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ABSTRACT: 
 
The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing 
applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR 
satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. 
Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal 
segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is 
to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView-
2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation 
approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the 
idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by 
using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy 
between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution 
segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio 
(NSR) and Euclidean Distance 2 (ED2). 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

The latest very high resolution (VHR) commercial satellites 
successfully launched over the past years (e.g., GeoEye-1, 
WorldView-2 and WorldView-3) are being the focus of 
intensive research in the remote sensing field. VHR satellite 
images are being increasingly used for different land use/land 
cover detection and classification. Most of these research works 
were conducted using object based image analysis (OBIA) 
techniques (Carleer and Wolff, 2006; Stumpf and Kerle, 2011; 
Pu et al., 2011; Pu and Landry, 2012; Aguilar et al., 2013; 
Fernández et al., 2014; Heenkenda et al., 2015).  
 
OBIA techniques are based on aggregating similar pixels to 
obtain homogenous objects, which are then assigned to a target 
class. Using objects instead of pixels as a minimum unit of 
information minimizes the salt and pepper effect due to the 
spectral heterogeneity of individual pixels. Furthermore, and 
unlike traditional pixel-based methods that only use spectral 
information, object-based approaches can use shape, texture, 
and context information associated with the objects and thus 
have the potential to efficiently handle more difficult image 
analysis tasks (e.g. Marpu et al., 2010). A comprehensive 
review of the advantages and disadvantages of using OBIA 
techniques for image classification, as well as the state of the art 

of these methods, can be found in Blaschke (2010) and 
Blaschke et al. (2014).  
 
The first stage in OBIA is the image segmentation. This crucial 
process splits an image into separated non-overlapping 
homogeneous regions. This step is decisive because the 
resulting image segments form the basis for the subsequent 
classification (Blaschke, 2010; Witharana and Civco, 2014). 
There exist several types of image segmentation algorithms 
developed for a variety of applications in various fields of 
image analysis. Most of them largely depend on specified 
parameters, implying that segmentation is not an easy task. At 
this point, it should be clearly stated that much of the work 
referred to as OBIA has been originated around the software 
eCognition. Indeed, about 50–55% of the papers related to 
OBIA used this software package (Blaschke 2010). In this way, 
eCognition Developer’s proprietary multiresolution 
segmentation (Baatz and Schäpe, 2000) has proven to be one of 
the most successful image segmentation algorithms in the OBIA 
framework (Neubert et al., 2008). Scale, Shape, and 
Compactness are the main parameters available to users that 
affect the performance of the algorithm.  
 
Different combinations of these parameters may produce 
different segmentation results. The selection of the optimal 
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value combination is often a tedious trial-and-error process. To 
help the user with the selection of these parameters, 
unsupervised methods based on the local variance such as 
Estimation of Scale Parameters tool for a single band (ESP tool) 
(Dragut et al., 2010) and for multiband images (ESP2 tool) 
(Dragut et al., 2014) have been proposed. Also, supervised 
methods based on the measure of dissimilarity between 
segmentation results and user-generated (e.g., hand digitized) 
reference objects have been used to identify the optimal 
combination of parameter values among all examined 
combinations (e.g., Clinton et al., 2010; Liu et al., 2012). 
 
Automatic mapping of greenhouses from remote sensing 
methods presents a special challenge due to their unique 
characteristics. The first work using eCognition and 
multiresolution segmentation for plastic greenhouse detection 
was published by Tarantino and Figorito (2012). They used 
digital true colour (RGB) aerial data in different study areas of 
Italy. The optimal segmentation parameters (300, 0.5 and 0.8 
for Scale, Shape and Compactness respectively) were attained 
by applying a trial-and-error approach. In the other two OBIA 
studies dealing with greenhouse detection from VHR satellite 
imagery (Aguilar et al., 2014; Aguilar et al., 2015), the 
segmented objects were generated by manual digitizing, thus 
avoiding the problems related to segmentation stage (e.g. the 
setting of multiresolution segmentation parameters).  
 
In this work, segmentation stage is faced by estimating the 
optimal parameters approach (i.e., Scale, Shape and 
Compactness) of the multiresolution segmentation algorithm 
included into eCognition software for delineating plastic 
greenhouses in OBIA environment from WorldView-2 
multispectral orthoimages. To the best knowledge of the 
authors, this is the first research work dealing with this topic on 
very high resolution satellite images.  
 
 

2. STUDY SITE AND DATASETS 

2.1 Study site 

This investigation was conducted in Almería, southern Spain, 
which has become the site of the greatest concentration of 
greenhouses in the world, known as the “Sea of Plastic”. The 
study area comprised a rectangle area of about 8000 ha centered 
on the WGS84 geographic coordinates of 36.7824°N and 
2.6867°W (Fig. 1). Inside the study area, two square subareas or 
repetitions (R1 and R2) with sides of 3200 m were extracted.   
 
2.2 WorldView-2 Data 

WorldView-2 (WV2) is a VHR satellite launched in October 
2009. This sensor is capable of acquiring optical images with 
0.46 m and 1.84 m ground sample distance (GSD) at nadir in 
panchromatic (PAN) and multispectral (MS) mode, 
respectively. Moreover, it was the first VHR commercially 
available providing 8 band MS satellite: coastal (C, 400-450 
nm), blue (B, 450-510 nm), green (G, 510-580 nm), yellow (Y, 
585-625 nm), red (R, 630-690 nm), red edge (RE, 705-745 nm), 
near infrared-1 (NIR1, 760-895 nm) and near infrared-2 (NIR2, 
860-1040 nm). 
 
A single WV2 image taken on 30 September 2013 over the 
study area was acquired. It was collected in Ortho Ready 
Standard Level-2A (ORS2A) format, containing both PAN and 
MS imagery. This satellite image had a mean off-nadir view 

angle of 11.8°, a mean collection azimuth of 38.2° and 0% of 
cloud cover. The final product GSD was of 0.4 m and 1.6 m for 
PAN and MS images respectively. 
 

 
Figure 1. Location of the study area (yellow rectangle) and two 
subareas (red squares). Coordinate system: ETRS89 UTM 30N. 
 
From this WV2 ORS2A bundle image, a pan-sharpened image 
with 0.4 m GSD was attained by means of the PANSHARP 
module included in Geomatica v. 2014 (PCI Geomatics, 
Richmond Hill, ON, Canada). The coordinates of seven ground 
control points (GCPs) and 32 independent check points (ICPs) 
were obtained by differential global positioning system (DGPS) 
using a total GPS Topcon HiPer PRO station working in real-
time kinematic mode (RTK). The ground points (both GCPs 
and ICPs) were measured with reference to the European 
Terrestrial Reference System 1989 (ETRS89) and UTM Zone 
30 projection. A pan-sharpened RGB orthoimage with 0.4 m 
GSD was generated by using the seven GCPs to compute the 
sensor model based on rational functions refined by a zero order 
transformation in the image space (RPC0). A medium 
resolution 10 m grid spacing DEM with a vertical accuracy of 
1.34 m (root mean square error; RMSE), provided by the 
Andalusia Government, was used to carry out the 
orthorectification process. The planimetric accuracy (RMSE2D) 
attained on the orthorectified pan-sharpened image and 
measured through the 32 ICPs took a value of 0.59 m. 
 
Furthermore, a MS orthoimage with 1.6 m GSD and containing 
the full 8-band spectral information was also produced. The 
same seven GCPs, RPC0 model and DEM were used to attain 
the MS orthoimage. As a prior step to the orthorectification 
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process, the original WV2 MS image was atmospherically 
corrected by using the ATCOR (atmospheric correction) 
module included in Geomatica v. 2014. Finally, an 
atmospherically-corrected WV2 MS orthoimage with a 
RMSE2D of 2.20 m was generated. 
 
2.3 Reference Greenhouses 

This work is focused on optimizing the plastic greenhouse 
delineation provided by the multiresolution segmentation 
included into eCognition software. In this way, only one land 
cover or class is studied. In each of the two subareas showed in 
Fig. 1 (R1 and R2), 30 greenhouses (60 greenhouses in total) 
were manually digitized working on the aforementioned WV2 
pan-sharpened orthoimage. A similar number of polygons per 
class was also used in previous segmentation quality studies 
(Liu et al., 2012; Witharana and Civco, 2014). Figure 2 shows 
these digitized reference polygons presenting a variable size 
and shape for both subareas. The statistics related to the 
reference polygons are shown in Table 1. 
 

 
Figure 2. Reference greenhouse polygons in red digitized on R1 

(left) and R2 (right) subareas. 
 
 Subarea R1 Subarea R2 
Number of Polygons 30 30 
Total Area (m2) 274,115.5 249,115.7 
Average Area (m2) 9,137.2 8,303.9 
Maximum Area (m2) 21,077.0 14,951.4 
Minimum Area (m2) 2,797.3 2,749.8 
Standard Deviation (m2) 4,140.6 3,529.5 

Table 1. Statistics from the reference polygons digitized on R1 
and R2 subareas. 

 
3. METHODOLOGY 

3.1 Image segmentation 

The image segmentation algorithm used in this research is the 
so-called multiresolution segmentation included into the OBIA 
software eCognition v. 8.7. This segmentation approach is a 
bottom-up region-merging technique starting with one-pixel 
objects. In numerous iterative steps, smaller objects are merged 
into larger ones (Baatz and Schäpe, 2000). But this task is not 
easy, and it highly depends on the desired objects to be 
segmented (Tian and Chen, 2007). The outcome of the 
multiresolution segmentation algorithm is controlled by three 
main factors: (i) the homogeneity criteria or scale parameter 
(SP) that determines the maximum allowed heterogeneity for 
the resulting segments, (ii) the weight of colour and shape 
criteria in the segmentation process (Shape), and (iii) the weight 
of the compactness and smoothness criteria (Compactness). The 
optimal determination of these three somewhat abstract terms is 

not easy to carry out. However, a detailed review of the 
multiresolution segmentation algorithm is beyond the scope of 
this paper. More information about the mathematical 
formulation of multiresolution segmentation can be found in the 
literature (e.g., Baatz and Schäpe, 2000; Tian and Chen, 2007; 
Trimble Germany GmbH, 2011).  
 
3.2 Scale Parameter (SP) determination 

An unsupervised tool proposed by Dragut et al. (2014), called 
“Estimation of Scale Parameter 2” (ESP2), was used in this 
work to select the ideal multiresolution SP for each test. The 
ESP2 tool was programmed in CNL within the eCognition 
software environment. ESP2 automatically segments the user 
defined data with fixed increments of SP and calculates local 
variance (LV) as the mean SD of the objects for each object 
level obtained through multiresolution segmentation. This tool 
works in a similar way that the original ESP (Dragut et al., 
2010), but ESP2 has been designed to be applied to 
multispectral images. Both ESP and ESP2 are based on the 
following hypothesis. When growing the size of a segment, its 
SD increases continuously up to the point that it matches the 
object in the real world. Assuming a certain amount of spectral 
contrast between the object and background, the object 
boundaries will be preserved in segmentation at a number of 
higher levels, where the SD of this object remains the same. In 
the same way, objects of similar size and spectral response are 
expected to match their correspondents in the real world around 
the same scale level. As such, their boundaries, and implicitly 
their SD values, will be conserved along a number of further 
coarser scale levels. If this type of object is well represented in 
the image, the cumulative effect of preserving the SD values of 
objects just above the meaningful scale level will be strong 
enough to impact upon the LV of that image. The optimal SP 
value can be automatically extracted at the point where the LV 
value at a given level (LVn) is equal to or lower than the 
previous value recorded at the level (LVn-1). The level n-1 
would be then selected as the optimal scale for segmentation.  
 
3.3 Segmentation quality metrics 

Supervised segmentation quality metrics are focused on the 
scenario in which a set of training or reference objects (usually 
manually digitized) is available for an image, and segmentation 
results are to be compared to these predefined reference objects. 
In this work, and in order to assess the goodness of the different 
segmentations, the outputs were compared to 30 manually 
delineated reference polygons representing greenhouses (Fig. 2) 
for each one of the two working subareas (R1 and R2). This 
number of polygons was previously recommended by Liu et al. 
(2012).   
 
Although there are several supervised methods and metrics to 
assess the goodness of segmentation (Zhang, 1996; Clinton et 
al., 2010), perhaps the supervised discrepancy measure known 
as Euclidean Distance 2 (ED2), recently proposed by Liu et al. 
(2012), is one that has shown better performance. In a nutshell, 
ED2 tries to optimize in a two dimensional Euclidean space 
both the geometrical discrepancy (by mean of the potential 
segmentation error (PSE)) and also the arithmetic discrepancy 
between image objects and reference polygons (by using the 
number-of-segmentation ratio (NSR)).   
 
In order to compute ED2, Liu et al. (2012) defined the 
corresponding segment dataset. The corresponding segments 
can be extracted from each original segment dataset and only 
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contains those image segments that spatially overlap with the 
reference polygons. Moreover, two conditions called areal-
overlap-based criteria have been used to effectively identify 
corresponding segments (Clinton et al., 2010): (i) All segments 
in an original segment dataset are candidates for this process. 
(ii) A candidate segment can be labelled as a “corresponding 
segment” if the area of intersection between a reference 
polygon and the candidate segment is more than half the area of 
either the reference polygon or the candidate segment. 
 

 

Figure 3. Illustration of geometric discrepancies between 
reference polygons and candidate/corresponding segments on a 

reference greenhouse from R1. 
 
Figure 3 depicts the candidate and corresponding segments 
extracted from two multiresolution segmentations for the same 
reference greenhouse (polygon) belonging to the subarea R1. 
Segmentation showed in Figure 3a corresponds to 50, 0.1 and 
0.5 values for SP, Shape and Compactness parameters 
respectively. A different set of parameters were used in Figure 
3b (SP=62, Shape=0.9, Compactness=0.5). We can make out 
the main possible geometric discrepancies: over-segment, 
under-segment and overlapped area. ED2 measures the 
geometric discrepancies by means of PSE, which is defined as 
the ratio between the total area of under-segments and the total 
area of reference polygons (Eq. 1), where rk is the k-th reference 
polygon in the reference dataset or ground truth (k = 1, 2, . . ., 
m) and si represent the corresponding segments belonging to the 
candidates dataset associated to the i-th reference polygon (i = 
1, 2, . . ., v). A PSE value of zero indicates that there are no 
under-segments. A large value implies a significant degree of 
under-segmentation. 
 


 


k

ki

r

rs
PSE  (1) 

 
However, although a geometric relationship is necessary, it may 
not be sufficient to describe the diverse types of discrepancy 
between reference and corresponding polygons. Hence 
arithmetic discrepancies are also included into ED2 metric 
through NSR index. It is defined as the absolute difference 
between the number of reference polygons (m) and the number 
of corresponding segments (v) divided by the number of 
reference polygons (Eq. 2). 
 

m

vmabs
NSR

)( 
  (2) 

 
Finally, ED2 can be computed as a composite index that 
considers both geometric and arithmetic discrepancies (Eq. 3). 

A point in a two-dimensional PSE–NSR space corresponds to 
the paired PSE and NSR value obtained from Eq. (1) and Eq. 
(2), respectively. 
 

22 )()(2 NSRPSEED   (3) 

 
As it was reported by Liu et al. (2012), an ED2 value of zero 
indicates a combination of both a desirable geometric match 
and a desirable arithmetic match. A desirable geometric match 
is where there are no over-segments or under-segments. A 
desirable arithmetic match is where a reference polygon is in 
response to only one corresponding segment. A large ED2 
value indicates either a significant geometric discrepancy, or a 
significant arithmetic discrepancy, or both. 
 
3.4 Analysis workflow 

Different combinations of Shape and Compactness parameters 
were tested in this work. Concretely, five values {0.1, 0.3, 0.5, 
0.7, 0.9} were selected as alternative weights for both Shape 
and Compactness parameters, so meaning 25 possible 
combinations. These same values for Shape and Compactness 
parameters were tested by Kavzoglu and Yildiz (2014) in an 
assessment of multiresolution segmentation over QuickBird and 
aerial orthoimages. For each one of these 25 combinations of 
parameters, the ESP2 tool (Dragut et al., 2014) was run into 
eCognition over the R1 and R2 subareas covered by the 8-band 
WV2 MS orthoimage. The ESP2 setting values were kept the 
same for every combination, taking the following values: non-
hierarchy option, starting scale level 1 = 10, step size level 1 = 
1 and number of loops = 90 (Fig. 4). It is important to note that 
the second and third ESP2 levels in our study applied step sizes 
of 5 and 10 respectively. Those second and third levels 
produced segments much larger than a single greenhouse, so 
only level 1 was considered. Thus, ESP2 provided 25 
segmentation results for each one of the two working subareas 
(i.e. 50 segmentation results).      
 

 

Figure 4. The graphical user interface of ESP2. The setting 
values used in the tests are described for different combinations 

of Shape and Compactness (in this case Shape and 
Compactness were fixed to 0.1 and 0.9 respectively). 

 

4. RESULTS AND DISCUSSION 

Table 2 shows the SP and ED2 values attained for each of the 
25 combinations of parameters (Shape and Compactness) used 
in both study areas (R1 and R2).  
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Regarding the SP value computed by ESP2 tool (Dragut et al., 
2014), the application of LV to find the optimal SP in the 
multiresolution segmentation algorithm applied to segment 
greenhouses (WV2 MS orthoimage) achieved acceptable 
results. The fact that the greenhouses under study presented a 
very similar shape and size, together with they occupied most 
of the study area, worked to the good performance of ESP2 
tool. Although SP values were ranging from 24 to 86, the most 
frequent values were usually quite grouped in the case of the 
best segmentations (SP values between 45 and 55). On the other 
hand, time is an important factor when assessing the 
performance of a tool. The processing times were around of 2 
hours for each project on a 2000 pixel by 2000 pixel subarea 
using a laptop PC equipped with INTEL® CORE™ i5 CPU 
460M, 2.53 GHz and 4 GB RAM.  
 
Concerning the ED2, slightly better values were attained in R2 
subarea. This probably was due to the fact that the reference 
greenhouses digitized in R2 area were more homogeneous than 
the ones delineated in R1 (Table 1). However the final SD and 
average statistic values depicted in Table 2 turned out to be 
very similar in both subareas. 
 

Shape Compactness 
R1 R2 

SP ED2 SP ED2 
0.1 0.1 55 0.34 50 0.09 
0.1 0.3 55 0.23 49 0.18 
0.1 0.5 50 0.19 52 0.08 
0.1 0.7 55 0.17 55 0.08 
0.1 0.9 38 0.53 48 0.21 
0.3 0.1 42 0.29 48 0.24 
0.3 0.3 64 0.41 52 0.11 
0.3 0.5 53 0.16 47 0.08 
0.3 0.7 45 0.13 57 0.13 
0.3 0.9 42 0.15 49 0.15 
0.5 0.1 50 0.21 35 0.27 
0.5 0.3 51 0.22 47 0.04 
0.5 0.5 47 0.14 42 0.18 
0.5 0.7 66 0.37 43 0.30 
0.5 0.9 54 0.31 44 0.34 
0.7 0.1 51 0.21 38 0.06 
0.7 0.3 51 0.26 52 0.11 
0.7 0.5 51 0.45 79 1.15 
0.7 0.7 62 0.78 66 1.09 
0.7 0.9 43 0.78 24 2.97 
0.9 0.1 72 2.62 46 0.41 
0.9 0.3 75 2.65 66 1.74 
0.9 0.5 62 1.17 86 3.08 
0.9 0.7 82 2.65 63 1.09 
0.9 0.9 68 1.19 72 1.84 

Max  82 2.65 86 3.08 

Min  38 0.13 24 0.04 

SD  11.0 0.80 13.67 0.89 

Average 55.3 0.66 52.4 0.64 

Table 2. Values and statistics for Euclidean Distance 2 (ED2) 
according to each combination of Shape, Compactness and 

scale parameter (SP computed with ESP2 tool) for both R1 and 
R2 study subareas.   

 

 

(a) Ortho VW2 MS  (b) ED2 = 0.19; SP = 50; SH =0.1 

 

(c) ED2 = 0.16; ; SP = 53; SH =0.3 (d) ED2 = 0.14; SP = 47; SH =0.5 

 

(e) ED2 = 0.45; SP = 51; SH =0.7 (f) ED2 = 1.17; SP = 62; SH =0.9 

Figure 5. Details of segmentation results (green polygons) for 
different parameter combinations as compared to reference 

greenhouses (red polygons). Compactness was kept constant as 
0.5, while scale parameter (SP) was computed by ESP2 tool. 
The Shape parameter took varying values (SH = 0.1, 0.3, 0.5, 

0.7, 0.9). 

Figure 5 shows the graphical representation of some 
segmentation results for the subarea R1. It can be appreciated 
that the best segmentations, both visually and according to the 
ED2 value, were attained for Shape parameters ranging from 
0.1 to 0.5 (Fig. 5b, Fig. 5c and Fig. 5d). In these three cases the 
SP computed by ESP2 tool was found to be pretty consistent 
(50, 53 and 47 respectively). Moreover, the segmentations with 
Shape of 0.7 and 0.9 (Fig. 5e and Fig. 5f) presented the highest 
discrepancy between segment (green) and reference polygons 
(red). For Shape parameters of 0.1, 0.3 and 0.5, there were tiny 
differences in ED2 values, all of them provided very good 
results as compared to with the reference greenhouses. 
However, and applying a subjective visual analysis over the 
whole of greenhouses shown in Figure 5 (not only the reference 
ones in red), the best segmentation seems to be depicted in 
Figure 5c (Shape = 0.3) closely followed by the results shown 
in Figure 5b (Shape = 0.1). In short, the slightly differences 
observed in ED2 values could be due to the reference polygons 
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selected. The results obtained from using the Shape parameter 
of 0.5 were slightly worse than those achieved for 0.1 or 0.3 
Shape values in subarea R1 and, especially, in subarea R2.  
 
Figure 6 shows the evolution in both tests (R1 and R2, i.e., 50 
repetitions) of NSR (Fig. 6a), PSE (Fig. 6b) and ED2 (Fig. 6c) 
with SP. SP turns out to be, without any doubt, the most 
important parameter controlling multiresolution segmentation 
(Dragut et al., 2014). All figures are showing their third-degree 
polynomial trendlines and the corresponding coefficient of 
determination (R2). It can be easily seen that ED2 presented a 
pronounced minimum value close to 47. This finding indicates 
that ESP2 tool performed very well dealing with greenhouses 
and ED2 brilliantly highlighted the optimal SP values. The left 
branch of the ED2 trendline is mainly conducted by the NSR 
values (Fig. 6a), while the branch on the right is triggered 
mostly by PSE values (Fig. 6b). The shape of the ED2-SP 
scattergrams turned out to be very similar to the one reported by 
Liu et al. (2012) and Witharana and Civco (2014).  
 
 

 
(a) (b) 

 
(c) 

Figure 6. Scattergrams showing the variation with scale 
parameter (SP) of number-of-segmentation ratio (NSR) (a), 

potential segmentation error (PSE) (b) and Euclidean distance 2 
(ED2) (c), for R1 and R2 subareas. 

 
Figure 7 displays the evolution of NSR (Fig. 7a), PSE (Fig. 7b) 
and ED2 (Fig. 7c) according to the variation of the Shape 
parameter. Looking at R2 values, the influence of Shape in ED2 
metric was lower than for SP. The Shape parameter had no 
effect on NSR values, though it influenced on PSE values. 
Overall, PSE tended to increase (i.e., more under-segmentation 
error) when increasing the Shape parameter. This trend for PSE 
was also reflected by ED2. In this sense, values of Shape 
parameter higher than 0.5 (that is penalizing spectral 
information or colour) should be avoided for plastic 
greenhouses segmentation.  
 
Figure 8 shows the variation of NSR (Fig. 8a), PSE (Fig. 8b) 
and ED2 (Fig. 8c) values in relation to the Compactness 
parameter. R2 values for these charts evinced no relationship 

between Compactness parameter and any of the three goodness 
segmentation metrics tested. As a result, it was assumed that the 
Compactness parameter did not have considerable effect in the 
creation of meaningful greenhouse objects. In fact, and 
reviewing the specialized literature, the weight of Compactness 
parameter has been generally set to a fix value of 0.5 by 
researchers (Liu and Xia, 2010; Dragut et al., 2014; Kavzoglu 
and Yildiz, 2014). 
 
 

(a) (b) 

 
(c) 

Figure 7. Scattergrams showing the variation with shape of of 
number-of-segmentation ratio (NSR) (a), potential segmentation 
error (PSE) (b) and Euclidean distance 2 (ED2) (c), for R1 and 
R2 subareas. 
 

(a) (b) 

 
(c) 

Figure 8. Scattergrams showing the variation with compactness 
of number-of-segmentation ratio (NSR) (a), potential 
segmentation error (PSE) (b) and Euclidean distance 2 (ED2) 
(c), for R1 and R2 subareas. 
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5. CONCLUSIONS 

As far as we know, this work is the first attempt to identify the 
optimal values of the well-known multiresolution segmentation 
algorithm (i.e., SP, Shape and Compactness parameters) 
working on a plastic greenhouse area through an 8-band 
multispectral WV2 orthoimage. Setting of optimal values of 
segmentation is not an easy task, but it is crucial to achieve a 
successful classification in the context of an object based image 
analysis. Although this work should be only considered as a 
first approach, the following conclusions can be drawn: 
 
1.- ESP2 tool worked quite well on plastic greenhouses 
multiresolution segmentation, estimating correct values for the 
SP parameter. The very similar shape and size of the 
greenhouses located at the study area likely positively 
influenced the good performance of ESP2 tool. The SP values 
obtained through ESP2 which visually performed very poor 
segmentation results (outliers) were related to the higher values 
of the Shape parameter (0.7 and specially 0.9).  
 
2.- ED2 metric presented a very good relationship with the 
visual quality of the greenhouse segmentations. This measure 
was clearly related to SP and Shape, but had no relationship 
with Compactness.   
 
3.- The ideal settings for delineating plastic greenhouses from 
8-band multispectral WV2 orthoimages through eCognition 
multiresolution segmentation would be the followings: SP 
ranging from 45 to 55 and Shape parameter close to 0.3 (i.e., 
0.1, 0.3, 0.5). Compactness parameter could be fixed to 0.5 
according with our results and the reviewed literature. Summing 
up, the recommended way to compute these segmentation 
settings could be based on obtaining the SP parameter from the 
ESP2 tool by fixing the Compactness in 0.5 and testing two 
values for Shape (0.1 and 0.3).  
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