0.199) was calculated with the Blue-Green-NIR1 band combina-

tion for the WV2 data. This turned out to be a very important finding since it was proved the 

stability of the best bands combination to retrieve the best segmentation on greenhouses. 

It is important to highlight that this result was obtained from atmospherically corrected im-

ages and using the same 400 reference geometries. Figure 9 shows a comparison of the 

three selected best segmentation (L8, S2 and WV2) over the same area. Figure 9 depicts 

a very high visual quality for the selected WV2 segmentation based on PCG reference 

geometries. Figure 9 also shows that the segmentation based on L8 features performed 

the worst, while the S2-based segmentation still provided a good visual segmentation qual-

ity. 

Lastly, this figure allows to appreciate the capability of the modified ED2 index to 

represent the segmentation quality of both VHR and medium resolution images (further 

details in section 1.7). 

 
 

1.6.6 OBIA approach: Random Forest classifier results  

 

 

The aim of the classification stage was to test differences in S2 and L8 PCG de-

tection results. For this purpose, their spectral content was coupled both with their  

respective geometric information (i.e. best L8 and S2 based segmentations respectively) 

and with the more accurate WV2-based best segmentation. The four combinations 

(L8_SEG_L8, L8_SEG_WV2, S2_SEG_S2, S2_SEG_WV2) were applied to the three ex-

tracted training sets. For each classification, the input geometries for the training set were 

the ones corresponding to the chosen segmentation. Figure 10 shows a subset of the best 

classifications results (see Table 6) according to each one of the considered four combina-

tions.  
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S2 classification featured a better visual quality than L8 classification for both S2 

and WV2 based segmentations. In particular, S2 classification proved to be more adequate 

to discriminate narrow objects (as streets between greenhouses) than L8 classification by 

using both segmentation approaches. 

This is certainly due to the enhanced GSD implemented with the MSI sensor. How-

ever, both S2 and L8 classifications show the presence of mixed pixels. This is a common 

drawback of medium resolution satellite imagery and occurs as a result of the heterogeneity 

of the landscape and the limitations imposed by the spatial resolution of the images. This 

fact was already reported by Wu et al. (2016) using an OBIA approach on a pan-sharpened 

Landsat 8 OLI image. In this regard, the reader should bear in mind the important difference 

between the best resolution for S2 (10m) and for L8 (30m). Table 6 presents the achieved 

OA, KIA, PA UA for the two considered classes. It is worth nothing that these are real 

accuracies and not accuracy estimates since the whole study area was used as ground 

truth reference (Figure 8). The obtained OA values, ranging from 87.9% (L8_SEG_L8 with 

60 training geometries) to 93.4% (S2_SEG_WV2 with 120 training geometries), can be 

considered satisfactory taking into account the minimum value of 85% proposed by 

Congalton and Green (2008). 

 

Scene-Segments 
combination 

training 
set 

OA 
(%) 

KIA 
PA 

Green-
house (%) 

PA 
Other 
(%) 

UA 
Green-

house (%) 

UA 
Other 
(%) 

L8_SEG_L8 
120 89.0 0.769 94.7 81.0 87.6 91.4 
90 89.1 0.773 93.1 83.4 88.8 89.6 
60 87.9 0.744 96.2 76.2 85.1 93.3 

L8_SEG_WV2 
120 89.8 0.791 90.6 88.8 92.0 86.9 
90 91.3 0.818 95.4 85.5 90.3 92.9 
60 90.8 0.806 95.1 84.8 89.9 92.5 

S2_SEG_S2 
120 90.9 0.864 95.1 84.8 89.9 92.5 
90 89.7 0.784 94.4 83.0 88.8 91.2 
60 89.8 0.786 94.9 82.4 88.5 92.0 

S2_SEG_WV2 

120 93.4 0.810 96.9 88.5 92.3 95.3 

90 92.6 0.844 97.0 86.2 90.9 95.3 

60 92.7 0.848 96.6 87.3 91.5 94.7 

Table 6. OBIA Approach: Achieved OA, KIA, PA and OA for the considered classifications. These results 
should be understood as true accuracies, and not as estimated ones, since they were computed using a 

ground truth comprising the whole working area. 
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Figure 10. OBIA Approach: Comparisons of the best classification results for the four considered 

combinations. Coordinate system: ETRS89 UTM Zone 30N. 
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The obtained OA values, ranging from 87.9% (L8_SEG_L8 with 60 training geom-

etries) to 93.4% (S2_SEG_WV2 with 120 training geometries), can be considered satisfac-

tory taking into account the minimum value of 85% proposed by Congalton and Green 

(2008).  Also KIA values showed a substantial and an almost perfect agreement (Landis 

and Koch, 1977).  Both KIA and OA confirmed that S2 classifications performed always 

better than the corresponding L8 classifications. In particular, the difference in accuracy 

between S2 and L8 increased when the common WV2-based best segmentation was used. 

Since this result was achieved from the same segmentation, the attained differences can 

be attributed to the better performance of S2 features when undertaking the RF classifica-

tion training process. 

The PA reports about the number of pixels correctly classified in a particular cate-

gory as a percentage of the total number of pixels belonging to that category in the image, 

being related to omission error. The PA for the “Greenhouse” class was always better than 

the PA of the “Other” class. These results confirmed the high classification quality achieved 

from the RF classifier for the “Greenhouse” class.  

Moreover, the lower “Other” class PA accuracy can be explained considering its 

high heterogeneity. In fact, only one class was used to address all the spectral variability of 

the totality of LCs (i.e. water, vegetation, soil and build-up areas) different from the “Green-

house” class. The UA is related to the probability that a pixel classified in a map actually 

represents that category on the ground. It is also related to commission error (error in field). 

UA values show that the reliability of the classification was very high for both classes, alt-

hough the “Other” class featured slightly better UA values. Only in the case of the L8 with 

WV2-based segmentation (60 training segments), the UA of the “Greenhouse” class was 

greater than the corresponding UA for the “Other” class.  

Although the training datasets were constituted of a very little number of geome-

tries, the results were not very sensitive to the number of geometries. This was especially 

true with S2 data in which the best accuracies were always coupled with the 120 training 

geometries, whereas for the L8 data the best results were achieved from the training sets 

composed of 90 geometries. 
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RF classifier is also capable of estimating the importance of the features in the 

training process by means of the Gini index and the OOB estimation (Rodriguez-Galiano 

et al., 2012). Table 7 and Table 8 show that normalized features or ratios were always among 

the most important 10 features for both L8 and S2. However, the consistency of normalized 

features in S2 classifications was stronger if compared to L8 outputs. In fact, among the 

top ten L8 most significant features, it was frequent to find mean-value spectral features 

Best L8_SEG_L8 Importance [%]  Best L8_SEG_WV2 Importance [%] 

SWIR2_NIR 100  SWIR2_NIR 100 

CIRR_NIR 76  SWIR1_NIR 97 

SW1_SW2_NIR 63  SW1_SW2_NIR 81 

SWIR1_NIR 53  PMLI 72 

Mean green 46  Mean green 70 

GLCM Mean costal 46  CIRR_NIR 65 

GLCM Mean cirrus 45  GLCM Ang. 2nd moment green 60 

GLCM Mean green 44  GLCM Entropy swir2 53 

GLCM Dissimilarity cirrus 44  Mean blue 51 

PMLI 43  GLCM Ang. 2nd moment blue 51 

Table 7.OBIA Approach: Importance of the best ten features achieved for the best L8 classifications. 

 

Best S2_SEG_S2 Importance [%]  Best S2_SEG_WV2 Importance [%] 

SWIR1_NIR_10 100  SW1_SW2_NIR_B06 100 

SWIR1_NIR_B08A 79  SWIR1_NIR_B08A 94 

SWIR1_NIR_B05 74  PMLI 86 

PMLI 71  SWIR1_NIR_B06 83 

SW1_SW2_NIR_B06 67  SW1_SW2_NIR_10 81 

SW1_SW2_NIR_B07 65  NDVI_G_B08A 78 

SWIR2_NIR_B08A 63  SWIR1_NIR_B07 76 

NDVI_G_B08A 62  Mean SWIR1 66 

SWIR1_NIR_B06 59  Mean red 61 

SWIR1_NIR_B07 51  GLCM Entropy SWIR1  56 

Table 8. OBIA Approach: Importance of the best ten features achieved for the best S2 classifications. 
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and textural features. This result seems to point out a better S2 stability in order to efficiently 

extract plastic-covered greenhouses regardless atmospheric conditions. 

 

 

1.7 OBIA approach: AssesSeg, a command line tool to assess the quality of segmentations  

 

 

The results presented in this section are aimed at the enhancement of Object 

based Image Analysis (OBIA) products and will show how the results showed in Table 5 

were achieved.  

In remote sensing OBIA applications, the segmentation stage is commonly part of 

the pre-processing phase. Scientific literature proposes different methods to assess the 

segmentation quality both from unsupervised and supervised approaches (e.g. Drăguţ et 

al. (2014)). However, the proposed methods are not always coupled with tools able to au-

tomatically compute the described metrics. Because of this, researchers are forced to trial 

and error attempts (e.g. Tarantino and Figorito (2012)) or to perform computations by 

means of GIS software (e.g. Aguilar et al. (2016b)) for segmentation accuracy assessment. 

Although the above methods could be coupled with quite good results, their time cost is not 

negligible.  

To overcome the limited availability of software dealing with assessing segmenta-

tion accuracy, in this section are showed the capabilities of a free of charge command line 

tool (AssesSeg.exe) that implements a modified version of the supervised discrepancy 

measure named Euclidean Distance 2 (ED2) proposed by Liu et al. (2012). The command 

line tool was created during this thesis work. 

Particularly, AssesSeg was created to deal with a huge amount of segmentations 

carried out to detect the best band combinations (BCs) and MRS algorithm parameters for 

PCG detection from three multispectral satellite data used in the previous section (S2, L8 

and WV2). The mathematics behind the tool is shown in section 1.6.2 and considers a set 

of reference objects (ROs), corresponding segment (CS) dataset and the overlapping cri-

teria. Figure 11 shows the procedure implemented for each geometry (that respect the over-

lapping criteria) within an output segmentation file. 
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Figure 11. AssesSeg procedure implemented for each geometry (that respects the overlapping criteria) 
within an output segmentation file. 

 

 

1.7.1 OBIA approach: AssesSeg 
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AssesSeg is a standalone command line tool as showed in Figure 12 (.exe exten-

sion downloadable at https://www.ual.es/Proyectos/GreenhouseSat/index_ar-

chivos/links.htm). It deals only with ESRI polygon shapefile (it does not depend on the seg-

mentation software) and its source code was written in Python given the great availability 

of open source optimization, data analysis, control and numerical analysis libraries (e.g., 

NumPy, SciPy, etc.)(Riaño-Briceño et al., 2016). It requires two different typologies of input: 

a ROs shapefile and a set of output segmentation shapefiles (at least composed of one 

single file).   

The output of AssSeg.exe is an Excel file (.xlsx) characterized by n spreadsheets, 

one for each folder containing a group of output segmentation files. Particularly the n-th 

spreadsheet will be named as the n-th considered folder, containing a group of output seg-

mentation files, and will show the following columns (one for each single output segmenta-

tion file): 

• name: name of the i-th output segmentation shapefile in the n-th output segmen-

tation folder; 

• Scale, shape, compactness: if the i-th output segmentation shapefile comes from 

a MRS algorithm and has a specific name these three columns will record the input 

 
Figure 12. AssesSeg command line output. 

https://www.ual.es/Proyectos/GreenhouseSat/index_archivos/links.htm
https://www.ual.es/Proyectos/GreenhouseSat/index_archivos/links.htm
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scale, the shape and the compactness values of the i-th output shapefile. Particu-

larly, AssesSeg recognize scale, shape and compactness If the shapefiles within 

the n-th folder are named SclXX_ShpY.Y_CompZ.Z.shp or 

SclXXX_ShpY.Y_CompZ.Z.shp. If the name of the selected output segmentation 

shapefile does not respect the required syntax rule then the scale, the shape and 

the compactness values will be set to 0. 

• Number of ground truth geometries: number of selected ROs that respect the se-

lection criteria (i.e. overlapping condition); 

• Number of segmented geometries: number of selected output segmentation 

shapefile geometries that respect the selection criteria (e.g. overlapping condition); 

• Area of ground truth geometries: total area of selected ground truth geometries 

expressed in square of the same unit of the internal reference system of the refer-

ence shapefile (if reference system is UTM the unit is expressed in meters). 

• Under-segmented area (see Liu et al. (2012)); 

• NSR, PSE and ED2 or the new formulated ones as described in section 1.6.5. 

AssesSeg can also deal with different prefixed overlapping percentages between 

ROs and input segments but this option was not explored in this thesis work. 

Lastly, AssesSeg is a very powerful tool if coupled with automatic or semi-auto-

matic algorithms able to produce many segmentation files following a certain criterion. In 

this thesis, this was accomplished by means of a semi-automatic procedure created 

through the eCognition commercial software and characterized by a looping process 

among prefixed MRS algorithm parameters (Figure 13).  
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Figure 13. Looping process tree designed with eCognition in order to obtain input segmentation files for 

AssesSeg computations. 

  

Figure 13 depicts the rule set implemented in eCognition. Particularly, the rule set:  

• Accepts as input the initial and maximum scale, shape and compactness 

parameters and their increments; 

• implements the above input parameters in nested loops: 

• saves each produced segmentation file in a specific directory. 
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1.7.2 OBIA approach: AssesSeg output results 

 
 

The MRS algorithm provided by eCognition v. 8.8 was used to produce the different 

segmentation datasets. As stated in the above sections, MRS requires user driven param-

eters (scale, shape, compactness and band weight) to obtain satisfactory results. Particu-

larly, in this thesis work, the MRS band weight parameter was used to exclude specific 

bands from the computation. This was made to investigate the best BCs to PCG extrac-

tions. 

For this purpose 400 reference PCG ROs (the same ROs for all three satellite im-

ages), manually delimited on the pan-sharpened WV2 PAN orthoimage (see section 1.6), 

were selected to find the best modified ED2 index for the three satellite data. To deal with 

SPs of the same order of magnitude among the three satellite data, the S2 and L8 initial 

geometric resolutions (10m and 20m GSD for S2, and 30m GSD for L8) were increased to 

1.875 m and 2 m respectively by simply splitting pixels in equal parts without any 

resampling. Then AssesSeg was used for every modified ED2 index computation. 

The test for S2 and L8 started by only varying the SP values (from 10 to 120 with 

a step of 1) and fixing shape and compactness to 0.5. In the case of S2 both the 10m GSD 

bands (Blue, Green, Red, NIR) and the 20m GSD bands were used. For the three satellite 

data, combinations including the SWIR bands were also tested in consideration of their 

high sensitivity to plastic coverings (Lu et al., 2015). However, for the S2 scene BCs involv-

ing 20 m GSD bands featured results characterized by higher ED2.  

Table 9 depicts the best ED2 results achieved and the corresponding SP values 

for the tested L8 and S2 BCs. Note that the best S2 and L8 common BCs are Blue-Green-

NIR and Blue-Green-Red-NIR. These BCs were subsequently applied to extend and refine 

the search of an optimal segmentation for S2 and L8 images by varying the SP values 

within an interval of the local optimum and the shape values from 0.1 to 0.9 (with a step of 

0.1). The compactness parameter was always set to 0.5 since literature has evidenced its 

minor contribution as compared to shape and, above all, SP parameters (Drăguţ et al., 

2014).  

 

Band combination S2 ED2/SP L8 ED2/SP 
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All bands 0.427/36 0.451/39 

Blue-Green-NIR 0.406/37 0.448/43 

Blue-Green-Red-NIR 0.373/36 0.438/40 

Costal-Blue-SWIR1-

SWIR2 
--- 0.512/39 

Blue-Green-Red 0.413/41 --- 

Red-NIR 0.378/37 0.461/43 

Red-NIR-SWIR1 --- 0.465/40 

Table 9. OBIA Approach: Modified ED2 and its associated scale parameter (shape and compactness were 
fixed to 0.5) for the tested Sentinel-2 (S2) and Landsat 8 (L8) equal-weighted band combinations. Computa-

tion executed with AssesSeg.exe 

Table 10 summarizes the best achieved results for the two BCs and the two tested 

satellite images. It is worth noting that the S2 image always performed better segmentation, 

in terms of ED2 metric, than the L8 one. 

The range of the tested SP values was reduced in the case of the WV2 image. In 

fact, the SP values ranged from 25 to 45 (Aguilar et al., 2016b), whereas the tested shape 

parameters varied from 0.1 to 0.9. The SP, shape parameter and compactness parameter 

followed the same rules defined for the S2 and L8 images. Table 11 reports the best results 

achieved under the performed WV2 tests. 

 

Band combination S2 ED2/SP/shape L8 ED2/SP/shape 

Blue-Green-NIR 0.319/39/0.2 0.424/43/0.3 

Blue-Green-Red-NIR 0.333/38/0.4 0.429/43/0.3 

Table 10. OBIA Approach: Modified ED2 and its associated scale and shape parameters (compactness was 
fixed to 0.5) for the tested Sentinel-2 (S2) and Landsat 8 (L8) equal-weighted band combinations. In grey, 

the best results achieved. Computation executed with AssesSeg.exe 

Table 10 and Table 11 proved the stability of the resulting best band combinations for 

PCG segmentations regardless the tested satellite image. Indeed, all the best ED2 values 

are related to almost equal, and atmospherically corrected, band combinations. 

Band combination WV2 ED2/SP/shape 
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Blue-Green-NIR2 0.198/37/0.4 

Blue-Green-NIR1 0.200/38/0.3 

Blue-Green-NIR1-NIR2 0.216/42/0.2 

Blue-Green-Red-NIR1-NIR2 0.221/38/0.2 

Blue-Green-Red-NIR1 0.204/39/0.2 

Blue-Green-Red-NIR2 0.203/38/0.3 

Red-NIR2 0.231/39/0.2 

Red-NIR1 0.238/40/0.3 

Red-NIR1-NIR2 0.233/35/0.4 

All 0.222/38/0.3 

Table 11. OBIA Approach: Modified ED2 and its associated scale and shape parameters (compactness was 
fixed to 0.5) for the tested WorldView2 (WV2) equal-weighted band combinations. In grey, the best results 

achieved. Computation executed with AssesSeg.exe 

As shown in Figure 9 (section 1.6.5), the segmentation features a high visual quality 

for the WV2 image and an acceptable visual quality for S2 image, with L8 segmentation 

performing the worst. This visual comparison allows readers to fully appreciate the capa-

bility of the modified ED2 index and AssesSeg software to extract the best potential seg-

mentation from both VHR and medium resolution satellite images. 

Finally, 50 independent sets of ROs were randomly extracted (with replacement) 

from the initial population of 400 ROs in groups of variable sample size ranging from 25 up 

to 200 ROs with a step of five (see Figure 14). 
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Figure 14. OBIA Approach: Scatter plots ED2- Number of Reference Objects. Computation executed with 
AssesSeg.exe. 

 Each single independent set was extracted without replacement. Particularly the 

extractions were performed by means of a Python script implementing the ogr library ca-

pabilities. 
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This experiment highlighted the clear relationship between the uncertainty linked 

to the computation of the modified ED2 index and the number of ROs employed. Figure 14 

and Figure 15 respectively show the scatter plots and the corresponding 95% confidence 

intervals (CIs) for the modified ED2 index according to the number of ROs sample size. 

 
Figure 15. OBIA Approach: 95 % Confidence intervals computed from the scatterplots depicted in Figure 

14. 
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In this sense, both figures demonstrate that the uncertainty in computing the mod-

ified ED2 index turns out to be excessively high when working with a low number of ROs. 

In fact, based on the results obtained in this work, a good segmentation would require more 

than 100 ROs. It is relevant to underline that only around 30 ROs per class were used in 

previous segmentation quality studies (Witharana and Civco, 2014, Liu et al., 2012). In 

particular, a higher number of ROs are not a problem for AssesSeg. 
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CHAPTER 2:  A new Threshold Relative Radiometric Correction Algorithm (TRRCA) 
of Multiband Satellite Data. 

 
 
 

In the previous chapter, the attention was focused on a single Land Cover (LC) 

class. In this one, the topic is beyond the improvement of the detection of a single LC and 

is related to the enhancement of passive satellite images for multitemporal studies. Indeed, 

it is well known that remotely sensed scenes could be affected by many factors (such as 

atmospheric conditions, topographic effects, sun angle and so on) and, for radiometric con-

sistency among temporal images, these unwanted effects must be removed for optimum 

change detection. The goal of radiometric corrections is to reduce the above effects.  

In this chapter, a new algorithm is proposed for PIF (Pseudo Invariant Features) 

extraction and relative radiometric normalization. The new Threshold Relative Radiometric 

Correction Algorithm (TRRCA) can be labelled as a supervised one and combines three 

methods for the detection of PIF: Moment distance index (MDI), Normalized Difference 

Vegetation Index (NDVI) masks, morphological erosion and dilate operators.  

To prove its effectiveness, the algorithm was tested by using Landsat 8 scenes in 

different environments over the world. Particularly the chosen test areas are the heteroge-

neous landscape of the Italian Apulia Region, the “Mar de Plástico” landscape of Almeria, 

the Himalayan mountain chain (Nepal) and Sahara Desert (Egypt).  

Since the dependence from user driven parameters, many tests were performed 

to provide a set of valid input thresholds for the chosen environments. Lastly, the results 
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achieved with the proposed algorithm were compared with the well-known IR-MAD (Itera-

tively Reweighted Multivariate Alteration Detection). The comparisons were assessed 

through the use of statistical tests and showed very good and stable results in the four 

different study areas. The IR-MAD showed its best result on the Egyptian test area whereas 

in other test areas featured some localized errors. 

The achieved results showed that the proposed algorithm can be a valid, and in 

some cases better, alternative to the existing approaches. 

 

 

2.1 Introduction 

 

 

In the last decades, satellite image analysis has provided invaluable data for envi-

ronment monitoring and change detection (CD) analysis (Janzen et al., 2006). However, 

remote sensing observations are instantaneous and are affected by many factors, such as 

atmospheric conditions, topographic effects, sun angle, viewing angle, dynamic changes 

of environment and changes in the sensor calibration over time (Du et al., 2002). These 

unwanted effects must be removed for radiometric consistency among temporal images, 

remaining only land-leaving radiances, for optimum change detection. To detect measura-

ble landscape changes, as revealed by changes in surface reflectance from multi-date sat-

ellite images, it is necessary to carry out a radiometric correction. Two approaches to radi-

ometric correction are possible: absolute and relative (Yang and Lo, 2000). 

In absolute radiometric correction, atmospheric radiative-transfer codes (e.g. 6Sv, 

MODTRAN) are used to obtain the reflectance at the Earth’s surface from the measured 

spectral radiances. The absolute method corrects for the following factors: changes in sat-

ellite sensor calibration over time, differences among in-band solar spectral irradiance, so-

lar angle, variability in Earth-Sun distance, and atmospheric interferences. These tech-

niques depend on in situ data and sensor parameters as inputs into atmospheric radiative 

transfer algorithms. For most historically remote scenes, these data are not available, and 

for planned acquisitions, the data (containing ozone, surface pressure or water vapor) may 
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be difficult to obtain. Consequently, absolute surface reflectance retrieval may not always 

be practical (Du et al., 2002). 

An alternative to absolute radiometric correction is the relative correction, which is 

commonly used in one of two ways; adjusting bands of data within a single image and 

normalizing bands in images of multiple dates relative to a Reference (R) image (Jensen, 

1996). Relative methods work with at least two scenes, the reference and one or more 

target (T). The target scene is corrected by simulating atmospheric and illumination condi-

tions occurred during the acquisition of the reference image (Biday and Bhosle, 2010). 

Common image based methods are the Dark-object subtraction (DOS) (Chavez Jr, 1988, 

Hadjimitsis et al., 2003, Mandanici et al., 2015) and the histogram matching (HM) 

(Gonzalez and Woods, 2008). In the former, the basic idea is finding a surface whose re-

flectance is so low that its contribution to the signal recorded by a sensor is negligible if 

compared with the radiance diffused by the atmosphere; in the latter, HM transforms the 

subject image histogram into the specified histogram of a given reference image so that 

the radiometric appearance of the image to be transformed and the R image become similar 

(Novelli et al., 2016b, Yang and Lo, 2000). Coppin and Bauer (1996) suggested using his-

togram matching before differencing TM data to reduce the radiometric difference impact. 

Yang and Lo (2000) empirically compared the performance of histogram matching (HM) 

method with other linear methods on Landsat MSS data such as pseudo-invariant feature 

set (PIF) method.  

Many researchers opt for a linear radiometric normalization method for multi tem-

poral analysis (e.g. Du et al. (2002), Canty and Nielsen (2008)). The common form for linear 

radiometric image normalization is (Equation 13): 

 

Yk
N = gk ∗ Xk + ok 

Equation 13.  Linear equation between reference and target. 

 

Here Xk is the reflectance from the k-th band of the target scene X, Yk
N is the 

normalized reflectance of the k-th band of the reference scene Y, gk and ok are respec-

tively the evaluated gain and offset implemented for the k-th band of the target scene. 
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Several methods have been proposed for the radiometric normalization of mul-

titemporal images (Canty and Nielsen, 2008, Canty et al., 2004, de Carvalho et al., 2013, 

Hussain et al., 2013). The linear regression method is the most widely used approach for 

relative correction. The first attempts were based on simple regression considering all pix-

els of multitemporal images (Jensen, 1996, Tokola et al., 1999). Subsequently, normaliza-

tion was performed considering landscape elements with reflectance values that are nearly 

constant over time. These areas belong to the so called pseudo-invariant features (PIF) 

(Caselles and Lopez Garcia, 1989, Schott, 1989).  

This chapter shows a new PIF selecting algorithm combining Moment Distance 

Index (MDI) thresholding, Normalized Difference Vegetation Index (NDVI) masks and mor-

phological erosion and dilation operators. The proposed method was called Threshold Rel-

ative Radiometric Correction Algorithm (TRRCA) and was tested in different environments 

over the world to verify its robustness against different conditions.  

The chosen areas are the heterogeneous landscape of the Italian Apulia Region, 

the “Mar de Plástico” landscape of Almeria (Spain), the Himalayan mountain chain (Nepal) 

and the Sahara Desert (Egypt). For each test area, has been defined a set of optimal input 

parameters to statistically compare the TRRCA with the well-known IR-MAD (Iteratively 

Reweighted Multivariate Alteration Detection) outputs. To the Ph.D. candidate knowledge, 

this is the first proposed method that takes into account both the MDI (Salas et al., 2016, 

Salas and Henebry, 2013, Salas and Henebry, 2012, Aguilar et al., 2016c) and morpholog-

ical operators. Moreover, the simple conceptual formulation and the good results achieved 

in comparison with the IR-MAD, over the same test areas, showed that the TRRCA can be 

considered a valid alternative to existing approaches. 

In the next sections a state of the art regarding PIF extraction is proposed to show 

the novelty of the proposed work; then the test areas, the input data, the mathematics be-

hind the TRRCA and the selection of the optimal parameters will be described; lastly will 

be shown the comparison between the proposed algorithm and the IR-MAD. 

 

 

2.2 Pseudo-Invariant Features Extraction 
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Efficient PIF detection plays a key role within the image regression process. Ac-

cording to (Eckhardt et al., 1990) PIF should: 

• be located at the same elevation for a better representation of the atmos-

pheric conditions across the scene; 

• contain only minimal amounts of vegetation to reduce change in spectral 

reflectance over time; 

• be located in relatively flat areas to minimize the effects of solar azimuth 

differences and shadows; 

• not exhibit changes in their spatial pattern; 

•  have a wide range of brightness values for the regression model to be 

reliable. 

Generally, PIF are built features such as flat roofs, roads, other non-natural sur-

faces, and deep man-made water bodies. By definition, PIF should remain spectrally con-

stant and unaffected by seasonal or biological cycles (Bao et al., 2012). They could be 

selected by visual inspection of multitemporal images. However, manually PIF selection is 

time-consuming and affected by the analyst subjectivity (Schroeder et al., 2006). In the last 

two decades, and especially in recent years, many authors have been studied semi-auto-

matic/automatic methods for selecting pixels that can be considered invariant over time. 

Schott (1989) proposed the usage of the band ratios between near infrared and 

red bands to select non-vegetated elements and non-water elements in different acquisi-

tion. Caselles and Lopez Garcia (1989) developed a relative correction based on the idea 

that the atmospheric effects, over two or more dates, can be studied in a relative way simply 

using the apparent reflectance of selected targets. This reflectance is supposed unchanged 

over time. Hall et al. (1991) performed a tasselled cap transformation to identify potential 

no-change pixels a priori. Elvidge et al. (1995) implemented the automatic scattergram con-

trolled regression method which evaluates no-change buffer zones within scattergrams of 

the same multitemporal bands and then performs a linear regression between the temporal 

image pairs. Heo and FitzHugh (2000) studied a standardized radiometric normalization 

method for detecting and deleting outliers from selected targets in order to perform an op-

timal regression. Furby and Campbell (2001) proposed an extension of the method pro-

posed by Caselles and Lopez Garcia (1989) designed to be robust against targets that 
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cannot be considered truly invariant over time. Du et al. (2002) selected PIF using principal 

component analysis (PCA) and a no-change buffer zone. Canty and Nielsen (2008) and 

Canty and Nielsen (2012), Canty et al. (2004), and Nielsen et al. (1998) developed a new 

approach adopting canonical variates, calculated from Canonical Correlation Analysis 

(CCA), instead of original images. The detection of invariant features was carried out by 

using the differences between the pairs of CCA components called by authors Multivariate 

Alteration Detection (MAD). Chen et al. (2005) recommended a new method to identify 

temporally invariant cluster in which a point density map, based on vegetation indices scat-

ter plots, was used to evaluate the normalization regression function. Polemio and Lonigro 

(2013) showed an algorithm for PIF selection focused on the improvement of the normali-

zation results. Although the authors followed the theoretical framework developed by Du et 

al. (2002) they extended their studies in order to find common PIF by using scenes belong-

ing to different sensors (Landsat TM and Landsat ETM+). El Hajj et al. (2008) developed a 

new method for automatic identification of invariant targets within one reference scene and 

different multitemporal scenes. Their method implemented the use of different raster masks 

to isolate targets used for the calculation of the linear regression. Biday and Bhosle (2010) 

performed radiometric correction using Fourier transform. Kim et al. (2012) developed a 

new relative approach for PIF detection based on the spectral profile shape of hyperspectral 

data, particularly they used the spectral angle mapping algorithm output and the application 

of the cumulative moving average concept to extract PIF. O'Connell et al. (2013) developed 

a revised version of the temporal invariant clusters method. de Carvalho et al. (2013) pro-

posed an algorithm for radiometric normalization by using PIF selected through similarity 

and spectral distance measures, density scatter plot method and robust linear regression. 

Sadeghi et al. (2013) used an artificial neural network to perform a relative radiometric 

normalization on remotely sensed data. In particular, they showed an automatic method for 

selecting invariant pixels using change vector analysis, PCA and k-means clustering algo-

rithm. Philpot and Ansty (2013) instead of statistic procedures derived an analytical expres-

sion that relates PIF to radiometric properties of the scenes. Sykas et al. (2013) proposed 

two spectral metrics for the selection of invariant pixels, the absolute normalized difference 

and the absolute normalized ratio. Garcia-Torres et al. (2014) showed a procedure for semi-

automatic normalization of multitemporal scenes based on vegetated PIF. The procedure 

was called ARIN and its input data and the image correction factor were evaluated from 
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manually selected vegetated areas assumed invariant over time. Lin et al. (2015) proposed 

a method for detecting invariant pixels bases on weighted PCA. The authors modified the 

procedure explained in Du et al. (2002) adding weights within the estimations by using 

density information of scatterplots and spectral similarities of pixels. 

Many works were focused on the comparison of different relative radiometric nor-

malization (RRN) techniques (Eivazi et al., 2015, Fernandes and Leblanc, 2005, Henebry 

and Su, 1993, Hong and Zhang, 2008, Koukal et al., 2007, Michener and Houhoulis, 1997, 

Song et al., 2001). In particular, Yuan and Elvidge (1996) compared different RRN tech-

niques on Landsat Multispectral scanner. They also showed the result of the application of 

the Schott (1989) method and of the automatic scattergram controlled regression method 

(Elvidge et al., 1995). Yang and Lo (2000) compared five RRN techniques showing that all 

five methods were able to reduce radiometric differences between two Landsat MSS im-

ages. Olthof et al. (2005) carried out the comparison of two normalization methods by using 

the Theil-Sen robust regression technique. Janzen et al. (2006) tested the differences be-

tween absolute and relative correction techniques with Landsat TM and ETM+ scenes. 

Caprioli et al. (2006) compared the MAD algorithm and the empirical line calibration for 

three Landsat ETM + scenes. Schroeder et al. (2006) tested the application of two absolute 

correction techniques and three relative correction techniques with the aim of producing 

consistent temporal reflectance trajectories of forest areas. Bao et al. (2012) compared 

automatic PIF selection by PCA with manual selection over rural and urban areas. Xu et al. 

(2012) carried out the comparison of three relative radiometric correction techniques (MAD, 

PCA and local radiometric correction) for ALOS AVNIR-2 scenes. 

Relative Radiometric correction through selection of invariant targets is an active 

topic for thermal infrared scenes too (Mustafizur Rahman et al., 2014, Nielsen et al., 2002, 

Rahman et al., 2015, Scheidt et al., 2008, Tan et al., 2012). 

 

 

2.3 Study Areas and Dataset 
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The TRRCA has been applied in four different test areas: the heterogeneous land-

scape of the Italian Apulia Region, in a portion of the Himalayan mountain chain (Nepal), 

in a portion of the Sahara Desert (Egypt) and in the “Mar de Plástico” landscape of Almería 

(Spain). For each test two Landsat 8 scenes were used respectively as reference and target 

(Table 12 and Figure 16, Figure 17, Figure 18 and Figure 19). 

The Apulia Region is the most Eastern Italian (I) region. The climate of the selected 

area is typically Mediterranean and characterized by moderately rainy winters and hot and 

dry summers (Novelli et al., 2016a). The landscape changes considerably from season to 

season and this is mainly due to the extensive agricultural activities (Giordano et al., 2015). 

In fact, a marked differentiation exists between seasonal and permanent vegetation. The 

chosen Apulian area was selected to assure a great heterogeneity (small number of natu-

ral/artificial common reflectors) between the reference scene and target to test the method 

within the fragmented agricultural landscape of the Apulia region. 

The Nepalese (N) area was chosen for the presence of high topographic gradient 

and permanent ice. Specifically, within the test area fall some of the highest pick over the 

world (Singu Chuli 6501 m, Gangapurna 7455 m, Annapurna III 7555 m, Hiunchuli 6441 m, 

Machhapuchhare 6993 m) and the northern part of the Modi river catchment. No topo-

graphic correction was performed. 

The Spanish (S) test area is located in the so-called “Sea of Plastic” (Mar de 

Plástico), in the province of Almería (Southern Spain). The main economic activity is agri-

culture under plastic covered greenhouses (Novelli et al., 2016a). Different typologies of 

plastic materials are used to cover greenhouse structures. The “Sea of Plastic” test area 

was chosen to test the TRRCA with homogenous artificial areas (high number of common 

artificial reflectors). 

The Sahara test area falls within the Egyptian (E) national confines and was chosen 

to test the TRRCA over homogenous natural areas (high number of common natural re-

flectors). 

 Landsat 8 satellite takes images covering the entire Earth every 16 days and car-

ries a two-sensor payload, the Operational Land Imager (OLI, described in Table 13) and 

the Thermal Infrared Sensor (TIRS). The OLI and TIRS spectral bands remain broadly 

comparable to the Landsat 7 Enhanced Thematic Mapper plus (ETM+) bands.  
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Figure 16. Reference-Italian (R-I) and Target-Italian (T-I) scenes used in this study. Coordinate System 
UTM WGS 84 zone 33N. 

 

Figure 17. Reference-Nepalese (R-N) and Target-Nepalese (T-N) scenes used in this study. Coordinate 
System UTM WGS 84 zone 45N. 
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Figure 18. Reference-Spanish (R-S) and Target-Spanish (T-S) scenes used in this study. Coordinate 
System UTM WGS 84 zone 30N. 

 

Figure 19. Reference- Egyptian (R-E) and Target- Egyptian (T-E) scenes used in this study. Coordinate 
System UTM WGS 84 zone 35N. 

In detail the OLI sensor has two additional reflective wavelength bands: a new 

shorter wavelength blue band (0.43–0.45 μm) and a new shortwave infrared band (1.36–

1.39 μm) for cirrus cloud detection (Wulder et al., 2015). All the OLI and TIRS spectral 

bands are stored as geolocated 16-bit digital numbers. The 100 m TIRS bands are 
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resampled by cubic convolution to 30 m and co-registered with the 30 m OLI spectral bands 

(Roy et al., 2014a). 

The OLI digital numbers of the eight Landsat 8 images were linearly converted to 

sensor Top of Atmosphere (TOA) reflectance and then corrected for the sun angle using 

gains, offsets and local sun elevation values stored in each scene metadata.  

The following Equation 14 is used to convert DN values to TOA reflectance, cor-

recting for the sun angle: 

ρλ′ = 𝑀𝜌 ∗ 𝑄𝑐𝑎𝑙 + 𝐴𝜌  

Equation 14. TOA reflectance Equation. 

Acquisition date Scene ID Subset 

7 August 2013 LC81880312013219LGN00 R-I 

10 August 2014 LC81880312014222LGN00 T-I 

24 October 2013 LC81420402013297LGN00 R-N 

11 October 2014 LC81420402014284LGN00 T-N 

13 July 2014 LC82000342014194LGN00 R-S 

30 June 2016 LC82000342015181LGN00 T-S 

01 August 2013 LC81780432013213LGN00 R-E 

04 August 2014 LC81780432014216LGN00 T-E 

Table 12. Reference (R) and Target (T) scenes used in this study for the Italian (I), Nepalese (N), Span-
ish (S) and Egyptian (E) test areas. 

Where ρλ′ is TOA reflectance, without correction for the solar angle; M𝜌 is the 

band-specific multiplicative rescaling factor from the metadata; 𝐴𝜌 is the band-specific ad-

ditive rescaling factor from the metadata and 𝑄𝑐𝑎𝑙 is the quantized and calibrated standard 

product pixel values (DN). 

The TOA reflectance was corrected with the Equation 15. 



 86 

𝜌𝜆 =
ρλ′

cos(𝜃𝑆𝑍)
=  

ρλ′

sin(𝜃𝑆𝐸)
 

Equation 15. TOA reflectance equation corrected with the sun elevation angle. 

 

Where 𝜌𝜆 and 𝜃𝑆𝐸 are respectively the TOA reflectance and the local sun eleva-

tion angle (as defined in the Landsat 8 (L8) Data User Handbook). 

The integrity of the subsets extracted from the eighth scenes was checked through 

the Landsat 8 Quality Assessment (QA) Band. QA band was unpacked by using the L-

LDOPE Toolbelt, a no-cost tool available from the USGS Landsat-8 website (Roy et al., 

2002). 

 

Band 
Number 

Band description Wavelength (μm) Geometric resolution 

Band 1 coastal blue 0.43–0.45 30 m 

Band 2 blue 0.45–0.51 30 m 

Band 3 green 0.53–0.59 30 m 

Band 4 red 0.64–0.67 30 m 

Band 5 near infrared 0.85–0.88 30 m 

Band 6 shortwave infrared 1.57–1.65 30 m 

Band 7 shortwave infrared 2.11–2.29 30 m 

Table 13. Landsat 8 Operational Land Imager (OLI) bands. 

  

 

2.4 Proposed algorithm 

 
 
 

A flowchart of the proposed radiometric normalization method is shown in Figure 

20. The method was not designed to deal with the panchromatic, the cirrus and the two 

TIRS bands.  
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The PIF selection algorithm combines the extraction of dark (local minimum) and 

bright targets (local maximum) through morphological operators, NDVI masks and MDI 

measures (Equation 16). Only the pixels positive to all the imposed conditions are selected 

as PIF. Lastly, all the computation for the proposed algorithm were performed by using the 

capability of the Numpy/Scipy libraries (Van Der Walt et al., 2011).  

𝑃𝐼𝐹𝑠 = 𝑀𝑚𝑜𝑟𝑝ℎ  ∩  𝑀𝑁𝐷𝑉𝐼 ∩ 𝑀𝑀𝐷𝐼 

Equation 16. TRRCA equation. 

 

 

 

Figure 20. Flowchart of the proposed PIF extraction method. 
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2.4.1 Morphological operators 

 
 
 

According to Hall et al. (1991), the attention should be focused on bright and dark 

areas respectively characterized by local maximum and minimum reflectance values within 

specific bands. Indeed, it is assumed that if the location of local maximum (minimum) re-

flectance values are common for both images, then the considered locations can be con-

sidered as candidate PIF.  

The blue band was used to locate local minimum often corresponding to water 

bodies, with calm waters, while bare soil or man-made objects (large roofs, parking lots, 

etc.) were located based on the red band. Local minimum and maximum were respectively 

found by using the morphological erosion and dilation. 

 

Mmax = Bmax
R ∩ Bmax 

T  

Equation 17. Candidate Bright PIF. 

Mmin = Bmin
R ∩ Bmin 

T  

Equation 18. Candidate Dark PIF. 

Bmax
R = {(Band4

R⊕S)⋂Band4
R} > 0 

Equation 19. Morphological Dilation for the reference scene. 

Bmax
T = {(Band4

T⊕S)⋂Band4
T} > 0 

Equation 20. Morphological Dilation for the target scene. 

Bmin
R = {(Band2

R⊖ S)⋂Band2
R} > 0 

Equation 21. Morphological Erosion for the reference scene. 

Bmin
T = {(Band2

T⊖ S)⋂Band2
T} > 0 

Equation 22. Morphological Erosion for the target scene. 

The erosion (dilation) of a digital greyscale image A by a flat structuring element S 

at any location is defined as the minimum (maximum) value of the image within the region 

coincident with S. In the subsequent equations, S is defined by a square 𝑛×𝑛 matrix with 

all pixels equal to 1. The coordinates of the origin of S are incremented through all values 

required so that the structuring element S visits every pixel in A (Gonzalez and Woods, 
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2008). Lastly, the influence of the structuring element size over the achieved PIF extraction 

was tested considering seven “n” in the closed interval [3;15] with 𝑛 ∈ 2ℕ + 1. 

Candidate bright PIF were found by using Equation 17 on Landsat 8 band 4. Equa-

tion 17 outputs consider only common pixels to the dilated reference and target band 4. 

Candidate dark PIF were found by using Equation 18 on Landsat-8 band 2. Equation 18 

outputs consider only pixels common to the eroded reference and target band 2. 

 Where Bmax
R  and Bmax

T  are binary arrays obtained with the application of the di-

lation operator denoted by the symbol ⊕ in Equation 19 and Equation 20; Bmin
R   and Bmin

T  

are binary arrays obtained with the application of the erosion operator denoted by the sym-

bol ⊖ in Equation 21 and Equation 22.    

Pixels selected through Equation 17and Equation 18 were used to create a first 

raster mask (𝑀𝑚𝑜𝑟𝑝ℎ) including the set of candidate PIF (Equation 23): 

Mmorph = Mmax⋃Mmin 

Equation 23. Morphological mask. 

 

 

2.4.2 Vegetation Mask 

 
 
 

PIF selected through Equation 23 could fall on vegetated areas. Moreover, they 

could not be invariant pixel for other bands. To increase the quality of selected PIF, the 

TRRCA introduces a vegetation mask derived from the very well-known NDVI (Tucker, 

1979) showed in Equation 24 and computed from both reference and target scenes. Alt-

hough the sensitivity of the NDVI against different atmospheric conditions was already 

demonstrated (Huete and Liu, 1994), in this case the vegetation index was used only to 

select PIF over areas with poor vegetation covering and belonging to humid surfaces.   

 

NDVI =
ρNIR − ρRED
ρNIR + ρRED

 

Equation 24. NDVI equation. 
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Where 𝜌𝑁𝐼𝑅 and 𝜌𝑅𝐸𝐷 are respectively TOA reflectance for band 5 and band 4. 

The selection of these areas was achieved fixing three NDVI thresholds by creating 

a further NDVI mask with Equation 25. 

MNDVI = {[(NDVI
R < NDVImax)  ∩  (NDVI

T < NDVImax)]  ∩  [(NDVI
R > NDVImid)  ∩ (NDVI

T > NDVImid)]} 

∪  [(NDVIR < NDVImin) ∩  (NDVI
T < NDVImin)] 

Equation 25. Mask NDVI equation. 

Where 𝑁𝐷𝑉𝐼𝑅 and 𝑁𝐷𝑉𝐼𝑇 are respectively the NDVI evaluated for the reference 

and the target scenes. 𝑁𝐷𝑉𝐼𝑚𝑎𝑥, 𝑁𝐷𝑉𝐼𝑚𝑖𝑑 , 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 (with 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 > 𝑁𝐷𝑉𝐼𝑚𝑖𝑑 >

𝑁𝐷𝑉𝐼𝑚𝑖𝑛) are the three thresholds used to compute 𝑀𝑁𝐷𝑉𝐼. To test the influence of these 

thresholds over the four different environments, several computations were performed (Ta-

ble 14). 

 

Threshold Interval of values Step 

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 [0.00;0.26[ 0.05 

𝑁𝐷𝑉𝐼𝑚𝑖𝑑 [-0.10;0.16[ 0.05 

𝑁𝐷𝑉𝐼𝑚𝑖𝑛 [-0.60; -0.09[ 0.05 

Table 14. Thresholds used to test the influence of 𝑀𝑁𝐷𝑉𝐼 in different environment. The showed Interval 
of values are open intervals with a step of 0.05. 

 

 

2.4.3 Moment Distance Index mask 

 

 

In addition to the aforementioned masks, the TRRCA takes advantage of the Mo-

ment Distance Index (MDI) (Salas et al., 2016, Salas and Henebry, 2013, Salas and 

Henebry, 2012, Aguilar et al., 2016c). To the best knowledge of the Ph.D. candidate, it is 

the first time that this index is tested in RRN problems.  

The MDI is designed to describe the distribution of reflectance values associated 

with a pixel by calculating the moment distances among the bands and for this reason its 

contribution was added in the proposed algorithm. 
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Figure 21. Schematic diagram of MDI applied on a sample spectral reflectance curve of a green vegeta-
tion. Note that the number of points between LP and RP pivots can vary depending on the number of 

bands analyzed or the width of the pivot wavelength region (source Salas et al., 2016). 

 

Considering the pixel spectral signature in a Cartesian plane in which wavelength 

(λ) and reflectance (ρ) are respectively the abscissa and the ordinate, the index is calcu-

lated starting from two pivot locations defined as shorter pivot and longer pivot wavelength. 

Particularly the left pivot (LP) is related to the shorter wavelength and the right pivot (RP) 

is related to the longer wavelength. λ𝐿𝑃 and λ𝑅𝑃 are the wavelengths respectively located 

at the left and right pivots (Figure 21). 

The moment distance from the left pivot (𝑀𝐷𝐿𝑃) to the right one (𝑀𝐷𝑅𝑃) is the 

sum of the hypotenuses constructed from the left pivot to the reflectance values at i-th 

successively longer wavelengths (with i from λ𝐿𝑃 to λ𝑅𝑃); one base of the triangle is the 

difference from the left pivot (i-λ𝐿𝑃) along the abscissa and the other is simply the value at 

i-th wavelength (Equation 26). Similarly, the moment distance from the right pivot (𝑀𝐷𝑅𝑃) 

is the sum of the hypotenuses constructed from the right pivot to the reflectance values at 

successively shorter wavelengths (with i from λ𝑅𝑃 to λ𝐿𝑃); one base of the triangle is the 
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difference from the left pivot (λ𝑅𝑃 − i) along the abscissa and the other is the value at i 

(Equation 27). The MDI equation is showed in Equation 28. 

MDLP = ∑ √(ρi
2 + (i − λLP)2)

λRP

i= λLP

 

Equation 26. Moment distance from the left pivot. 

MDRP = ∑ √(ρi
2 + (λRP − i)2)

λLP

i= λRP

 

Equation 27. Moment distance from the right pivot. 

MDI =  MDRP −MDLP 

Equation 28. Moment distance index. 

In the Equation 26 and Equation 27 the wavelengths considered are the central 

wavelength of the processed bands. The wavelengths are expressed in μm and the reflec-

tances are ranging from 0 to 1. The MDI was computed for each pixel of the reference and 

target subset. The MDI mask (MMDI) was composed only by the pixels in which the absolute 

value of the difference between the two MDI (Equation 29), computed for the reference 

scene (𝑀𝐷𝐼𝑅) and for the target scene (𝑀𝐷𝐼𝑇), is less than a specific threshold.  These 

selected pixels were considered as potentials PIF. 

MMDI = |MDI
R −MDIT| < l ⇒ MDIdiff < l 

Equation 29. Mask MDI equation. 

In order to understand the influence of the threshold 𝑙 on the 𝑀𝑀𝐷𝐼 (and in the final 

results) several values within the semi-opened interval [0.01;0.31[, with a step of 0.03 were 

tested. Considering the implemented values, a  𝑀𝐷𝐼𝑑𝑖𝑓𝑓 equal to 0.30 corresponds to 9-

12% of difference between 𝑀𝐷𝐼𝑅 and 𝑀𝐷𝐼𝑇. 

 

 

2.4.4 Radiometric Normalization coefficients estimation and selection of poten-
tials high quality PIF extraction 
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The radiometric normalization coefficients were evaluated for each band by means 

of the Orthogonal Distance Regression (ODR) algorithm. ODR is the name given to the 

computational problem associated with finding the maximum likelihood estimator of param-

eters in measurement error models (Boggs et al., 1987). The ODR algorithm considers both 

the dependent 𝑌 and independent 𝑋 variables as casual variables (Equation 30). 

{
Xi = xi − δi
Yi = yi − εi

 

Equation 30. ODR variables definition. 

In which 𝑋𝑖 and 𝑌𝑖 are the observed random variables with true values 𝑥𝑖  and 

𝑦𝑖 and random errors 𝛿𝑖 and 𝜀𝑖. In the general formulation, it is assumed that 𝑥𝑖 ∈  ℝ
𝑚 

and 𝑦𝑖 ∈ ℝ and the relationship between true and observed values is given by Equation 

31. 

yi = f(xi; 𝛃)  ⇒  Yi = f(Xi + δi; 𝛃) − εi 
Equation 31. Relationship between true and observed values equations. 

In which 𝜷 is a vector of parameters to be estimated. The ODR algorithm does not 

introduce assumptions over the distribution of the variable 𝑥𝑖  and the function 𝑓 could be 

either linear or nonlinear. Indeed, the only important assumptions are that 𝑓 must be a 

smooth function of its arguments and the normality of the random errors 𝛿𝑖 and 𝜀𝑖. 

Since both 𝑋𝑖 and 𝑌𝑖 are affected by random errors, the procedure that estimates 

the 𝜷 parameter should take this into account. Particularly, this is accomplished consider-

ing the orthogonal distance 𝑡𝑖 (Equation 32) between the i-th observed point (𝑋𝑖, 𝑌𝑖) and 

the estimated curve 𝑓(�̃�, �̃�).  

ti
2 = {εi2̃ + δi2̃} 

Equation 32. Orthogonal distance equation of residual. 

The solution to this problem is the one that minimizes the sum of the squares of 𝑡𝑖 

and is the maximum likelihood estimate of the parameter 𝜷. 

In this work the function 𝑓, that explains the relationship between PIF belonging to 

the reference and the target scenes, is linear and the ODR algorithm outputs are the gains 

and the offsets for each band (as shown in Equation 13). Despite for straight line models, 

there are not strong evidence of the better performance of the ODR method against the 
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ordinary least square method, in this chapter it was still preferred the ODR method due to 

its lower bias (Brown and Fuller, 1990, Hurtado et al., 2006).  

Each ODR estimation was coupled with the evaluation of the root mean square 

error (RMSE), correlation coefficient (r) and coefficient of determination (R2) between PIF 

TOA reflectance values belonging to the reference and the target scenes. Operationally, in 

this work was used the Scipy-ODR library that implements the ODRPACK code (Brown 

and Fuller, 1990). This specific ODR algorithm solves the estimation problem with a Leven-

berg-Marquardt trust-region strategy. A detailed explanation of the ODR theory and of the 

solution implemented in the ODRPACK library is beyond the scope of this thesis (further 

details can be found in the Boggs et al. (1987) paper).  

For each test area, almost twenty thousand combinations were considered by var-

ying the structuring element S size (Equation 19 - Equation 22), 𝑙 (Equation 29), 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 

𝑁𝐷𝑉𝐼𝑚𝑖𝑑, 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 (Equation 25). For computational time purposes, only tests charac-

terized by an elevated number of retrieved PIF, with high refence-target band by band ODR 

R2 and low ODR RMSE were selected as potentials High Quality PIF (HQ-PIF) extraction. 

This selection was made by introducing a “potential quality parameter” that considers for 

each test the mean R2 and the mean RMSE, achieved for the seven considered bands, 

and the number of PIF normalized (PIFnorm) to the total number of pixels within a single 

considered scene (number of PIF divided by the total number of pixels). The “potential 

quality parameter” was designed considering an ideal condition of no-change between ref-

erence and target. The ideal condition should be characterized by a total number of PIF 

equivalent to the total number of pixels within the considered area and from a band by band 

perfect correspondence. An ideally performed regression should feature the parameters 

showed in Table 15 in which the mean values are calculated considering all the bands at the 

same time. 

 Parameter value 

Mean Gain  1 

Mean Offset 0 

Mean R2 1 

Mean Correlation 1 

Mean RMSE 0 
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PIFnorm 1 

Table 15. Results over an ideal no-change condition in which all the pixels in Reference and Target scenes 
are PIF. 

If we imagine an abstract three-dimensional orthonormal space whose axis respec-

tively are the Mean RMSE, the Mean R2 and the PIFnorm; then this ideal condition should 

be represented by a vector with the following components in the abstract space: Mean 

RMSE = 0, Mean R2 = 1 and PIFnorm =1. Particularly, this vector should be coincident 

with the bisector of the Mean R2 - PIFnorm plane and characterized by a projection on the 

Mean R2 - Mean RMSE plane overlapping the Mean R2 axis. If 𝛼 is the angle, expressed 

in radians, between the projection of the vector in the Mean R2 - Mean RMSE plane and 

the Mean RMSE axis, and 𝛽 is the angle, expressed in radians, between the projection of 

the vector in the Mean R2 - PIFnorm plane and the Mean R2 axis (Equation 33); then in 

this ideal no-change case  𝛼 =  𝜋/2 and 𝛽 =  𝜋/4.  

{
 
 

 
 α = arctan (

mean(R2)

mean(RMSE)
)

β = arctan (
PIFnorm
mean(R2)

)

 

Equation 33. 𝛼 and 𝛽 equations: potential quality parameter terms. 

The “potential quality parameter” implemented was the sum 𝛼 + 𝛽. In the ideal 

condition this parameter is the maximum and equal to 3𝜋/4 whereas in the performed test, 

due to values of  PIFnorm near to zero (so 𝛽 was also close to zero) the computed param-

eters were always close to 𝜋/2.  

For each test area, only the combinations with the “potential quality parameter” 

above the 98th percentile of all the observed ones were considered as potential good qual-

ity PIF extraction. 

 

 

2.4.5 The IR-MAD correction algorithm 
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In this chapter, IR-MAD RRN results were compared with the results of the pro-

posed algorithm. 

The IR-MAD is an evolution of the previous MAD image-based correction algo-

rithm. The IR-MAD formulation considers two multiband scenes X and Y of k bands. X and 

Y are supposed to be random vectors: 𝐗 = (X1, … , Xk)
T and 𝐘 = (Y1, … , Yk)

T. The IR-

MAD algorithm evaluates change (and no-change) information from the difference of two 

linear combinations of the two considered multiband images (Equation 34). 

{
𝐀 = 𝐜𝐓𝐗 = (c1X1 +⋯+ ckXk)

𝐁 = 𝐝𝐓𝐘 =  (d1Y1 +⋯+ dkYk)
 

Equation 34. linear band combinations of two considered images. 

Since X and Y are random vectors then also A and B are random vectors.  The 

random variable A – B is a measure of the change that occurs between the images. With 

this notation the problem of detecting non-change areas becomes the problem of the defi-

nition of the vectors c and d. IR-MAD chose these vector in order to minimize the correlation 

between A and B which is equivalent to maximizing the variance of A – B (Marpu et al., 

2011). A variance equal to one is a further constraint for A and B. This problem can be 

solved using the Canonical Correlation Analysis (CCA). CCA investigates the relationship 

between two groups of several variables, finding a linear combination of the original ones. 

Vectors c and d are calculated solving two generalized eigenvalue problems showed in 

Equation 35. 

{
Σ𝐗𝐘Σ𝐘𝐘

−1Σ𝐗𝐘
T 𝐜 = ρ2Σ𝐗𝐗𝐜

Σ𝐗𝐘Σ𝐗𝐗
−1Σ𝐗𝐘

T 𝐛 = ρ2Σ𝐘𝐘𝐝
 

Equation 35. Two generalized eigenvalue problems. 

Where Σ𝐗𝐗, Σ𝐘𝐘 and Σ𝐗𝐘 are respectively the covariance matrices of the two im-

ages and their cross-covariance. The MAD variates are defined in Equation 36. 

𝐌𝐢 = 𝐀𝐢 − 𝐁𝐢 = 𝐜𝐢
𝐓𝐗 − 𝐝𝐢

𝐓𝐘 

Equation 36. MAD Variates. 

Where  𝐜𝐢  and 𝐝𝐢  are the i-th eigenvectors corresponding to the canonical vari-

ates, 𝐀𝐢  and 𝐁𝐢, and to the canonical correlation ρi. The MAD transformation is defined in 

such a way that the canonical variates and the MAD variates are mutually uncorrelated. 
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Now if we call the variance of the i-th MAD variates 𝑣𝑎𝑟(𝑀𝐴𝐷𝑖) = 𝜎𝑀𝐴𝐷𝑖
2  and we con-

sider the properties of the MAD variates (ideally normally distributed, mutually uncorre-

lated), is possible to define a new random variable trough Equation 37 

Z =∑(
MADi
σMADi

)

2k

i=1

 

Equation 37. Sum of squares of uncorrelated and normally distributes random variables. 

The random variable Z can be considered as the sum of k squares of uncorrelated 

and normally distributes random variables and thus is distributed as 𝜒2 with k degree of 

freedom. Using the Z variable is possible to define a no-change probability as 

Pr(𝑛𝑜 − 𝑐ℎ𝑎𝑛𝑔𝑒) = 1 − 𝑃𝜒2,𝑘(𝑧). The no-change probability weights the observa-

tions over the iterations of the MAD algorithm until a stop criterion is met. The criterion can 

be simply a fixed number of iterations or when the change between two consecutive itera-

tions is no more significant. When the stopping criteria is reached the pixels with no-change 

probability greater than a fixed threshold are selected. They are the input for the orthogonal 

regression necessary to compute the gain and the offset correction parameters for each 

band. In this chapter a ready to use MATLAB® IR-MAD source code was downloaded from 

the web page http://www.imm.dtu.dk/~alan/.  

Lastly, a detailed explanation of the IR-MAD algorithm is beyond the scope of this 

manuscript, further details can be found in the Nielsen (2007) paper. 

 

 

2.5 TRRCA application and comparisons with IR-MAD algorithm 

 

 

The proposed method was tested on eight Landsat 8 scenes (Table 13). The first 

part of the results will be focused on the description of the outputs from the performed tests. 

Particularly, will be described what in this chapter is supposed to be a HQ-PIF extraction, 

the influence of the proposed masks over HQ-PIF extractions and of the thresholds related 

to HQ-PIF extractions.  
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The second part will be focused on the comparison of the result of the TRRCA 

(achieved with a random selection of a set of thresholds related to HQ-PIF extractions) and 

the IR-MAD algorithm.   

 

 

2.5.1 TRRCA tests results 

 

 

In section 2.4.4 was explained the criteria used to select potentials HQ-PIF extrac-

tions by means of a defined “potential quality parameter”. In this chapter the potentials HQ-

PIF extractions are considered good ones if the two-sample t-test, two-sample F-test and 

two-sample Wilcoxon rank sum test between reference PIF and corrected target PIF were 

contemporary satisfied at 5% confidence level. Particularly: 

• The parametric two sample t test returns a test decision for the null hypothesis 

that the two considered sampled data comes from normal distributions with equal 

means and equal but unknown variances (Montgomery and Runger, 2010).  

• The parametric two sample F test returns a test decision for the null hypothesis 

that the two considered sampled data comes from normal distributions with the 

same variance (Montgomery and Runger, 2010).  

• The non-parametric Wilcoxon rank sum test returns a test decision for the null 

hypothesis that the two considered sampled data comes from distributions with 

equal medians (Montgomery and Runger, 2010). 

The use of parametric tests was already implemented in other studies as confirma-

tion of the quality of the extracted PIF (e.g. Canty and Nielsen (2008)). In this chapter a 

non-parametric test is proposed as further constrain for the selection of HQ-PIF. As shown 

in the subsequent section the Wilcoxon rank sum test will be the most restrictive one (es-

pecially for the IR-MAD).  Lastly, a PIF extraction was considered a HQ-PIF one only if the 

number of found PIF was at least equal to 100. Otherwise, the considered extraction was 

not considered since a low number of PIF cannot guarantee an adequate correction over 

the whole considered test area.  
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Table 16 shows the number HQ-PIF extractions for each selected test area obtained 

following the aforementioned selection method and the mean number of retrieved PIF. Table 

16 clearly shows the sensitivity of the proposed algorithm to the abundance of natural/arti-

ficial reflectors. Indeed, this was an expected result since a desert area is characterized by 

a high probability to features PIF properties (e.g. Eckhardt et al. (1990)). 

The same can be said for the Spanish area dominated by a high percentage of 

plastic covered greenhouses and from an arid environment. As regards the Nepalese and 

the Italian areas, it is little wonder the archived result. The two Nepalese scenes feature 

permanent glaciers with different extensions and areas with low vegetation cover as prob-

able candidate PIF whereas the Apulian area, characterized by a heterogeneous agricul-

tural landscape, seems to be the most problematic one. 

Figure 22 shows the scatter plots of the implemented NDVI thresholds, morphologi-

cal Kernel and MDIdiff versus the number of HQ-PIF for the Italian test area. Both the 

NDVImax and the Kernel parameters are constant for each HQ-PIF extractions. They are 

respectively fixed to the highest NDVImax value and the lowest Kernel size. Suitable 

NDVImin and MDIdiff values are respectively concentrated over the higher and lower 

tested values. Particularly, MDIdiff frequency peak is around 0.04. Lastly, all the tested 

NDVImid are shown in the HQ-PIF extractions. However, 0.10 and 0.15 are the most com-

mon NDVImid values for the Italian test area. 

Figure 23 shows the scatter plots of the implemented NDVI thresholds, Kernel and 

MDIdiff  versus the number of HQ-PIF for the Nepalese test area. All the tested NDVImax, 

NDVImid, NDVImin and MDIdiff thresholds are present in HQ-PIF extractions. However, 

only NDVImin shows a more uniform distribution for almost all the tested values. 

Test area Number of HQ-PIF extractions Mean Number of PIF 

I 40 752 

N 375 789 

S 1503 984 

E 10504 2246 

Table 16. Number of High Quality PIF (HQ-PIF) extractions for the selected Italian (I), Nepalese (N), 
Spanish (S) and Egyptian (E) test areas. 
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NDVImax, NDVImid and MDIdiff have their respectively most common values fixed to 

0.25, 0.00 and 0.04. Although the most common kernel size is 3 ×3, there are also many 

HQ-PIF extractions with a 5 × 5 kernel size. Lastly, Figure 23 depicts that the most common 

number of extracted HQ-PIF is among 600 and 800 and that are feasible combinations with 

almost twice as much as the previous HQ-PIF number. 

Figure 24 depicts the scatter plots of the implemented NDVI thresholds, Kernel and 

MDIdiff  versus the number of HQ-PIF for the Spanish test area. All the tested NDVImid, 

NDVImin, MDIdiff values and all the tested Kernel size are present in HQ-PIF extractions. 

NDVImin and MDIdiff show a more uniform distribution for almost all the tested values 

characterized by more extractions with 500-1500 PIF and only a few extractions above 

1500 PIF. The most common values of NDVImid are between 0.05 and 0.10 with the max-

imum number of extracted HQ-PIF achieved with an NDVImid equal to 0.05. The most 

common Kernel sizes are again 3 ×3 and 5 ×5. Particularly lower Kernels sizes are cou-

pled with a greater number of extracted PIF. Lastly, 0.15, 0.20 and 0.25 NDVImax values 

show a similar behaviour, with the highest frequency on 0.25 and the maximum number of 

extracted PIF on 0.15. 

Figure 25 shows the scatter plots of the implemented NDVI thresholds, Kernel and 

MDIdiff  versus the number of HQ-PIF for the Egyptian test area. All the tested NDVImid, 

NDVImin, MDIdiff values and all the tested Kernel size are present in HQ-PIF extractions. 

NDVImin shows a more uniform distribution of all the tested values characterized by more 

extractions with 500-3000 PIF and only a few extractions above 3000 PIF. MDIdiff shows 

again an almost uniform distribution with the maximum number of extracted PIF related to 

0.04. The most common Kernel sizes are 7 ×7 and  9 ×9. Particularly lower Kernels sizes 

are coupled with a greater number of extracted HQ-PIF although the 3 ×3 Kernel exhibits 

a more stable number of extracted PIF. Lastly, all the NDVImax values show a similar 

behaviour with regards to HQ-PIF extractions characterized by 500-3000 extracted PIF 

whereas greater numbers of extracted PIF were achieved only with higher NDVImax val-

ues. 

Figure 22, Figure 23, Figure 24 and Figure 25 have shown that there are differences over 

heterogeneous and homogeneous test areas. For the Nepalese, the Egyptian, and the 

Spanish test areas all the performed tests have shown that  NDVImin and MDIdiff are the 
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parameters that exhibit the major variability. NDVImin exhibits less variability in the Italian 

test area. According to Equation 25, this shows how fragmented agricultural landscapes 

need a very large number of pixels as candidates PIF in order to increase the potentials 

HQ-PIF. Indeed, a high NDVImin value considers as candidate PIF all the pixels with an 

NDVI less than NDVImin. Equation 25 shows also that the NDVImax values near or equal 

the maximum feasible one are characterized by a higher probability to obtain a great num-

ber of HQ-PIF. The NDVImid values are characterized by a heterogeneous behaviour 

strongly dependent on the test area. Particularly the Italian and Spanish HQ-PIF extractions 

are characterized by the occurrence of all the tested NDVImid values. Probably this occurs 

since these are the areas with a more heterogeneous vegetation, although in the case of 

the Spanish data, the effect on NDVI is masked by the presence of plastic coverings. This 

shows that the MNDVI performs as a coarse PIF filter for a subsequent and improved PIF 

selection through MMDI and Mmorph. 

For all the test areas, the greatest concentrations of a high number of HQ-PIF ex-

tractions occur always with a MDIdiff between 0.04 and 0.10. Considering the formulation 

of the MDI, this is quite interesting since small differences are correlated with very similar 

spectral signatures (Salas et al., 2016). The MDI filter is still useful with MDIdiff greater 

than 0.10. Indeed, with greater MDIdiff, the MMDI performs again as a coarse filter before 

the application of the morphological operators. 

Lastly, Figure 22, Figure 23, Figure 24 and Figure 25 show that feasible Kernel sizes are 

dependent from the heterogeneity of the test area. Particularly small kernel sizes are al-

ways feasible in all the test areas whereas greater ones are feasible only for areas charac-

terized by high homogeneity. Indeed, this is also an expected result since morphological 

operators consider the local minimum and local maximum over the Kernel area. Because 

of this, the probability to find a corresponding singular value over the same Kernel areas is 

higher in smaller areas than in greater ones. This explains why for heterogeneous areas 

occur only small Kernel sizes whereas for homogeneous areas bigger Kernels perform 

good results during the RRN process. 
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Figure 22 (a) Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  -  number of PIF for the Italian study area. 

 

Figure 22 (b) Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑑  -  number of PIF for the Italian study area. 
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Figure 22 (c) Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 -  number of PIF for the Italian study area. 

 

Figure 22 (d) Scatter plot Kernel - number of PIF for the Italian study area. 
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Figure 22 (e) Scatter plot 𝑀𝐷𝐼𝑑𝑖𝑓𝑓  - number of PIF for the Italian study area. 

 

Figure 23 (a).  Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  -  number of PIF for the Nepalese study area. 
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Figure 23 (b). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑑  -  number of PIF for the Nepalese study area. 

 

Figure 23 (c). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 -  number of PIF for the Nepalese study area. 
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Figure 23 (d). Scatter plot Kernel - number of PIF for the Nepalese study area. 

 

Figure 23 (e). Scatter plot 𝑀𝐷𝐼𝑑𝑖𝑓𝑓  - number of PIF for the Nepalese study area. 
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Figure 24 (a). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  -  number of PIF for the Spanish study area. 

 

Figure 24 (b). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑑  -  number of PIF for the Spanish study area. 
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Figure 24 (c). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 -  number of PIF for the Spanish study area. 

 

Figure 24 (d). Scatter plot Kernel - number of PIF for the Spanish study area. 
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Figure 24 (e). Scatter plot 𝑀𝐷𝐼𝑑𝑖𝑓𝑓  - number of PIF for the Spanish study area. 

 

Figure 25 (a). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑎𝑥  -  number of PIF for the Egyptian study area. 
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Figure 25 (b). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑑  -  number of PIF for the Egyptian study area. 

 

Figure 25 (c). Scatter plot 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 -  number of PIF for the Egyptian study area. 
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Figure 25 (d). Scatter plot Kernel - number of PIF for the Egyptian study area. 

 

Figure 25 (e). Scatter plot 𝑀𝐷𝐼𝑑𝑖𝑓𝑓  - number of PIF for the Egyptian study area. 
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2.5.2 Comparisons with the IR-MAD algorithm 

 

 

The well-known IR-MAD correction algorithm was used to test the performances of 

the proposed one. Since the proposed algorithm is dependent on user driven parameters 

more than the IR-MAD, the results showed in the previous section have been used to select 

one single test combination for each test area.  

Each combination was randomically extracted from HQ-PIF test parameter inter-

vals characterized by a high frequency of occurrence and removing the restriction adopted 

during the test phase to save computation time (i.e. the step showed in Table 14). The choice 

to consider only one random set of parameters was driven by the evidences showed in the 

previous scatterplots. Indeed, each single HQ-PIF extraction respects the conditions listed 

in the initial part of paragraph 2.5.1.   

Table 17 shows the thresholds and the Kernel sizes, randomically selected, imple-

mented in each study area with the TRRCA for comparison purposes with the IR-MAD 

algorithm.  

For the IR-MAD algorithm, two different no-change probabilities (0.99 and 0.95) 

were tested. With the smaller one, the IR-MAD was able to find more PIF (Table 18) since a 

lower no-change probability increases the number of suitable PIF. However, their quality 

(e.g. correlations, and statistical tests) was lower than the one obtained with a no-change 

probability equal to 0.99. For this reason, only these IR-MAD results are shown and used 

for the performed comparisons. 

Test Area NDVImax NDVImid NDVImin MDIdiff Kernel 
size 

I 0.250 0.069 -0.205 0.040 3 

N 0.210 0.000 -0.250 0.056 3 

S 0.221 0.100 -0.503 0.030 7 

E 0.189 0.006 -0.475 0.088 9 

Table 17. Implemented thresholds and kernel size for the selected Italian (I), Nepalese (N), Spanish (S) 
and Egyptian (E) test areas. These parameters were the input of the proposed method implemented in 

the comparisons with the IR-MAD algorithm. 
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All the combinations showed in Table 17 performed a successful HQ-PIF extraction 

for the related test areas. Table 18 compares the number of found PIF achieved for the all 

the test areas with the two different methods. 

 

Test Area No. of PIF TRRCA No. of PIF IR-MAD 
99% 

No. of PIF IR-MAD 
95% 

I 907 561 2737 

N 1141 713 2424 

S 893 412 1703 

E 3038 530 2918 

Table 18. Number of TRRCA HQ-PIF for the selected Italian (I), Nepalese (N), Spanish (S) and Egyptian 
(E) test areas compared with IR-MAD number of PIF at 99% and 95% of no-change probability. 

Table 18 shows that the random set of chosen parameters was coupled to a num-

ber of selected PIF greater than the IR-MAD at 99% of no-change probability but smaller, 

except for Egyptian study area, than the IR-MAD at 95% of no-change probability.  

Figure 26 compares RGB visualizations of a magnified area of reference and cor-

rected target with overlapped TRRCA HQ-PIF. All the test areas acquisition dates were 

shifted by at least one year (Table 12) to avoid too many similarities between reference and 

target images. 

In Figure 26 a) is shown a subset of the heterogeneous Italian test area as repre-

sentative of the whole Italian subset. Figure 26 a) clearly shows HQ-PIF falling within the 

sea, salt plains (in light brown), built-up areas, post-harvesting cultivated area and bare 

soil. The chosen subset purposely shows a portion of built-up areas (a small percentage of 

the whole Italian test area) with a high PIF density.  
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Figure 26. Comparison of RGB visualizations of Reference (R) image (on the left) and corrected Target 
(T) image (on the right) with overlapped PIF. a) Italian test area (I) (Coordinate System UTM WGS 84 

zone 33N); b) Nepalese (N) test area (Coordinate System UTM WGS 84 zone 45N); c) Spanish (S) test 
area (Coordinate System UTM WGS 84 zone 30N); d) Egyptian (E) test area (Coordinate System UTM 

WGS 84 zone 35N). 
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The PIF selection was able to recognize as PIF pixels falling over very different land covers. 

Particularly, Figure 26 a) shows a higher density of PIF in built-up areas (bright areas). In 

Figure 26 b) is shown a subset of the Nepalese test area. In this subset, there is a clear 

difference in snow/ice covered areas and thus selected PIF generally falls over areas not 

covered by permanent snow/ice. These areas are characterized by low NDVI and are near 

to watersheds.  Figure 26 c) shows a subset of the Spanish test area. In the Spanish test 

area, the major part of the PIF falls within artificial pools, bare soil, built-up areas and high-

ways. Although the large amount of plastic covered greenhouses, PIF do not fall within 

them. Indeed, greenhouses are generally covered by plastic sheets characterized by dif-

ferent spectral signatures over time. This is mainly due to their different spectral properties, 

thickness and local agricultural practices (Novelli and Tarantino, 2015a). In Figure 26 d) is 

shown a portion of the Egyptian test area. The two areas feature a very similar visual land-

scape and this is confirmed also by the large amount of found PIF (see Table 18). Indeed, 

this was expected since similar results were achieved in the Canty and Nielsen (2008) work 

with desert/arid test areas. 

Table 19, Table 20, Table 21 and Table 22 compare the achieved gains, offsets, 

correlation coefficient (r), RMSE, two-sample t-test, two-sample F-test and two-sample Wil-

coxon rank sum test results between the TRRCA and the IR-MAD for the four test areas. 

Moreover, the different statistical test results achieved before (Pre) and after (Post) the 

correction are shown for the TRRCA method. They show that the TRRCA was able to find 

PIF with a strong linear agreement in each test area. The IR-MAD equally performs good 

results although, especially in the S area, shows some localized errors. For each computed 

gain of the TRRCA the significance of the linear relationship was tested against the null 

hypothesis of absence of slope. All tests strongly rejected the null hypothesis. It is thus 

possible to conclude that the method produces a feasible linear regression model. Consid-

ering the evaluated RMSE and r, the TRRCA always shows high quality and stable results 

(small variance). 

The same cannot be said for the IR-MAD, in which the RMSE values are charac-

terized by a stronger variability and greater values than TRRCA. With regard to the r values, 

the IR-MAD features mean r values greater than the TRRCA in the Egyptian and in the 

Nepalese areas, smaller than the TRRCA in the Spanish area and comparable values in 

the Italian test area. Particularly, the IR-MAD algorithm performed the worst results in the 
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Spanish test area (see Table 21), probably because of the large amount of plastic covered 

areas, whereas the Egyptian test area features the best achieved results (see Table 22). 

For the Spanish area, the error was mainly focused in the green band (band 3) and occurred 

also with 0.95 % of no-change probability. 

Lastly, the showed tables depict also the results of statistical tests performed over 

the selected PIF. After the application of the correction with the TRRCA all the performed 

tests failed to reject the null hypothesis. Moreover, p-values indicate that all the null hypoth-

esis would be accepted by using a level of confidence far beyond the default one. Consid-

ering each typology of test, this respectively indicates a strong statistical similarity between 

the variance, the means and medians of the reflectance values of test PIF extracted from 

the reference and corresponding normalized reflectance values of PIF extracted from the 

target. This was an expected result since the definition of HQ-PIF imposes the respect of 

all statistical tests. For all the test areas, the effects of the corrections were bigger on the 

median of the distributions of the selected PIF. This is demonstrated by the pre/post Wil-

coxon rank sum test. The performed corrections show their influence also on the variances 

and the mean values of the extracted PIF. The effect over the variances is quite important 

on the Spanish and the Egyptian test areas whereas the improvement over the mean val-

ues occurred for at least two bands in each test area (with a peak of four bands in the S 

and the E areas).  

The results achieved with the IR-MAD showed that all the two sample t-tests, for 

all the test areas, failed to reject the null hypothesis. Only the S test area featured a rejec-

tion of the null hypothesis with the regard to two sample F-test. The respect of the Wilcoxon 

rank sum test was the most restrictive one for the IR-MAD. Indeed, in the Nepalese test 

area four bands, associated to the extracted PIF, rejected the null hypothesis. Only for the 

Egyptian test area were satisfied all the tested null hypothesis. And this confirms the good 

performance of the IR-MAD over arid and natural areas. 
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TRRCA 

Band gains offsets r RMSE 
F p-value F h t p-value t h W p-value W h 

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

1 1.044 -0.004 0.964 0.009 0.21 0.96 0 0 0.02 1.00 1 0 0.00 0.64 1 0 

2 1.059 -0.006 0.963 0.012 0.10 0.95 0 0 0.03 1.00 1 0 0.00 0.59 1 0 

3 1.111 -0.013 0.956 0.020 0.00 0.89 1 0 0.02 1.00 1 0 0.00 0.68 1 0 

4 1.081 -0.005 0.964 0.025 0.02 0.93 1 0 0.01 1.00 1 0 0.00 0.37 1 0 

5 1.022 0.003 0.980 0.028 0.52 0.99 0 0 0.18 1.00 0 0 0.00 0.15 1 0 

6 1.053 -0.008 0.968 0.040 0.14 0.96 0 0 0.29 1.00 0 0 0.00 0.40 1 0 

7 1.067 -0.004 0.972 0.030 0.06 0.96 0 0 0.05 1.00 0 0 0.00 0.59 1 0 

IR-MAD 

Band gains Offsets R RMSE F p-value F h t p-value t h W p-value W h 

1 0.940 0.018 0.894 0.019 0.74 0 0.83 0 0.08 0 

2 0.930 0.017 0.907 0.026 0.76 0 0.85 0 0.04 1 

3 0.821 0.025 0.973 0.067 0.92 0 0.99 0 0.94 0 

4 0.917 0.013 0.995 0.315 0.97 0 0.99 0 0.33 0 

5 0.952 0.011 0.999 3.219 0.99 0 0.99 0 0.12 0 

6 0.966 0.001 0.997 1.220 0.96 0 0.98 0 0.11 0 

7 0.983 -0.001 0.997 0.791 0.95 0 0.99 0 0.09 0 

Table 19. Italian (I) test area: Evaluated band-by-band gain, offset, correlation r and RMSE. F p-value, t p-value, W p-value are p-values for the two 
sample F test, two sample t test and the Wilcoxon rank sum test.  The result h = 1 indicates a rejection of the null hypothesis, and h = 0 indicates a fail-

ure to reject the null hypothesis at the 5% significance level. 
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TRRCA 

Band Gains offsets r RMSE 
F p-value F h t p-value t h W p-value W h 

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Pre 

1 0.993 0.010 0.988 0.010 0.82 1.00 0 0 0.00 1.00 1 0 0.00 0.21 1 0 

2 0.973 0.010 0.984 0.011 0.37 0.99 0 0 0.02 1.00 1 0 0.00 0.35 1 0 

3 1.010 0.002 0.983 0.014 0.73 1.00 0 0 0.31 1.00 0 0 0.00 0.35 1 0 

4 0.981 0.003 0.979 0.017 0.52 0.99 0 0 0.99 1.00 0 0 0.02 0.14 1 0 

5 0.986 -0.001 0.978 0.018 0.65 0.99 0 0 0.38 1.00 0 0 0.00 0.11 1 0 

6 1.024 -0.006 0.967 0.023 0.44 0.98 0 0 0.56 1.00 0 0 0.00 0.53 1 0 

7 1.001 -0.003 0.965 0.021 0.99 1.00 0 0 0.46 1.00 0 0 0.00 0.13 1 0 

IR-MAD 

Band Gains offsets r RMSE F p-value F h t p-value t h W p-value W h 

1 1.446 -0.026 0.997 0.598 0.92 0 0.97 0 0.20 0 

2 1.458 -0.021 0.995 0.481 0.90 0 0.96 0 0.03 1 

3 1.458 -0.013 0.989 0.274 0.85 0 0.97 0 0.00 1 

4 1.440 -0.008 0.986 0.229 0.80 0 0.96 0 0.00 1 

5 1.008 -0.002 0.949 0.128 0.65 0 0.99 0 0.00 1 

6 1.021 -0.000 0.995 0.290 0.88 0 0.97 0 0.77 0 

7 1.050 0.000 0.992 0.158 0.91 0 0.97 0 0.76 0 

Table 20. Nepalese (N) test area: Evaluated band-by-band gain, offset, correlation r and RMSE; F p-value, t p-value, W p-value are p-values for the two 
sample F test, two sample t test and the Wilcoxon rank sum test.  The result h = 1 indicates a rejection of the null hypothesis, and h = 0 indicates a fail-

ure to reject the null hypothesis at the 5% significance level. 
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TRRCA 

Band gains offsets r RMSE 
F p-value F h t p-value t h W p-value W h 

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Pre 

1 1.0761 -0.006 0.963 0.007 0.03 0.94 1 0 0.00 1.00 1 0 0.00 0.83 1 0 

2 1.0625 -0.006 0.965 0.008 0.08 0.95 0 0 0.00 1.00 1 0 0.00 0.74 1 0 

3 1.0806 -0.013 0.963 0.010 0.03 0.93 1 0 0.66 1.00 0 0 0.04 0.34 1 0 

4 1.1158 -0.023 0.960 0.013 0.00 0.90 1 0 0.75 1.00 0 0 0.03 0.37 1 0 

5 1.1895 -0.051 0.945 0.020 0.00 0.78 1 0 0.70 1.00 0 0 0.70 0.51 0 0 

6 1.2720 -0.066 0.956 0.021 0.00 0.76 1 0 0.00 1.00 1 0 0.00 0.67 1 0 

7 1.2547 -0.045 0.961 0.017 0.00 0.79 1 0 0.00 1.00 1 0 0.00 0.52 1 0 

IR-MAD 

Band gains Offsets r RMSE F p-value F h t p-value t h W p-value W h 

1 0.1575 0.109 0.435 0.002 0.00 1 0.67 0 0.64 0 

2 -0.1083 0.126 -0.173 0.001 0.00 1 0.58 0 0.00 1 

3 39.0422 -4.451 0.056 0.245 0.00 1 0.56 0 0.29 0 

4 3.6598 -0.314 0.833 0.058 0.00 1 0.90 0 0.22 0 

5 1.6055 -0.124 0.998 1.069 0.98 0 0.98 0 0.67 0 

6 1.5515 -0.104 0.998 1.100 0.96 0 0.99 0 0.22 0 

7 1.6448 -0.089 0.995 0.471 0.90 0 1.00 0 0.00 1 

Table 21. Spanish (S) test area: Evaluated band-by-band gain, offset, correlation r and RMSE; F p-value, t p-value, W p-value are p-values for the two 
sample F test, two sample t test and the Wilcoxon rank sum test. The result h = 1 indicates a rejection of the null hypothesis, and h = 0 indicates a fail-

ure to reject the null hypothesis at the 5% significance level. 
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TRRCA 

Band gains offsets r RMSE 
F p-value F h t p-value t h W p-value W h 

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Pre 

1 0.872 0.026 0.984 0.002 0.00 0.90 1 0 0.00 1.00 1 0 0.00 0.62 1 0 

2 0.885 0.024 0.988 0.003 0.00 0.93 1 0 0.00 1.00 1 0 0.00 0.57 1 0 

3 0.914 0.023 0.994 0.004 0.00 0.98 1 0 0.74 1.00 0 0 0.00 0.39 1 0 

4 0.940 0.024 0.995 0.007 0.00 0.99 1 0 0.90 1.00 0 0 0.00 0.61 1 0 

5 0.956 0.023 0.995 0.010 0.01 0.99 1 0 0.69 1.00 0 0 0.06 0.60 0 0 

6 0.958 0.029 0.994 0.010 0.02 0.99 1 0 0.16 1.00 0 0 0.00 0.27 1 0 

7 0.972 0.021 0.994 0.009 0.13 0.99 0 0 0.00 1.00 1 0 0.00 0.15 1 0 

IR-MAD 

Band Gains offsets r RMSE F p-value F h t p-value t h W p-value W h 

1 0.927 0.015 0.998 0.160 0.93 0 0.99 0 0.94 0 

2 0.928 0.015 0.998 0.204 0.93 0 0.99 0 0.93 0 

3 0.929 0.018 0.999 0.323 0.96 0 1.00 0 0.94 0 

4 0.942 0.023 0.999 0.474 0.98 0 0.99 0 0.98 0 

5 0.954 0.023 0.999 0.618 0.97 0 1.00 0 0.98 0 

6 0.965 0.023 0.998 0.341 0.99 0 0.99 0 0.97 0 

7 0.970 0.022 0.999 0.443 0.97 0 1.00 0 0.96 0 

Table 22. Egyptian (E) test area: Evaluated band-by-band gain, offset, correlation r and RMSE; F p-value, t p-value, W p-value are p-values for the two 
sample F test, two sample t test and the Wilcoxon rank sum test.  The result h = 1 indicates a rejection of the null hypothesis, and h = 0 indicates a fail-

ure to reject the null hypothesis at the 5% significance level. 
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Conclusions 
 

 

In this Ph.D. thesis was examined the topic of the enhancement of the pre-pro-

cessing phase of passive remote sensing imagery. This topic was developed in two differ-

ent ways: a specific application for Plastic Covered Greenhouse areas, and a general ap-

proach related to the development of a new algorithm for Relative Radiometric Correction.  

The former and more specific topic was developed both with a pixel-based ap-

proach and with an OBIA approach. Considering the pixel-based approach, the Landsat 8 

OLI and TIRS sensor data were conjunctly used for agricultural plastic cover detection, 

testing four normalized difference indices. The procedure benefitted from the use of infor-

mation gathered through the Quality Assessment and Cloud Quality bands. Specifically, 

this is the first work that exploited the Landsat 8 Quality Assessment band for plastic cov-

ered greenhouse detection. The use of Cloud Quality bands reduced sampling time and 

improved the collection of spectral information related to plastic surfaces. The overall ac-

curacies observed were on average higher than 80%. Moreover, the low cost of the used 

open dataset, lacking ancillary data, demonstrated the reliability of the proposed method, 

proving its suitability for pilot environmental and agricultural monitoring over large areas.  

Better results were achieved through OBIA approach. To the best knowledge of 

the Ph.D. candidate, the proposed OBIA study was the first regarding plastic covered 

greenhouses detection comparing Sentinel-2 and Landsat-8 satellite data by applying an 

OBIA approach and RF classifier. The high geometric contribution of WorldView-2 based 

segmentation was employed to test the effectiveness of Sentinel-2 and Landsat 8 starting 

from a common and very good segmented image dataset. The accuracy values achieved 

using very small training sets were very high for both sensors, also thanks to the modified 

Euclidean Distance 2 index used to quantitatively assess the reliability of the best estimated 

segmentations. This can be considered a further confirmation of the relevant contribution 

of the segmentation process in the final plastic covered greenhouse detection. In this 

sense, another finding of this work was related to prove that Blue, Green and NIR bands 

are strongly related to the best segmentation of greenhouses for atmospherically corrected 



 130 

Sentinel-2, Landsat-8 and WorldView-2 data.  Future research can benefit from this infor-

mation to save computation time. Overall, the results showed that Sentinel-2 performed 

better than Landsat-8, particularly when the best common segmentation from WorldView-

2 was used for both satellites.  

The capabilities of the command line tool AssesSeg, created and used in this thesis 

to assess the accuracy of the performed segmentations were also described. Particularly 

this command line tool is user-friendly and available both for scientific and technical pur-

poses. The use of the very popular ESRI shapefiles data format makes AssesSeg widely 

compatible with the outputs of the most common OBIA software. Thanks to AssesSeg, 

were found: (I) the above mentioned optimal bands combination; (II) the ideal parameters 

setting headed up to carry out an optimal plastic covered greenhouses areas segmentation 

by using the well-known multiresolution segmentation algorithm included within eCognition. 

Lastly, the use of the tool also pointed out to the importance of increasing the number of 

reference objects to diminish the uncertainty in assessing the segmentation quality through 

the Euclidean Distance 2 modified metrics. 

With regard the first chapter, the accuracy of the results obtained in this study 

makes this OBIA approach highly recommended for plastic covered greenhouses mapping 

and detection. Further research will be focused both on the definition of new and more 

performant segmentation quality metrics and in the assessment of the best Sentinel-2 and 

Landsat-8 features.  Although the procedure and tools showed in this chapter are related 

to plastic greenhouse extraction, the achieved results and the showed methods can be 

considered valid also in other environments that can benefit from optimized segmentation 

parameters (e.g. object detection by means OBIA). 

The second topic was related to the enhancement of the pre-processing for passive 

remotely sensed data. Particularly, was shown a new PIF selecting algorithm combining 

spectral momentum measures, NDVI masks and extraction of local maximum and minimum 

through morphological operators. The method was tested with Landsat-8 images but its 

design is suitable for other passive sensors with a similar spectral resolution (e.g. Sentinel-

2).  

Due to its dependence by user driven thresholds, many combinations were tested 

over four different study areas around the world. Particularly the chosen study areas were 

extremely different and characterized by high heterogeneity between reference and target 
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scenes (Italian test area), by the presence of an extreme anthropic impact (Spanish area 

with its plastic covered greenhouses) and by a low anthropic impact over different natural 

climatic conditions (Egyptian and Nepalese test area). All the test performed were driven 

to obtain the distribution of thresholds able to perform a good relative radiometric normali-

zation.  

The method was also compared with the well-known IR-MAD algorithm by select-

ing randomically a set of parameters for each study area. In this case, the proposed algo-

rithm recognized a great number of PIF for each selected area and performed a correction 

on the selected PIF able to eliminate statistical differences between reference PIF and cor-

rected target PIF. From this point of view, the TRRCA performed better than the IR-MAD. 

Moreover, thanks to the orthogonal distance regression, the algorithm performed better 

than the IR-MAD also with regard the RMSE associated to the regressions.  

To the Ph.D. candidate opinion, the showed results confirm the effectiveness of the 

method as new relative radiometric normalization technique and as a valid alternative to 

established methods from the scientific literature. Future development will be focused on 

the improvement of the quality of selected PIF, on the analysis of a greater spectral range 

and in an improved reduction of user driven parameter.  
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