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Abstract: Greenhouse detection and mapping via remote sensing is a complex task, which 

has already been addressed in numerous studies. In this research, the innovative goal relies 

on the identification of greenhouse horticultural crops that were growing under plastic 

coverings on 30 September 2013. To this end, object-based image analysis (OBIA) and a 

decision tree classifier (DT) were applied to a set consisting of eight Landsat 8 OLI images 

collected from May to November 2013. Moreover, a single WorldView-2 satellite image 

acquired on 30 September 2013, was also used as a data source. In this approach, basic 

spectral information, textural features and several vegetation indices (VIs) derived from 

Landsat 8 and WorldView-2 multi-temporal satellite data were computed on previously 

segmented image objects in order to identify four of the most popular autumn crops 

cultivated under greenhouse in Almería, Spain (i.e., tomato, pepper, cucumber and 

aubergine). The best classification accuracy (81.3% overall accuracy) was achieved by 

using the full set of Landsat 8 time series. These results were considered good in the case 

of tomato and pepper crops, being significantly worse for cucumber and aubergine. These 

OPEN ACCESS



Remote Sens. 2015, 7 7379 

 

results were hardly improved by adding the information of the WorldView-2 image. The 

most important information for correct classification of different crops under greenhouses 

was related to the greenhouse management practices and not the spectral properties of the 

crops themselves.  

Keywords: Landsat 8; WorldView-2; time series; object-based classification; greenhouse 

crops; decision tree  

 

1. Introduction 

The practice of using plastic materials to advance the first harvest and increase the yield of 

horticultural crops has been steadily increasing during the past 60 years in the entire world [1]. Perhaps 

nowhere this process is more visible than around Almería, southern Spain, where agriculture under 

plastic has become a key economic driver. However, this productive sector is being affected by an 

unstable and changing geopolitical situation of the markets. In this regard, facts, such as the entry into 

force of the new agricultural agreement between the European Union (EU) and The Kingdom of 

Morocco adopted in 2012, which liberalizes EU-Morocco trade in agriculture (Council Decision of  

8 March 2012, 2012/497/EU), or, more recently, the Russian veto of horticultural products from the 

EU, are causing important changes in the market prices of products grown under plastic-covered 

greenhouses, which significantly affect farmers and agribusiness. In order to alleviate these changes in 

market prices, each agricultural cooperative in Almería is carrying out a crop acreage plan to be 

applied by their farmers. However, a more globalized planning of horticultural production would be 

desirable. Certainly, the possibility of knowing the crops that are being grown under greenhouses 

along an agricultural campaign, both focused on our local productive sector and our direct competitors, 

would help decision making in order to keep prices up, thus maximizing returns to farmers. In that 

sense, useful information for decision makers would include cropland extent, crop types, crop rotation 

dynamics, and so forth [2]. This sort of information over space and time can be repeatedly, consistently 

and accurately acquired by methods relying on remote sensing without exception [3]. In fact, remote 

sensing can significantly contribute to providing a timely and accurate picture of the agricultural 

sector, as it is very suitable for gathering information over large areas with high revisit frequency [4]. 

According to several authors [5–10], greenhouse mapping via remote sensing is a challenging task 

due to the fact that the spectral signature of the plastic-covered greenhouse can change drastically.  

In this way, different plastic materials with varying thickness, transparency, ultraviolet and infrared 

reflection and transmission properties, additives, age and colors are used in greenhouse coverings. 

Moreover, plastic sheets may be painted white (whitewashed) during summer to protect plants from 

excessive radiation and to reduce the heat inside the greenhouse. Finally, as plastic sheets are  

semi-transparent, the changing reflectance of the crops underneath them affects the greenhouse 

spectral signal reaching the sensor. 

The existing literature on greenhouse detection using remote sensing has been supported by satellite 

data, such as the Landsat Thematic Mapper (TM) [11–15], the Terra Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) [16], IKONOS or QuickBird [5,7,17–20] and 
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WorldView-2 [21]. All of these aforementioned works were performed by using different pixel-based 

approaches. Recently, the object-based image analysis (OBIA) approach has been applied to 

greenhouse detection from digital true color (RGB) aerial data [9] and WorldView-2 and GeoEye-1 

stereo pairs [10]. However, and to date, no investigation has been aimed at the identification of 

horticultural crops growing underneath greenhouse coverings. 

The identification of outdoor crops by using Landsat time series has been already addressed by 

many authors [22,23]. Recently, an innovative methodology, which combines multi-temporal moderate 

resolution remote sensing data, the OBIA approach and the decision tree (DT) classifier algorithm, has 

been proposed [24,25]. It should be noted that not only spatial and spectral resolutions of  

remotely-sensed data used in this type of investigation are very important, but also the temporal 

resolution of data is crucial. In this sense, Hao et al. [26] tested the potential of time series merged 

from multi-source satellite imagery for outdoor crop classification. 

This paper presents the first attempt to identify greenhouse horticultural crops growing under plastic 

coverings by applying OBIA and decision tree techniques to multi-temporal remote sensing data.  

So far, and to the best knowledge of the authors, this is the first research work dealing with the 

identification of protected cropping. To this end, dense Landsat 8 OLI time series and a single 

WorldView-2 satellite image have been used as data sources. More specific subjects regarding the 

greenhouse crop classification method addressed in this work are: (1) to study the influence on the 

classification results of both the temporal and geometric resolution of satellite imagery; (2) to evaluate 

the most important and useful features for both crop and greenhouse covering (basic spectral 

information, textural features and several VIs); and (3) to detect the optimal temporal windows for the 

satellite imagery time series, as well as crucial time periods. 

2. Study Area 

This investigation was conducted in Almería, southern Spain, which has become the site of the 

greatest concentration of greenhouses in the world, known as the “Sea of Plastic” or the “Poniente” 

region. The study area comprises a rectangle area of about 8000 ha centered on the WGS84 geographic 

coordinates of 36.7824°N and 2.6867°W (Figure 1). 

In the 2013–2014 agricultural year (from July 2013 to June 2014), the intensive agriculture in 

Almería was mainly dedicated to tomato (26% of total area), pepper (22%), zucchini (16%), cucumber 

(11%), aubergine (4.5%) and green bean (3%). The rest of the area was cultivated with other crops, 

such as melon, watermelon or Chinese cabbage. It is important to note that two crop cycles are usually 

grown in a greenhouse during an agricultural season in Almería with the greenhouses’ empty time 

being little. The “first crop” in Almería is often planted between June and September and the second 

one between December and February. Therefore, the different combinations and possibilities of the 

cropping calendar in a greenhouse are extremely high. It is worth noting that this work will focus on 

the identification of crops grown in a greenhouse during the first crop or summer planting 

corresponding to the 2013–2014 agricultural season. 

Moreover, the types of greenhouse plastic covers in the study area are very variable. The most 

common materials are polyethylene films (e.g., low density, long life, thermic, with or without 



Remote Sens. 2015, 7 7381 

 

additives) and ethylene-vinyl acetate copolymer, also known as EVA. Furthermore, both materials can 

present different thickness (180 μm or 200 μm) and colors (white, yellow or green). 

 

Figure 1. Location of the study area on a RGB Landsat 8 image taken in August 2013, 

covering the “Poniente” region. Coordinate system: ETRS89 UTM Zone 30N. 

3. Datasets 

3.1. WorldView-2 Data 

WorldView-2 (WV2) is a very high-resolution (VHR) satellite launched in October 2009. This 

sensor is capable of acquiring optical images with 0.46-m and 1.84-m ground sample distance (GSD) 

at nadir in panchromatic (PAN) and multispectral (MS) mode, respectively. Moreover, it was the first 

VHR commercially available 8-band MS satellite: coastal (C, 400–450 nm), blue (B, 450–510 nm), 

green (G, 510–580 nm), yellow (Y, 585–625 nm), red (R, 630–690 nm), red edge (RE, 705–745 nm), 

near infrared-1 (NIR1, 760–895 nm) and near infrared-2 (NIR2, 860–1040 nm). 

A single WV2 image taken on 30 September 2013, over the study area was acquired. It was 

collected in Ortho Ready Standard Level-2A (ORS2A) format, containing both PAN and MS imagery. 

This satellite image had a mean off-nadir view angle of 11.8°, a mean collection azimuth of 38.2° and 

0% of cloud cover. The final product GSD was of 0.4 m and 1.6 m for PAN and MS images, 

respectively. WV2 ORS2A format presents both radiometric and geometric corrections. These types of 

images are georeferenced to a cartographic projection using a surface with constant height and include 

the corresponding RPC sensor camera model and metadata file. The delivered products were ordered 

with a dynamic range of 11-bit and without the application of the dynamic range adjustment preprocessing 

(i.e., maintaining absolute radiometric accuracy and full dynamic range for scientific applications). 

From this WV2 ORS2A bundle image, a pan-sharpened image with 0.4-m GSD was attained by 

means of the PANSHARP module included in Geomatica v. 2014 (PCI Geomatics, Richmond Hill, 
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ON, Canada). The coordinates of seven ground control points (GCPs) and 32 independent check points 

(ICPs) were obtained by the differential global positioning system (DGPS) using a total GPS Topcon 

HiPer PRO station working in real-time kinematic mode (RTK). The ground points (both GCPs and 

ICPs) were measured with reference to the European Terrestrial Reference System 1989 (ETRS89) and 

UTM Zone 30 projection. A pan-sharpened RGB orthoimage with 0.4-m GSD was generated by using 

the seven GCPs to compute the sensor model based on rational functions refined by a zero order 

transformation in the image space (RPC0). A medium resolution 10-m grid spacing DEM with a 

vertical accuracy of 1.34 m (root mean square error; RMSE), provided by the Andalusia Government, 

was used to carry out the orthorectification process. The planimetric accuracy (RMSE2D) attained on 

the orthorectified pan-sharpened image and measured on 32 ICPs was 0.59 m. 

Furthermore, an MS orthoimage with 1.6-m GSD and containing the full 8-band spectral 

information was also produced. The same seven GCPs, RPC0 model and DEM were used to attain the 

MS orthoimage. It is worth noting that atmospheric correction is especially important in those cases 

where multi-temporal or multi-sensor images are analyzed [24,25,27–30]. Thus, in this case and as a 

prior step to the orthorectification process, the original WV2 MS image was atmospherically corrected 

by using the ATCOR (atmospheric correction) module included in Geomatica v. 2014. This absolute 

atmospheric correction algorithm involves the conversion of the original raw digital numbers to ground 

reflectance values, and it is based on the MODTRAN (MODerate resolution atmospheric TRANsmission) 

radiative transfer code [31]. Finally, an atmospherically-corrected WV2 MS orthoimage with a RMSE2D 

of 2.20 m was generated. 

3.2. Landsat 8 Data 

The new Landsat 8 satellite, launched in February 2013, carries a two-sensor payload, the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI sensor is able to 

capture eight MS bands with 30-m GSD: coastal aerosol (C, 430–450 nm), blue (B, 450–510 nm), 

green (G, 530–590 nm), red (R, 640–670 nm), near infrared (NIR, 850–880 nm), shortwave infrared-1 

(SWIR1, 1570–1650 nm), shortwave infrared-2 (SWIR2, 2110–2290 nm) and cirrus (CI, 1360–1380 

nm). In addition, Landsat 8 OLI presents one panchromatic band (P, 500–680 nm) with 15-m GSD. 

A dense time series of the Landsat 8’s OLI sensor was downloaded, totally free and via the Internet, 

from the U.S. Landsat archive [32]. It was composed of eight free of cloud multi-temporal Landsat 8 

scenes type Level 1 Terrain Corrected (L1T) in the footprint of Path 200 and Row 34, each one 

comprising the whole working area. The eight Landsat 8 scenes were taken with a dynamic range of  

12 bits from May to November in 2013, and they were dated as follow: 23 May, 8 June, 24 June, 10 

July, 26 July, 11 August, 12 September and 15 November. 

In order to use the aforementioned time series of Landsat 8 for greenhouse horticultural crop 

identification, it was necessary to carry out some previous processing steps. The first one was to clip 

the original images, both PAN and MS, according to the study area. It is noteworthy that spatial 

resolutions equal to or better than 8–16 m are recommended by Levin et al. [6] to work on greenhouse 

detection via remote sensing. Thereby, and after clipping, eight pan-sharpened images were attained by 

fusing the information of PAN and MS Landsat 8 bands through applying the PANSHARP module 
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included in Geomatica v. 2014. The pan-sharpened images were generated with a GSD of 15 m, 12-bit 

depth and seven bands (C, B, G, R, NIR, SWIR1 and SWIR2). 

The next processing step consisted of performing atmospheric correction by applying the ATCOR 

module (Geomatica v. 2014) to the eight Landsat 8 pan-sharpened images. The goal was to attain 

ground reflectance values. At this point, it was checked that ground reflectance values attained over 

greenhouses on the corrected pan-sharpened images were not significantly different from those 

achieved on the atmospherically corrected Landsat MS images. The results showed that the coefficient 

of determination (R2) between ground reflectance values of pan-sharpened and MS images was always 

higher than 0.99 for each of the seven studied bands. 

The last process involved the rectification and co-registration of the eight images. Although all 

acquired Landsat 8 L1T images have been previously orthorectified and corrected for terrain relief [33], a 

subsequent co-registration is needed, since an extremely accurate spatial matching among multi-temporal 

images is crucial in this type of work [34,35] for both pixel and object-based image analysis. The  

pan-sharpened RGB WV2 orthoimage with a GSD of 0.4 m was used as the reference image. Each  

pan-sharpened Landsat 8 image was rectified with this reference image using 50 ground control points 

evenly distributed over the working area and a first order polynomial transformation. The resulting 

RMSE2D for the geometrically-corrected images ranged from 4.42 m to 6.95 m. 

3.3. Reference Greenhouses 

The reference objects or ground truth for this work consisted of 694 individual greenhouses located 

in the study area and managed by Vicasol, an agricultural cooperative of Almería. Vicasol provided 

valuable information related to those crops growing under plastic coverings corresponding to these 

reference greenhouses in autumn 2013, such as type of crop, date of planting and date of removal (Table 1). 

We can see that these data fit well with the typical transplant pattern in the study area (Table 2). This 

information consisted of an Excel file, where the cadastral reference of each greenhouse was provided. 

It is important to note that the Vicasol data only vaguely reflect the distribution of the main crops for 

the whole of Almería. This fact should be taken into account in further works. 

Table 1. Characteristics of the 694 reference greenhouses. SD: Standard deviation. 

Crop 
No.  

Greenhouses 

Total Area  

(ha) 

Average Date  

of Planting 

SD Planting 

(Days) 

Average Date  

of Removal 

SD Removal 

(Days) 

Aubergine 80 58 12 August 2013 11.8 3 June 2014 21.5 

Cucumber 62 54 3 September 2013 22.5 14 January 2014 50 

Pepper 192 152 27 July 2013 12.9 1 May 2014 44.8 

Tomato 360 307 20 August 2013 11.2 5 May 2014 42.7 

Table 2. Schematic summary of the typical transplant pattern for the four studied crops. 

Crop June July August September October November 

Aubergine   Transplant Transplant   

Cucumber   Transplant Transplant Transplant  

Pepper  Transplant Transplant    

Tomato   Transplant Transplant   
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4. Methodology 

4.1. Segmentation and Reference Objects 

As is well known, the first step in the OBIA approach involves image segmentation to produce 

homogeneous and discrete objects. Later, these objects, rather than pixels, are used as the classification 

unit [36]. It is important to note that automatic segmentation is a crucial process in OBIA approaches. 

This process has already been successfully achieved on plastic greenhouses by Tarantino and Figorito [9] 

through the multi-resolution segmentation algorithm included in the eCognition Developer software 

(Trimble, Sunnyvale, California, United States). Working on a time series of ASTER images for 

detecting outdoor crops, Peña-Barragán et al. [24] used the multi-resolution segmentation algorithm 

implemented in eCognition by equally weighting the green, red and NIR bands of all images with 15-m 

spatial resolution. In the same way, Vieira et al. [25] carried out their segmentation process by using 

eCognition’s multi-resolution algorithm on a time series of 30-m GSD Landsat images for the 

detection and mapping of sugarcane in Brazil. In both cases, the agricultural plots had a much larger 

size than our greenhouses. Therefore, in the present work, the segmentation process will be based on the 

VHR orthoimage from WV2. 

On the other hand, we have to take into account that the final classification accuracy for horticultural 

crops under greenhouses is going to be highly dependent on the automatic segmentation process carried out 

on the WV2 orthoimage. Hence, we decided to conduct a manual digitizing in order to obtain the  

best possible segmentation on our objects of interest. This was already done in a similar way by  

Aguilar et al. [10]. Therefore, 694 reference objects provided by Vicasol were manually digitized over the 

WV2 pan-sharpened orthoimage with 0.4-m GSD, covering a total of 571 ha (Figure 2). The individual 

average area of the monitored greenhouses was 8200 m2. According to the ground truth data, the existing 

crops were tomato Solanum lycopersicum L. (54% of the area), pepper Capsicum annuum L. (27%), 

aubergine Solanum melongena L. (10%) and cucumber Cucumis sativus L. (9%). It is worth noting that 

tomato and pepper crops were composed of different varieties (e.g., Californian red pepper, Italian green 

pepper, yellow pepper, orange pepper, plum tomato, cocktail tomato, cherry tomato, truss tomato). 

4.2. Definition and Extraction of Features 

Two different information sources have been tested in this work: Landsat 8 time series and a WV2 

single image. Several groups of input variables or features were retrieved from both data sources. 

These object-based features involved spectral information (mean and standard deviation values of all 

pixels within an object), several vegetation indices (VIs) related to crop vegetation vigor and textural 

information based on the gray-level co-occurrence matrix (GLCM) proposed by Haralick et al. [37].  

In the case of the Landsat 8 time series, the considered object-based features (Table 3) were computed 

from the seven bands in both visible and SWIR regions included in the eight pan-sharpened Landsat 8 

orthoimages. For WV2, the eight bands provided by the MS single orthoimage were used to obtain the 

object-based features shown in Table 4. In regard to GLCM features, only three out of 14 originally 

proposed by Haralick et al. [37] were finally considered. Homogeneity, dissimilarity and entropy 

texture features were always computed considering all of the directions over the NIR region (i.e., NIR1 

and NIR2 bands in the case of WV2 and the NIR band when the Landsat time series were analyzed). 
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The same subset of GLCM features was selected by Peña-Barragán et al. [24]. Lastly, most of the VIs 

tested in the case of WV2 were adapted for this satellite by Oumar and Mutanga [38]. 

 

Figure 2. Location of the 694 reference greenhouses on the WorldView-2 (WV2) orthoimage 

and existing crops in autumn 2013. Coordinate system: ETRS89 UTM Zone 30N. 
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Table 3. Landsat 8 time series object-based features. GLCM, gray-level co-occurrence matrix; 

NIR, near-infrared; SWIR, shortwave infrared; R, red band; G, green band; B, blue band. 

 Tested Features Description Reference 

Spectral  

Information 

Mean and standard  

deviation (SD) 

Mean (7 bands × 8 images) and  

SD (7 bands × 8 images) of each  

pan-sharpened Landsat 8 band 

[39] 

Vegetation  

Indices 

NDVI (Normalized Difference Vegetation Index) (NIR − R)/(NIR + R) [40] 

GNDVI (green NDVI) (NIR − G)/(NIR + G) [41] 

GVI (green vegetation index) (G − R)/(G + R) [41] 

MSR (modified simple ratio) ((NIR/R) − 1)/((NIR/R)0.5 + 1) [42] 

MSAVI  

(Modified Soil-Adjusted Vegetation Index) 

(2 × NIR + 1 − ((2 × NIR + 1)2 – 8  

× (NIR − R))0.5)/2 
[43] 

NDSVI  

(Normalized Differential Senescent Vegetation Index) 
(SWIR1 − R)/(SWIR1 + R) [44] 

NDTI (Normalized Difference Tillage Index) (SWIR1 − SWIR2)/(SWIR1 + SWIR2) [45] 

Texture 

GLCMh GLCM homogeneity sum of all directions from NIR [37] 

GLCMd GLCM dissimilarity sum of all directions from NIR [37] 

GLCMe GLCM entropy sum of all directions from NIR [37] 

Table 4. WV2 multispectral (MS) single orthoimage object-based features. 

 Tested Features Description Reference 

Spectral  

Information 
Mean and standard deviation (SD) Mean and SD of each WV2 MS band [39] 

Indices 

WBI (water band index) NIR1/NIR2 [38] 

CSI (Carter stress index) R/NIR1 [38] 

CRI (carotenoid reflectance index) (1/G) − (1/R) [38] 

PSRI (plant senescence reflectance index) (R − B)/RE [38] 

SIPI (structure insensitive pigment index) (NIR1 − C)/(NIR1 − R) [38] 

PRI (photochemical reflectance index) (B − G)/(B + G) [38] 

SR (simple ratio) NIR2/R [38] 

NDVI (Normalized Difference VI) (NIR2 − R)/(NIR2 + R) [38] 

EVI (enhanced vegetation index) 
((2.5 × (NIR2−R))/(NIR2 + (6 × R) −  

(7.5 × B) + 1)) 
[38] 

ARVI (atmospheric resistance VI) (NIR2 − (2 × R − B))/(NIR2 + (2 × R − B)) [38] 

DMI (Datt/Maccioni index) (NIR1 − RE)/(NIR1 − R) [38] 

FFRI (far-red to red index) RE/R [38] 

LRES (lower red edge slope) (RE − R)/(710 – 690) [38] 

TRES (total red edge slope) (RE − R)/(740 – 690) [38] 

RGI (red green ratio index) R/G [38] 

VOGRE (Vogelmann Red Edge) RE/R [38] 

GNDVI1 (green NDVI1) (NIR1 − G)/(NIR1 + G) [41] 

GNDVI2 (green NDVI2) (NIR2 − G)/(NIR2 + G) [41] 

GVI (Green Vegetation Index) (G − R)/(G + R) [41] 

MSR1 (modified simple ratio) ((NIR1/R) − 1)/((NIR1/R)0.5 + 1) [42] 

MSR2 (modified simple ratio) ((NIR2/R) − 1)/((NIR2/R)0.5 + 1) [42] 
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Table 4. Cont. 

 Tested Features Description Reference 

Indices 

MSAVI1 (Modified Soil-Adjusted Vegetation Index) 
(2 × NIR1 + 1 − ((2 × NIR1 + 1)2 – 8 ×  

(NIR1 − R))0.5)/2 
[43] 

MSAVI2 (Modified Soil-Adjusted Vegetation Index) 
(2 × NIR2 + 1 − ((2 × NIR2+1)2 – 8 ×  

(NIR2 − R))0.5)/2 
[43] 

NDWI (Normalized Difference Water I) (C−NIR2)/(C + NIR2) [46] 

Texture 

GLCMh1 GLCM homogeneity sum of all directions  

from NIR1 and NIR2 

[37] 

GLCMh2 [37] 

GLCMd1 GLCM dissimilarity sum of all directions  

from NIR1 and NIR2 

[37] 

GLCMd2 [37] 

GLCMe1 GLCM entropy sum of all directions  

from NIR1 and NIR2 

[37] 

GLCMe2 [37] 

The OBIA software eCognition v. 8.8 was employed for the extraction of the object-based features 

from both Landsat 8 and WV2 orthoimages shown in Tables 3 and 4 [37–46]. To this end, the 

chessboard segmentation algorithm included in eCognition was applied on a thematic layer composed 

of a previously digitized vector file with the 694 reference greenhouses. Using this approach, the 

software only projects the vector file on the images in order to obtain a boundary adapted to the pixels 

that compose them (Figure 3). One eCognition project was conducted for the eight multi-temporal 

Landsat 8 pan-sharpened orthoimages by halving four times the original 15-m GSD on the created 

project tab in order to increase the geometric resolution to 0.9375 m per pixel. Thus, the segmentation 

fit better to the reference greenhouses (see Figure 3a,c,d). In the case of the single WV2 MS 

orthoimage, another project was performed within eCognition, where the original GSD (1.6 m) was 

enhanced up to 0.8 m per pixel (Figure 3b). The main goal was always to attain the best possible 

segmentation for our 694 reference greenhouses. 

 
(a) 

 
(b) 

Figure 3. Cont. 



Remote Sens. 2015, 7 7388 

 

 
(c) 

 
(d) 

Figure 3. Segmentations for a detailed area of 225 m × 240 m showing orthoimages as the 

background: (a) manual digitizing on WV2 pan-sharpened orthoimage MS RGB; (b) WV2 

MS segmentation using an enhanced resolution of 0.8 m per pixel; (c) Landsat 8  

pan-sharpened orthoimage with the original GSD (15 m); (d) Landsat 8 pan-sharpened 

orthoimage using 0.9375 m GSD. 

4.3. Decision Tree Modeling and Evaluation 

A decision tree (DT) classifier based on the algorithm proposed by Breiman et al. [47] has been 

used in this work. The major reason for its choice lies in that the results from this classifier are simple 

to understand. In fact, in Peña-Barragán et al. [24], the DT classifier is described as a “white box”, 

because both its structure (formed by several splits) and its final results (terminal leaves) are easy to 

interpret. In fact, the DT classifier could be implemented directly in eCognition by means of rule sets. 

DT is a non-parametric rule-based method in which each node makes a binary decision that separates 

either one class or some of the classes from the remaining classes. Classification through the DT 

algorithm is increasingly applied in remote sensing data. In fact, it has been the selected classifier in 

recent OBIA investigations focused on outdoor crop identification [24,25,48]. Other advantages of DT 

classifiers are: (1) they fit well in the OBIA procedure; (2) DTs are computationally fast and make no 

assumptions regarding the distribution of the data; (3) they are able to take numerous input variables 

and perform rapid classification without being severely affected by the “curse of dimensionality”; and 

(4) the DT methods provide quantitative measurements of each variable’s relative contribution to the 

classification results, so allowing users to rank the importance of input variables. 

Once the object-based features corresponding to the 694 reference greenhouses were computed 

from Landsat 8 time series and WV2 imagery, they were exported by means of eCognition software in 

order to generate the following three different datasets: (1) 192 feature dataset (56 mean values; 56 

standard deviation (SD), 56 VIs and 24 GLCMs) from Landsat 8 time series; (2) 46 features dataset (8 
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means, 8 SD, 24 VIs and 6 GLCMs) from the WV2 MS orthoimage; and (3) the combination of all 238 

features from both satellites. 

The StatSoft STATISTICA 10 software was used for the classification and regression decision tree 

analysis (StatSoft Inc., Tulsa, OK, United States). Briefly, the DT algorithm seeks to split the data into 

segments as homogeneous as possible with respect to the dependent or response variable. In this case, 

the categorical dependent variable was the kind of crop that had been grown under plastic coverings in 

the reference greenhouses during autumn 2013 (Table 1). The DT node-splitting rule was the Gini 

index, which is a measure of impurity for a given node [49]. Its application attempts to maximize the 

homogeneity of the child nodes with respect to the values of the dependent variable. 

Cross-validation provided an objective measure of quality for the computed DT model [25,50,51]. 

The experimental design was implemented within the STATISTICA environment through a stratified  

10-fold cross-validation procedure, leading to one confusion matrix for each fold. In 10-fold  

cross-validation, the data are randomly partitioned into 10 equally-sized samples. Of the 10 samples, a 

single sample is used to validate the model, and the remaining 9 samples are used to train the model. 

The cross-validation process is then repeated 10 times, with each of the 10 samples used exactly once 

as the validation data. A final confusion matrix was obtained by summing all of them. The 

classification accuracy assessment in this work was finally based on this final error matrix provided by  

cross-validation [52]. Hence, the accuracy measures computed were user’s accuracy (UA), producer’s 

accuracy (PA) and overall accuracy (OA). Finally, the Fβ measure [53], which provides a way of 

combining UA and PA into a single measure, was also computed according to Equation (1), where the 

parameter β determines the weight given to the accuracy computed as PA or UA. The value used in 

this study (β = 1) weighs UA equal to PA. 

ஒܨ ൌ
ሺβଶ  1ሻ ൈ ܣܲ ൈ ܣܷ

βଶ ൈ ܣܲ  ܣܷ
 (1)

5. Results and Discussion 

5.1. Classification Accuracy with Regard to Data Sources and Features 

Three main datasets were tested in this work (i.e., only Landsat 8 time series data, only WV2 single 

orthoimage data and, finally, Landsat 8 time series plus WV2 single orthoimage data). In addition, a 

special case involving only the single Landsat 8 orthoimage taken on 12 September was conducted just 

to be compared with the single WV2 case taken also in September. Moreover, four strategies or groups 

of features were considered for each dataset: (1) all features (All); (2) all features without GLCMs  

(no GLCM); (3) all features without GLCMs, mean values (no GLCM, mean); and (4) all features 

without GLCMs, mean and standard deviation values (no GLCM, mean, SD). 

Figure 4 shows the accuracy per class and OA based on the 10-fold cross-validation method for the 

different datasets tested. It can be noted that the best OA values were attained with the two first 

strategies. Furthermore, the second-order textural parameters based on GLCM added no information  

in order to improve the classification accuracy. Working on outdoor crops identification,  

Peña-Barragán et al. [51] reported that texture features achieved extremely poor overall accuracy as 

compared to spectral features. However other research found that texture attributes based on GLCM 

were relevant to discriminate between some crops with similar spectral responses [24,25]. In this 
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sense, it is important to bear in mind that the calculation of GLCM is computationally intensive and 

very time consuming. Notice that, apart from GLCM descriptors, textural information is somehow 

included by means of SD values, which can be considered as first-order textural features. The best OA 

value (81.3%) was reached when using no GLCM strategy on Landsat 8 time series (Figure 4a). When 

the Landsat 8 + WV2 dataset was employed, a slightly lower OA value of 79.4% was achieved with the 

no GLCM strategy (Figure 4b). OA values were far worse when only a single growing season period 

was considered, highlighting the suitability of multi-temporal images taken along the growing season 

to improve under greenhouse crop discrimination. In this way, and applying the no GLCM strategy, 

OA values of 75.1% and 67% were achieved for WV2 and Landsat 8 September datasets, respectively 

(Figure 4c,d). The better classification results found in the case of WV2 can be attributed to its much 

higher spatial resolution. Regarding the results from the third strategy (no GLCM, Mean) depicted in 

Figure 4, it should be noted that object spectral information based on mean values could not be 

removed without causing a decrease in OA close to 2%. This result strengthens the importance of 

applying proper atmospheric corrections on the original images. 

 

Figure 4. Per-class accuracy given by the corresponding Fβ index and overall accuracy 

(OA) using different groups of features and data sources. (a) Landsat 8 time series (eight 

orthoimages); (b) Landsat 8 time series plus WV2 single orthoimage; (c) WV2 single 

orthoimage taken on September 30; (d) Image Landsat 8 taken on September 12. 
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The OA values of around 80% achieved in this work are rather promising as compared to those 

reported by other authors working with a similar methodology, but on outdoor crops. For instance,  

Peña-Barragán et al. [24] reached an OA of 79% applying the DT classifier for detecting 13 major 

crops cultivated in the agricultural area of Yolo County, California, USA. This classification accuracy 

rose up to 88% by using support vector machine (SVM) or multilayer perceptron (MLP) neural 

network classifiers [51]. In another study, twelve outdoor crops and two non-vegetative land use 

classes were classified with 80.7% OA at cadastral parcel levels through multi-temporal remote 

sensing images [48]. Furthermore, working on mapping outdoor crops (classes corn, soybean and 

others), an OA of 88% was reported by Zhong et al. [2]. Finally, Vieira et al. [25] applied the DT 

classifier to Landsat time series in a binary classification approach between sugarcane and other crops, 

assessing an OA of 94%. 

Regarding the accuracy per class, Figure 4 shows that tomato and pepper crops were fairly well 

identified for all datasets. Again, and always using the no GLCM strategy, the best Fβ values for 

tomato (87.7%) and pepper (87%) were attained for the Landsat 8 time series dataset (Figure 4a). With 

the same strategy, the Fβ measure reached values of 85.1% and 84.5% for tomato and pepper, 

respectively, when using the Landsat 8 time series plus WV2 dataset. It is important to underline that 

Fβ values for tomato and pepper crops were significantly worse for the datasets where only a single 

image of WV2 (80.3% tomato and 81.5% pepper) or Landsat 8 September (76.2% tomato and 68.8% 

pepper) were employed. On the other hand, the other two crops presented much poorer classification 

accuracies. The best Fβ value for aubergine identification (60.3%) was achieved using the WV2 dataset 

with no GLCM strategy. Moreover, an accuracy of 63.2% in terms of Fβ was reached in the case of 

cucumber for the Landsat 8 time series dataset and, again, through the no GLCM strategy. Working on 

13 outdoor crops, Peña-Barragán et al. [24] reported Fβ values ranging from 94% for rice to 66.7% for 

rye, achieving an accuracy of 80% in the case of tomato. 

More detailed information about the accuracy per class is presented in Table 5, showing the 

corresponding confusion matrix for the Landsat 8 time series dataset and no GLCM strategy. It can be 

noted that a large number of under-greenhouse aubergine crops are misclassified as tomato. In fact, 

aubergine and tomato crops have a similar transplant date in Almería, usually in August  

(Tables 1 and 2). Both crops are quite heat tolerant, and in the study area, greenhouse coverings only 

need a slight white paint layer to protect the crops during the transplant stage. The white paint is 

usually washed in September or October. Regarding cucumber crops, they have very variable 

transplant dates, ranging from August to October (Table 2). For early transplanted cucumber crops, the 

white paint is more intense to protect the small plants during their first stage. A very slight white paint 

is usually applied when the cucumber crops are planted in early to mid-September and even not 

necessary when the cucumber plants are planted very late. Furthermore, in the study area and regarding 

cucumber crops, it is common to rely on a double-roof in the greenhouse, which reduces radiation 

losses. All of these actions cause a highly variable spectral signature on the shape of the time series 

profile recorded from greenhouse coverings. Finally, pepper crops are mainly planted during July and 

August. This is a crop that needs a significant quantity of white paint to enhance the growth of the 

plant, as well as to protect the transplant stage. Without a doubt, this is the most unique characteristic for 

the autumn pepper crop in the “Poniente” region of Almería. The pepper crops are mainly misclassified as 

tomato or cucumber (Table 5). 
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Table 5. Confusion matrix for Landsat 8 time series dataset and no GLCM strategy. PA,  

producer’s accuracy. 

Classified Data 
Reference Data 

Aubergine Cucumber Pepper Tomato ∑ UA (%) 

Aubergine 36 7 5 32 80 45.0 

Cucumber 10 42 1 9 62 67.7 

Pepper 3 12 157 20 192 81.8 

Tomato 15 10 6 329 360 91.4 

∑ 64 71 169 390 694 

PA (%) 56.3 59.2 92.9 84.4 

OA = 81.3%; Kappa coefficient = 0.70. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 5. WV2 MS and multi-temporal Landsat 8 pan-sharpened orthoimages showing the 

evolution of some reference greenhouses. (a) WV2 true color composite (RGB) 30 September; 

(b) Landsat 8 RGB 11 August; (c) Landsat 8 RGB 12 September; (d) Landsat 8 RGB  

15 November; (e) WV2 false color composite (NIR R G) 30 September; (f) Landsat 8 false 

color 11 August; (g) Landsat 8 false color 12 September; (h) Landsat 8 false color  

15 November. Reference objects in red, green, purple and yellow represent tomato, pepper, 

aubergine and cucumber crops, respectively. 
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In Figure 5 is depicted the evolution of the time series profile. The cucumber greenhouse located in 

the center, planted on 27 August 2013, appears without white paint on 11 August (Figure 5b,f). It 

seems to be whitewashed in Figures 5a,c,e,g (30 and 12 September, respectively), and finally, this 

greenhouse covering is shown without any trace of paint in November (Figure 5d,h). Moreover, 

November (Figure 5h) turns out to be the month when most of the greenhouses allow one to visually 

perceive (false color images) the presence of crops through an increase in the NIR reflectance. This is 

not the case of the greenhouse located just on the right of the aforementioned cucumber one. In fact, it 

is a tomato crop that was whitewashed in September, and it had not yet been washed in November 

(Figure 5h). 

The capacity of the DT approach was used to select the object-based features and their cutting 

thresholds that best fit to every type of under-greenhouse crop. In view of the complexity of the 

computed DT, presenting up to 34 terminal nodes for the case shown in Table 5 (Landsat 8 time series 

dataset and no GLCM strategy), just the first divisions of that DT (only nine terminal nodes) are 

presented (Figure 6). At the bottom and outside of each black box in Figure 6 appears the object-based 

feature that is causing the next split in the decision tree. Below, the readers can see the figure that 

represents the cutting threshold for the split. Oval nodes are terminal nodes belonging to a particular 

class. Thereby, the OA value attained with the pruned DT shown in Figure 6 was 75.9%, considering 

the last box (N = 419) as the Class 4 (Tomato) terminal node. It is worth noting that the object-based 

feature located at the top of the tree was the mean value of SWIR2 for the Landsat 8 pan-sharpened 

orthoimage taken on 11 August (AGO11 Mean SWIR2). SWIR2 reflectance values higher than 

44.85% (right branch of the tree) were mainly associated with greenhouses that received an important 

dose of white paint in August, so pointing to pepper crops. In fact, 149 out of the 191 selected 

greenhouses with higher SWIR2 turned out to be pepper crops. The remaining high SWIR2 objects in 

August were identified as tomato (33 greenhouses belonging to Class 4), aubergine (eight greenhouses 

for Class 1) and cucumber (one greenhouse belonging to Class 2). The next steps in that branch of the 

DT were addressed to separate these tomato greenhouses. In this way, features, such as the mean value 

for the green band reflectance on 24 June, the Green Vegetation Index (GVI) on 26 July and GVI in 

November, were chosen to carry out this task. At the end of June, pepper greenhouses were being 

prepared to receive the plants, so they were usually bare and presented a lower value for the green 

band reflectance. Regarding GVI values for the pepper crops, they were often higher at the end of July 

and lower in November as compared to other crops in the study area. On the left branch of the DT 

(Figure 6) we observe most of the aubergine (72), cucumber (61) and tomato (327) crops, which 

received low doses of white paint (SWIR2 reflectance ≤ 44.85%), but it also contained 43 greenhouses 

of Class 3 (Pepper). The SWIR1 mean value on 26 July was used to extract these pepper crops with a 

high dose of white paint when transplanted early. The rest of the object-based features used in this 

branch (i.e., GNDVI in November, mean NIR in September and Normalized Differential Senescent 

Vegetation Index (NDSVI) in May) were aimed at discriminating tomato, cucumber and aubergine 

crops. The last box in Figure 6 still contains 419 objects classified as tomato in the DT with nine 

terminal nodes. The whole DT, presenting 34 terminal nodes, continues from that point using the other 

23 features extracted along different periods, such as mean reflectance values (NIR, Blue, SWIR2 and 

SWIR1), standard deviations (SWIR2, blue, green and NIR) and VIs (NDSVI, Normalized Difference 

Tillage Index (NDTI), GVI and GNDVI). 
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In view of the above, the identification of under-greenhouse pepper crops can be carried out with 

high success rates, mainly based on the crop management techniques applied during the growing cycle 

for each agricultural region. In our test field, an OA of 92.7% and a kappa coefficient of 0.81 were 

achieved considering only two classes (pepper and others) by using Landsat 8 time series with  

no GLCM strategy. In addition, a very simple DT (similar to the top part of Figure 6) with only six 

terminal nodes and only five features (i.e., AGO11 mean SWIR2, JUL26 mean SWIR1, JUN24  

mean GREEN, SEP12 SD BLUE and JUL26 GVI) were required for the achievement of the 

aforementioned results. 

 

Figure 6. Decision tree computed for the Landsat 8 time series dataset and no GLCM 

strategy. Only nine out of 34 terminal nodes are shown. N is the number of objects in  

each node, Class 1 (C1) = aubergine, C2 = cucumber, C3 = pepper, C4 = tomato. AGO11,  

11 August; JUL26, 26 July; JUN24, 24 June; NOV15, 15 November; SEP12, 12 September. 

5.2. Optimal Time Period for Collecting Satellite Images 

This section is devoted to detecting the optimal temporal windows for gathering the satellite 

imagery time series, as well as crucial time periods for under-greenhouse crop identification. The first 

step was to assess the classification accuracy attained from each of the nine available single 

orthoimages, always using the no GLCM strategy. Table 6 shows that the best classification results 

were obtained from the WV2 orthoimage, likely due to its much higher spatial resolution. With regard 

to the eight Landsat 8 orthoimages, the best OA values were assessed from the images taken in August 
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(73.2%), on 26 July (69.7%) and in September (67%). The OA values for the rest of the images ranged 

from 65.4% to 63.2%. According to the agricultural practices of the working area, the importance of 

the images taken in August and late July could lie in the application of white paint. Along September, 

some crops reach a significant size, and therefore, leaf pigments (chlorophyll, carotenoids and 

anthocyanins) begin to influence the signal captured by the satellites (e.g., NIR band), although in  

this month, there are still numerous greenhouse coverings painted white (Figure 5g). In November,  

most of the greenhouses have been washed, so being transparent to the electromagnetic radiation 

reflected from the crops inside (Figure 5h). However the OA value computed from this single period 

was quite poor. 

Table 6. Accuracy indices from single orthoimages using the no GLCM strategy. 

Single Orthoimages OA (%) Kappa Coefficient
Fβ (%) 

Aubergine Cucumber Pepper Tomato 

Landsat 15 November 64.4 0.41 38.7 52.1 60.7 72.2 

Landsat 12 September 67.0 0.41 13.5 11.8 68.8 76.2 

Landsat 11 August 73.2 0.54 42.7 34.5 79.1 79.1 

Landsat 26 July 69.7 0.44 36.2 0.0 72.1 77.7 

Landsat 10 July 63.8 0.36 17.8 25.0 59.9 74.9 

Landsat 24 June 63.3 0.31 18.2 6.3 55.9 74.2 

Landsat 8 June 65.4 0.43 41.6 6.3 63.9 76.1 

Landsat 23 May 64.0 0.37 32.4 23.4 54.9 76.1 

WV2 30 September 75.1 0.59 60.3 20.8 81.5 80.3 

Table 7 shows the accuracy results for different multi-temporal satellite imagery combinations. The 

best combination of three Landsat images included the scenes corresponding to 26 July, August and 

September, achieving an OA of 75.5%. The time series profile was improved by adding the November 

information, the OA value increasing to 77.8%. The information contained on the scene taken in June, 

the period related to the greenhouse preparation for the transplant stage, also turned out to be relevant 

to improve OA up to a value of 79.8%. Information about previous crops given by the May scene did 

not raise the final accuracy. When the WV2 dataset was also added to Landsat time series, the best OA 

values (81.1% and 82.3%) were achieved. Likely, including more temporal data within the growing 

season from June 2013 to March 2014 would have led to improving the current results. It is worth 

noting that a couple of medium spatial resolution super-spectral satellites, named Sentinel-2, is going 

to be launched in 2015–2016 by the European Space Agency. These satellites will be able to acquire 

images of the Earth covering 13 spectral bands with spatial resolutions of 10 m (four visible and NIR 

bands), 20 m (six red-edge/SWIR bands) and 60 m (three atmospheric correction bands). The revisit 

time will be only five days from the two-satellite constellation with open and free data access [54]. 

Another issue to consider in further works would be the use of seasonal statistics [55] or some 

automated crop mapping algorithms based on the shape of the time series profile of VIs [2], which 

should be more consistent over years than snapshot values the original images. Both options could 

contribute to making the multi-temporal approach less dependent on the availability of particular 

acquisition dates and less susceptible to missing data on crucial dates (e.g., due to cloud presence or 

incomplete spatial coverage).  



Remote Sens. 2015, 7 7396 

 

Table 7. Accuracy indices from different combinations of multi-temporal orthoimages 

using the no GLCM strategy. 

Combinations 
No. of 

Features
OA (%)

Kappa 

Coefficient

Fβ (%) 

Aubergine Cucumber Pepper Tomato 

Only 

Landsat 

26 July, August, September 63 75.5 0.58 17.6 39.0 87.4 81.9 

26 July, August,  

September, November 
84 77.8 0.62 26.3 51.3 87.3 83.7 

8 June, 26 July, August,  

September, November 
105 79.8 0.66 45.4 52.5 87.9 85.4 

May, 8 June, 26 July, August, 

September, November 
126 79.3 0.66 43.5 56.3 87.4 85.0 

WV2 +  

Landsat 

WV2, 26 July,  

August, September 
103 76.9 0.62 54.8 52.6 83.2 82.4 

WV2, 26 July, August,  

September, November 
124 81.1 0.69 55.5 67.2 85.6 86.0 

WV2, 8 June, 26 July, August, 

September, November 
145 82.3 0.71 64.5 66.7 84.2 87.5 

6. Conclusions 

As far as we know, this work is the first attempt to identify horticultural crops that are growing 

under greenhouse plastic coverings by using multi-temporal and multi-source satellite images. To this 

end, several spectral, textural and VIs object-based features were extracted from a WV2 orthoimage 

and eight multi-temporal Landsat 8 pan-sharpened orthoimages by using an OBIA approach. These  

previously-segmented objects were subsequently analyzed by means of the DT classifier. When the 

full Landsat 8 time series was applied, classification results reached an OA of 81.3% from performing  

the 10-fold cross-validation method over 694 reference greenhouses or the ground truth. The 

classification results were quite good in the case of tomato and pepper crops, presenting Fβ values of 

around 87%, but worse on cucumber and aubergine crops, with Fβ values ranging from 50% to 63%. 

These results hardly improved by adding the information of the WV2 single image, which had been 

used to undertake the initial segmentation stage. In fact, the best OA reached 82.3% (kappa coefficient 

of 0.71) when the WV2 data were added to five Landsat images (8 June, 26 July, August, September 

and November). The most relevant object-based features were related to spectral information (mean 

reflectance and SD values) and VIs. The most important spectral information for correct classification 

of different crops under greenhouses was mainly due to the greenhouse management practices.  

As regard VIs features, GVI, GNDVI and NDSVI turned out to be the most significant ones. The  

second-order textural parameters based on GLCM added no information in order to improve the 

classification accuracy. 

As is widely known, outdoor crop classification is rather complex due to agronomic factors and 

farming decisions. Different crops can exhibit very similar developmental patterns and growth 

calendars. In addition, the same crop may be sown on different dates due to the farmers’ decision. All 

of these variables become much more complex in the case of crops under greenhouses, where the 

existence of plastic coverings and their particular management during the growing season make the 
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crop identification via remote sensing more difficult. The most defining characteristic for crop 

identification in this work turned out to be the unique whitewashing management in the case of pepper 

crop. Thus, high reflectance values in the SWIR1 and SWIR2 bands in the months of July and August 

were related to the white paint applied to the plastic coverings of this crop. In this regard, pepper could 

be discriminated from other crops through a DT binary classification by using Landsat 8 time series 

and only five features (AGO11 mean SWIR2, JUL26 mean SWIR1, JUN24 mean green, SEP12 SD 

blue and JUL26 GVI), attaining an OA of 92.7% and a kappa coefficient of 0.81. 

Although it has been proven that satellite image resolution was relevant to the final results (i.e., the 

best OA on single images was achieved using the WV2 dataset), the use of multi-temporal images 

along growing season turned out to be crucial to improve the discrimination between different crops. 

In that sense, the use of pan-sharpened orthoimages obtained from free available Landsat 8 scenes 

resulted in being sufficiently successful. However, bearing in mind the small area of plastic 

greenhouses and the complexity of the task addressed in this work, it seems obvious that using higher 

resolution time series, both temporal and spatial, would result in better outcomes. In that way, the new 

Sentinel-2 satellites could offer a valuable source of data in the near future. 

The optimal temporal windows for collecting the satellite imagery time series in order to identify 

the autumn greenhouse crops should include more temporal data within the growing season from June 

to March. It is important to note that greenhouse coverings are usually whitewashed again in February. 

Regarding our imagery time series from May to November, the crucial collection periods proved to  

be July and August. Likely, adding more satellite images within this period of time could lead to  

better results. 

The methodology applied in this work could be adapted to other intensive agricultural areas using 

plastic covering, such as Morocco (e.g., Bir Jdid, Oulidia, Essaouira and Agadir) or China. However, 

further works are needed to better understand the influence of the type of plastic (material, color, 

thickness) on crop detection. 
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