Rational Bet Approximation on $(-\infty, 0]$

by Herbert Stahl
We consider rational best approximants $r_{n}^{*}=r_{n}^{*}(f,(-\infty, 0] ; \cdot) \in R_{n, n+k}$, on $(-\infty, 0], k \in \mathbf{Z}$ fixed, to functions of the form

$$
\begin{equation*}
f=u_{0}+u_{1} \exp \tag{*}
\end{equation*}
$$

with u_{0}, u_{1} given rational functions. As usual in rational approximation with free poles, the study of the approximants r_{n}^{*} is inseparably tied up with an investigation of orthogonal polynomials, which in this specific case are orthogonal polynomials with varying weights and a non-Hermitian orthogonality relation that lives on a curve in the complex plane.

Starting point of the talk will be the famous solution of the ' $1 / 9^{\prime}$ problem by Gonchar \& Rakhmanov from 1986, which deals with the uniform rational approximation of the exponential function on $(-\infty, 0]$. This result will be extended to functions of type ($*$), and further some related questions will be addressed, as for instance, overconvergence throughout the complex plane \mathbb{C}, the asymptotic distribution of the poles of the approximants, and the convergence of close-tobest approximants. The renewed and extended interest in the by now classical ' $1 / 9^{\prime}$ problem is motivated by applications in numerical analysis, where good rational approximants are needed for functions of type ($*$), as for instance, for ' φ functions' that appear in exponential integrators.

