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a b s t r a c t

Ahybrid theoretical–empiricalmodel has been developed formodelling the error in LiDAR-derived digital
elevationmodels (DEMs) of non-open terrain. The theoretical component seeks tomodel the propagation
of the sample data error (SDE), i.e. the error from light detection and ranging (LiDAR) data capture of
ground sampled points in open terrain, towards interpolated points. The interpolation methods used
for infilling gaps may produce a non-negligible error that is referred to as gridding error. In this case,
interpolation is performed using an inverse distance weighting (IDW) method with the local support of
the five closest neighbours, although it would be possible to utilize other interpolation methods. The
empirical component refers to what is known as ‘‘information loss’’. This is the error purely due to
modelling the continuous terrain surface from only a discrete number of points plus the error arising from
the interpolation process. The SDE must be previously calculated from a suitable number of check points
located in open terrain and assumes that the LiDAR point density was sufficiently high to neglect the
gridding error. For model calibration, data for 29 study sites, 200× 200 m in size, belonging to different
areas around Almeria province, south-east Spain, were acquired by means of stereo photogrammetric
methods. The developed methodology was validated against two different LiDAR datasets. The first
dataset used was an Ordnance Survey (OS) LiDAR survey carried out over a region of Bristol in the UK.
The second dataset was an area located at Gador mountain range, south of Almería province, Spain. Both
terrain slope and sampling densitywere incorporated in the empirical component through the calibration
phase, resulting in a very good agreement between predicted and observed data (R2 = 0.9856; p <
0.001). In validation, Bristol observed vertical errors, corresponding to different LiDAR point densities,
offered a reasonably good fit to the predicted errors. Even better results were achieved in themore rugged
morphology of the Gador mountain range dataset. The findings presented in this article could be used
as a guide for the selection of appropriate operational parameters (essentially point density in order to
optimize survey cost), in projects related to LiDAR survey in non-open terrain, for instance those projects
dealing with forestry applications.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Accurate and high spatial resolution digital elevation models
(DEMs) from airborne light detection and ranging (LiDAR) data are
in increasing demand for a growing number of mapping and GIS
tasks related to applications such as forest management, urban
planning, bird populationmodelling, ice sheetmapping, flood con-
trol, road design, etc. (Lim et al., 2003). Indeed, the world of map-
ping and data visualization is quickly evolving into a three and four
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dimensional context, and the utility of LiDAR technology has been
proven in a variety of scientific communities (Stoker et al., 2008).
For example, the creation and display of 3D models representing
the bare earth, vegetation, and surface structures have become a
major focus of LiDAR application, being used to reconstruct for-
est height changes over long-term time series (Véga and St-Onge,
2008). LiDAR-derived DEMs are also being increasingly used for
new applications relating to change detection and geopositioning
(James et al., 2006; Miller et al., 2008). However, many end users
of DEMs are unaware of the issues surrounding the quality of the
underlying height data and their influence in derived calculations
such as slope and aspect (Smith et al., 2005) or canopy heightmod-
els (Clark et al., 2004).
In fact, many variables are known to contribute to the accuracy

of LiDAR-derived DEMs. Among them, LiDAR sampling density
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is considered to be a significant contributor to the vertical error
(Hodgson et al., 2004), although terrain morphology and land
cover, due to their sensitive effect on filtering performance to
transform a digital surface model (DSM) to a bare-earth digital
terrain model (DTM), have to be quoted as other important factors
influencing the final DEM accuracy. Unlike the last two variables,
however, sampling density or post-spacing represents a significant
portion of overall survey costs (Raber et al., 2007) that can be
selected as an operational parameter of the project.
Although there have been a number of studies dealing with

LiDAR-derived DEM error, most can be classified as empirical work
in which the influence of different variables on DEM error were
analysed (Hopkinson et al., 2004; Hodgson and Bresnahan, 2004;
Su and Bork, 2006; Goodwin et al., 2006). An exception is the
work published by Kraus et al. (2006) that deals with theoretical
and practical aspects of the point density, terrain curvature and
resulting accuracy expectations for DTMs. In this research, a
step-by-step approach is proposed to generate local and relative
accuracy measures for every interpolated grid point in a DTM.
The traditional nominal accuracies of 0.15 m RMSE are very

difficult to achieve except in particular cases related to flat open
terrain and low altitude data collections. A few empirical studies
have been conducted to date, suggesting accuracies of 0.14–1.50
m RMSE for large-scale mapping applications (Hodgson and
Bresnahan, 2004; Hodgson et al., 2003; Adams and Chandler, 2002;
Raber et al., 2007), depending on the platform parameters and
environmental conditions. Therefore, there is a need to develop
models for estimating global and absolute accuracy measures of
LiDAR data under operational conditions. In this way, there is an
increasing trend to propose robust and non-parametric statistical
methods to estimate the accuracy of DEMsunder non-open terrain,
where error distribution is usually far away from the normal
distribution (Aguilar and Mills, 2008; Höhle and Höhle, 2009).
Since laser scanning requires good reflectivity at the terrain sur-

face, and blunders may occur due to multi-path in the neighbour-
hood of buildings, some grid posts are recorded without heights
and areas of data voids can arise. Such absences in data demand
an interpolation procedure be carried out to infill the voids. The
amount of the missing area in relation to the whole working area
is usually known as DEM completeness, and can be used as a very
valuable parameter for checking DEM quality (e.g. Höhle, 2007).
For example, US Federal Emergency Management Agency guide-
lines (FEMA, 2007) propose a maximum 5 m posting criteria for
using LiDAR data to construct DEMs in the floodplain mapping
process. Furthermore, FEMA’s guidelines tolerate a minimum per-
centage of data voids or areas where the point-to-point distance is
larger than a previously established threshold.
Low completeness is especially common when dealing with

LiDAR forestry applications (non-open terrain), where the laser
beampenetration through canopy can be limited and so the ground
sampling density is consequently reduced (Fig. 1). Hence, there
is a frequent need to densify the initial LiDAR point cloud (last
echo) when the surveyed area presents dense vegetation (Lim
et al., 2003) and new ground points have to be interpolated to
infill gaps and construct accurate DTMs and canopy height models
(CHMs). However, the interpolationmethods used for infilling gaps
may produce a non-negligible error that is henceforth referred
to as gridding error (Smith et al., 2005). That is, the propagation
of the sample data error (SDE) towards interpolated points.
Obviously, gridding error depends on, among other variables, the
interpolation method employed (Aguilar et al., 2005; Fisher and
Tate, 2006).
A hybrid theoretical–empirical model has been developed for

modelling the error of LiDAR-derived DEMs. It may be especially
useful, in a practice sense, when applied under non-open terrain
where void areas can arise due to the lack of laser beam
20 m

30 m

Fig. 1. Aerial image of a very dense vegetated area and two corresponding profiles
of LiDAR point clouds (last pulse).

penetration through vegetation, etc. The goal of this research
is to establish a relationship between LiDAR sampling density,
terrainmorphology, interpolationmethod and LiDAR-derivedDEM
accuracy. The remainder of the article is organized as follows: after
presenting the fundamentals of the proposed model in Section 2,
the study sites, datasets and methodology employed to calibrate
and validate the model are described in Section 3. In Section 4,
the results corresponding to the calibration and validation phases
are presented, introducing a discussion about the reliability and
robustness of the two different datasets used. Section 5 is devoted
to the final conclusions.

2. Model development

The full model developed in this work can be expressed as the
sum of three components:

σ 2total = σ
2
SDE + σ

2
gridding + σ

2
filtering. (1)

Where σtotal is the total vertical error estimated by the model,
σSDE is the SDE, i.e. error from LiDAR data capture of ground
sampled points in open terrain, σgridding is the aforementioned
gridding error, and σfiltering is the error due to filtering non-terrain
objects (buildings, vegetation, etc.) to obtain the final bare-earth
DTM. All the terms are expressed as error variances.
Filtering error can be neglected in open terrain because of the

absence of non-terrain objects. Similarly, gridding error can also be
excluded in open terrain because of the high point density usually
offered bymodern LiDAR technology. Hence, SDE can be calculated
from a suitable number of check points located in open terrain.
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However, the question then arises as to what happens in non-
open terrain? It should be noted that Eq. (1) is based on general
error-propagation theory, assuming that the sources of error are
linearly independent or uncorrelated and that the errors are
randomly distributed. In fact, this last hypothesis is very difficult to
assume when dealing with non-open terrain, due to the presence
of local outliers as a result of possible filter-induced bias. Thus,
σfiltering cannot be considered as randomly distributed. Instead, it
is necessary to compute it by means of non-parametric methods
such as that recently proposed by Aguilar and Mills (2008) for
coping with this likely leptokurtic and biased error distribution.
In this sense, filtering error is certainly not negligible over non-
open terrain and very cumbersome tomodel because it depends on
the algorithm used to filter the LiDAR data, the type and density of
vegetation, terrain complexity and so on.Hence, it is recommended
to take filtering error into account by adding the expected error
to the SDE in Eq. (1) as a specific SDELC for every type of land
cover distinguished over the entire working area. The expected
error over non-open terrain arising from the filtering process can
be effectively measured from an adequate sample of check points
corresponding to every land cover type such as high grass and
crops, bush lands and low trees, urban areas, etc., following the
methodology proposed by Aguilar and Mills (2008).
Bearing in mind the difficulty of obtaining high precision check

points over densely vegetated areas, an approximation based on
experience can be recommended to estimate a value for SDELC . A
number of exhaustive empirical studies are, therefore, needed to
accomplish reasonable estimates for filtering error depending on
the land cover characteristics and the filtering method used.
Taking into account all these considerations, Eq. (1) can then be

rearranged as:

σ 2total = σ
2
SDELC + σ

2
gridding. (2)

The remaining problem then relates to how to model the grid-
ding error. A hybrid theoretical–empirical approach is proposed in
this work. The theoretical component seeks to model the propaga-
tion of the SDELC obtained for every land cover type towards inter-
polated points. In this case, interpolation is performed using the in-
verse distance weighting (IDW) method using an exponent of two
and with the local support of the M closest neighbours, although
it would be possible to utilize other interpolation methods. A brief
explanation of the deduced equation is presented through Eqs. (3),
(3a), (4)–(8) for the case ofM = 3 closest neighbours.

Z0

(
1
d21
+
1
d22
+
1
d23

)
=
Z1
d21
+
Z2
d22
+
Z3
d23
. (3)

The variance of Z0 (the interpolated point) and Zi (the three
sample points in this case) can be estimated using general error-
propagation theory, supposing the heights Z as random second-
order stationary variables and omitting covariance between
sample point elevations. If the interpolation weights for every
point take the values a, b and c respectively, being a + b + c = 1
and a, b, c > 0, it can be rewritten as:

Z0 = aZ1 + bZ2 + cZ3. (3a)

From which it can be deduced that:

σ 2Z0 = σ
2
surface

(
a2 + b2 + c2

)
. (4)

Whereσsurface is an absolute and global estimation of the surface
error for every land cover type, based on LiDAR-derived ground
points (sampling density and accuracy) and terrain complexity,
which will be developed later. Rearranging Eq. (4), the following
expression can be obtained:

σZ0 = σsurface

√(
a2 + b2 + c2

)
= σsurfaceK . (5)
Fig. 2. Relationship between the propagation coefficient (K 2 in Eq. (8)) and the
number of closest neighboursM .

A Monte Carlo numerical simulation was conducted to obtain
the coefficient K in Eq. (5), randomly varying the values of the in-
terpolationweights and the number of closest neighbours (M) over
5000 runs. The range of closest neighbours tested in Monte Carlo
simulation varied between 3 and 8. Obviously, if M = 1 then K
must be very close to 1, being taken as another point during re-
gression analysis. The relationship between the coefficientK andM
presented a very good agreement (R2 = 0.9972) to the potential
expression K 2 = 1.032 M−0.864, from which the following equa-
tion can be derived:

σ 2Z0 = 1.032M
−0.864σ 2surface. (6)

This approach holds when there is no correlation between
the sample point elevations. But, sample point elevations usually
show a significant positive correlation depending on the terrain
roughness. Hence, an extra term must be added to express the
increase in error propagationdue to correlation. This newapproach
can be expressed by the known general formulae (for the particular
case of three closest neighbours):

σ 2Z0 =

3∑
i=1

3∑
j=1

ρijσziσzj
∂z0
∂zi

∂z0
∂zj
. (7)

Where ρ is the correlation coefficient between sample point
elevations i and j. Applying this formulae for our case, the following
equation can be obtained:

σ 2Z0 = (a
2
+ b2 + c2 + 2ρ(ab+ ac + bc))σ 2surface;

σ 2Z0 = K
2σ 2surface.

(8)

Notice that we are supposing that correlation coefficient is
similar over all theworking area (at least for every land cover type).
Obviously, Eq. (5) can be easily derived when correlation is null.
Following the same previously described Monte Carlo numerical
simulation method, the curves showing the relationship between
the number of closest neighbours and the term K 2 (Eq. (8)) can
be computed for different correlation coefficients (Fig. 2). Similar
potential expressions to that one presented in Eq. (6) could be
derived depending on the correlation coefficient estimated for the
sample point elevations (Fig. 2 shows their graphic adjustment).
Now,wehave a general equation to compute the elevation error

of each node in a grid DEM. It is known that if this elevation error is
σ 2Zo, the propagation error of the DEM from the linear, biquadratic
or bicubic interpolation is given by (Shi et al., 2005):

σ 2H = σ
2
gridding =

4
9
σ 2Z0 . (9)

WhereσH becomes the interpolated surface error of the gridded
DEM, i.e. σgridding.
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Finally, an expression for the error term σsurface is necessary. In
this work, an empirical formula is proposed based on the sum of
two components:

σ 2surface = σ
2
SDELC + σ

2
IL. (10)

Where σIL would be the empirical component of the (hybrid)
model which refers to what is known as ‘‘information loss’’
(Li, 1993; Huang, 2000). Through this work, this term can be
understood as the error purely due to modelling the continuous
terrain surface from only a discrete number of points, thus
assuming the impossibility in finding an analytical method to
compute the standard deviation for all the height differences
between the real terrain surface and the DEM surface. The
hypothesis here is that information loss is a global DEM error
estimation related to ground point density and terrain complexity,
which is propagated by means of σgridding (see Eq. (8)) into Eq. (1).
Indeed, the final gridding error formulation is given by (for the case
of no correlation between sample point elevations):

σ 2gridding =
4
9
1.032M−0.864(σ 2SDELC + σ

2
IL). (11)

Where σgridding is the gridding error across the whole surface
and σIL is the information loss. Information loss was empirically
modelled bymeans of a calibration process described subsequently
in Section 3.1, which yielded the following expression:

σIL = 0.276Slope0.973N−0.499. (12)
Where Slope is the average terrain slope, a measure of terrain

complexity, computed for the whole working area (dimensionless
expression) and N is the LiDAR ground resolution (points/m2). A
well-known characteristic of observed elevation error for terrain
mapping is the relationship with terrain slope, especially in
the case of DTM generation by means of laser scanning, where
planimetric errormay be relatively high (around 0.5 up to 1m) and
alsomay be directly translated to vertical error on sloping surfaces.
In this regard, better horizontal accuracies can be reached by
applying a suitable fine geo-referencing by strip/block adjustment
with self-calibration. In practice, due to the fact that determination
of horizontal accuracy for LiDAR data is cumbersome, LiDAR
accuracy is generally only stated in vertical direction. It is worth
noting that the term relating to point density in Eq. (10) practically
equals 1/N1/2, beingmorphologically quite similar to the empirical
formula proposed by Karel and Kraus (2006) for computing vertical
accuracy of LiDAR-derived DTMs.
Therefore, the empirical component regarding information loss

embraces two variables directly implied in the final gridding error:
terrain complexity and original sampling density. In this sense, a
recent work published by Hu et al. (2009) has offered a theoretical
explanation, based on approximation theory, for the empirical
observation that relates DEMaccuracywith terrain complexity and
sampling density.
Referring back to Eq. (2), and substituting σgridding with the

expression shown in Eq. (11), the final model formulation can now
be written as:

σ 2total = σ
2
SDELC +

4
9
1.032M−0.864(σ 2SDELC + σ

2
IL). (13)

This last expression is only valid for the case of no correlation
between sample point elevations. A simple change of the potential
term should be accomplished to take into account the effect of
different coefficients of correlation, as it was depicted in Fig. 2.

3. Study site and datasets

3.1. Datasets used for model calibration

Twenty-nine study sites, 200× 200 m in size, belonging to dif-
ferent areas around Almeria province,south-east Spain, were ac-
quired by means of stereo photogrammetric methods for model
calibration purposes. The range of slopes and geomorphologic con-
ditions of these 29 study sites can be considered as very diverse
(from 3% up to 82% average slope) and so represented an excellent
data source for calibrating the aforementioned empirical compo-
nent of the model termed ‘‘information loss’’.
It is necessary to clarify that we only use these photogram-

metric DEMs for the calibration of the empirical component of the
model (information loss in Eq. (12)) and could be discussible to ap-
ply that empirical formulae, deduced from photogrammetric data,
for the purpose of modelling error in LiDAR-derived DEMs. In fact,
it is known that LiDAR-derived DEMs are less sensitive to terrain
slope than those derived from digital photogrammetry (Hodgson
and Bresnahan, 2004). In this regard, it is important to note that
this empirical model only estimates the error generated as a result
ofmodelling real terrain using a numerical abstraction (i.e. it estab-
lishes only the relationship between terrain complexity and sam-
ple point resolution), in this case a regular grid DEM. The intrinsic
error arising from the method used to capture the original sample
point elevations (e.g. LiDAR, stereo photogrammetry, etc.) is incor-
porated into the model through the term SDELC , which, as already
mentioned, can include other specific errors (e.g. due to filtering).
As a result, the empirical model can be derived independently of
the method employed to acquire the raw data.
The DEM of each topographic surface was obtained automat-

ically by stereo image matching and subsequent manual editing,
introducing break lines, ridges and so on to ultimately obtain a
bare-earth DEM. In this sense, it is important to highlight that the
working area is an arid zone with only very scarce vegetation. The
photogrammetric flight was carried out with a Zeiss RMK TOP15
metric camerawith a focal length of 153.33mmand resulted in im-
agery at an approximate scale of 1:5000. The average flying height
was around 760 m and the base/height ratio 0.6. The negatives
were digitized with a Vexcel 5000 photogrammetric scanner, with
a geometric resolution of 20 µm and a radiometric resolution of
24-bits (8-bits per RGB channel). The final ground pixel size was
0.1 m. In this way, DEMs with a grid spacing of 2 mwere obtained.
The grid pointswere onUTMmap projection (zone 30North; Euro-
pean Datum 1950) and elevation data were stored as orthometric
heights. A DEM vertical accuracy assessment was conducted using
high precision check pointsmeasured by differential GPSmethods,
resulting in a vertical RMSE of 0.3 m (see Aguilar et al., 2007a, for
more details).
The different sampling densities used to calibrate the empirical

component of the model were extracted from each original grid
DEM by stratified random sampling (4 × 4 sampling quadrants,
i.e. 16 quadrants) that guaranteed a homogenous distribution of
the sampled data over the whole working area (Burrough and Mc-
Donnell, 1998). Each sampling density testedwas composed of four
replicates randomly extracted and ranging from 0.25 point/m2 (2
m average grid spacing) to 0.0008 points/m2 (35 m average grid
spacing). Residuals, or differences between the original and in-
terpolated DEMs, were computed by the true validation method
(Voltz andWebster, 1990) over a sample of 169 check points previ-
ously extracted by random sampling from the original datasets. Bi-
linear interpolation was used to compute the heights correspond-
ing to the random positions of the check points from the 2 m grid
spacing DEMs. Given that the reference grid spacing is relatively
small, the error introduced by this interpolation approach was ne-
glected.
The information loss, that is the response or dependent variable

in regression analysis for calibrating the empirical component,
was hence computed as the standard deviation of those residuals.
During the calibration process, original sampling points were
assumed to be free of error and hence σIL was fully coincident to
the value of σsurface (see Eq. (10)).
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Fig. 3. Aerial view corresponding to the validation area in Bristol, UK, depicting
the GPS check point distribution. Reproduced with the permission of the Ordnance
Survey.

3.2. Datasets used for model validation

The developed methodology was validated against two differ-
ent LiDAR datasets, as described below.

3.2.1. Ordnance Survey data (Bristol, UK)
The first dataset for model validation corresponds to an

Ordnance Survey (OS) LiDAR survey carried out over a region of
Bristol in the UK. The data were captured in August 2006 with
a Riegl Q560 sensor resulting in an original ground spacing of
between 0.5 and 1 points/m2 over flat to hilly terrain. A set of
49 ground check points, natural features distributed throughout
the study area (Fig. 3), were surveyed by OS using differential GPS
methods. A number of points had to be removed because theywere
located in areas outside the LiDAR data coverage or situated on
top of posts, fences or bollards. The remaining 34 check points, all
clearly placed on the ground, enabled the assessment of the LiDAR
survey vertical accuracy.
Different LiDAR point densities were acquired from the original

LiDAR data by a thinning or decimation process carried out
with TerrascanTMsoftware using the central point algorithm. This
yielded several average grid spaced DEMs of 4.4 m, 5.3 m, 7 m,
8.4 m, 11.1 m, 13.2 m, 16.9 m and 23.5 m. The SDE computed for
the Bristol area was 0.124 m and the average slope throughout
the whole area was approximately 11%. Starting from the eight
previously extracted LiDAR samplings, the interpolation by means
of the IDW method (five closest neighbours) allowed eight dense
DEMs to be obtained (0.5 points/m2) and their accuracy assessed
by means of the DGPS check points (observed error).

3.2.2. Gador data (Almería, Spain)
The second dataset corresponds to an area located at the Gador

mountain range, south of Almeria province, Spain. LiDAR datawere
collected in a survey carried out in September 2007 using a Leica
ALS50-II scanning systemwith a flying height of 1500m, providing
an approximate resolution of around 0.5 points/m2. In this case, a
high resolution image dataset (0.2 m ground pixel size) was also
obtained with a digital camera, an Intergraph DMC (RGB plus IR).
The processing of the second dataset consisted of working on one
of the seven strips composing the LiDAR survey. Last return raw
data were filtered to segment the ground surface from vegetation,
buildings and any gross errors embedded in the general point
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Fig. 4. Aerial view corresponding to the Gadormountain range LiDAR dataset (strip
3). Themarked ellipse highlights the validation areawhere DGPS check points were
surveyed.

cloud. The filtering algorithm developed by Axelsson (2000) and
implemented in the TerrascanTMsoftware was used to segment
ground points bymeans of a progressive TIN densificationmethod,
where the surface was allowed to fluctuate within certain values.
The digital imagery was utilized to help filter non-terrain objects
and bare-earth terrain.
After the filtering process, a field survey was carried out

in November 2008 to determine the planimetric and elevation
coordinates of 204 check points located across the strip by means
of differential GPS method (Topcon Hiper Pro receivers) based on
three base stations belonging to a previously established geodetic
network measured in static mode. The coordinates of check points
were referred to European Terrestrial Reference System, ETRS89
using the UTM projection. The vertical datum took the geoid as
reference surface, adopting the medium level in the calm seas of
Alicante (Spain) as the null orthometric height point. The average
slope of the Gador working area was approximately 42.8%. Fig. 4
shows an aerial view concerning the studied LiDAR strip after
filtering.
Total LiDAR error for validation purposes was computed as

the differences between the heights from the 204 aforementioned
check points and the ground DEM heights corresponding to the
filtered LiDAR data. Further, the 3-sigma rule was applied to
remove outliers which can corrupt the true statistical distribution
of the errors (Daniel and Tennant, 2001), leaving 199 check points
belonging to three different land cover types: bare earth, pine
cover with a slightly dense vegetation understory and highly
dense shrub cover. Table 1 shows statistical parameters related
to error distribution at check points for every considered land
cover type after outlier removal. It can be observed how systematic
errors have not been removed and so the mean is not zero
for vegetation land cover (pines and shrubs in this case). This
phenomenon is frequently encounteredwhenworkingwith LiDAR
data in afforested areas, where it is usual to find a bias due to
dense low lying vegetation (Su and Bork, 2006; Kraus and Pfeifer,
1998; Goodwin et al., 2006). That is, LiDAR-derived DEMs tend
to overestimate the reference ground elevation. Furthermore, the
application of Smirnov–Kolmogorov normality test to the whole
dataset revealed that error distribution was slightly non-normal
for the case of non-open terrain, as has been recently highlighted
by Aguilar and Mills (2008).
Finally, the filtered Gador LiDAR dataset was interpolated

using IDW (five closest neighbours) to obtain a regular grid with
a constant spacing of 1.4 m (equivalent to the initial nominal
density for raw LiDAR data). Starting up from that original grid,
a decimation process was carried out to gradually remove rows
and columns obtaining nine different LiDAR point densities from
0.0015 points/m2 up to 0.1218 points/m2. Residuals, or LiDAR-
derived DEM errors, for model validation were computed over
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Table 1
Statistical characteristics of error distribution at check points for the Gador dataset regarding the different considered land cover types. Error determined by the difference
between check point and LiDAR heights.

Bare-earth cover Pine cover with a slightly dense vegetation understory Highly dense shrub cover Results regarding all covers

Number of check points 50 61 88 199
Minimum error (m) −0.36 −0.84 −1.59 −1.59
Maximum error (m) 0.28 0.48 0.20 0.48
Mean error (m) −0.05 −0.27 −0.48 −0.31
Standard deviation (m) 0.11 0.25 0.31 0.31
Fig. 5. Results corresponding to the calibration phase of the empirical component
‘‘information loss’’ (see Eq. (10)). R2 = 0.9856 (p < 0.001).

the corresponding sample of 199 DGPS check points previously
surveyed.

4. Results and discussion

4.1. Model calibration

The empirical component of the model, or information loss in
Eq. (12), showed a good fit to the experimental data, with an R2
regression coefficient of 0.9856 (p < 0.001) (Fig. 5). It must be
highlighted that the standard deviation (Sd) observed and pre-
dicted in Fig. 5 refers to the term σIL in Eq. (12). DEM information
loss grows almost linearly with increasing slope (rugged terrain)
and presents a non-linear inverse relationship with LiDAR ground
sampling density. It should be pointed out that a decrease in Li-
DAR ground resolution only provokes a significant increase of DEM
error when considering low LiDAR post-spacing values. Further-
more, the break-point location (the LiDARground sampling density
above which practically no gridding error is propagated to the in-
terpolated DEM) can vary depending on the average terrain slope,
which is the parameter used by themodel to account for the terrain
complexity. Hodgson and Bresnahan (2004) found that,when deal-
ing with LiDAR-derived DEMs, observed elevation error in steeper
slopes (e.g. 25◦) was estimated to be twice as large as those on low
slopes (e.g. 1.5◦).
Fig. 6 shows graphically the aforementioned performance for

different types of terrain slopes (from 20% up to 100%) according
to Eq. (11). It is worth noting that the total error in LiDAR-
derived DEMs turns out not to be very sensitive to change in
LiDAR nominal post-spacing when the surveyed area presents
low average slope. Nevertheless, the influence of LiDAR resolution
becomes relevant when terrain complexity increases, and it is,
therefore, recommended to increase LiDAR point density in order
to reduce the final total error. These results coincide with those
obtained by Hu et al. (2009) who, from a theoretical point of
view, conclude that increasing sampling density implies a decrease
in interpolation error. Thus, if very high density source data are
available and the source data are highly accurate, as in the case
of LiDAR data over open terrain, high accuracy is guaranteed
regardless of the interpolation method used.
This finding could be deemed as a plausible explanation to

the experimental results published by Raber et al. (2007), where
Fig. 6. Graphical representation of the proposed model performance for different
average slopes. SDE takes a value of 0.15 m in this case.

they describe an intriguing absence of a significant pattern relating
error in DEM accuracy and different LiDAR post-spacing. The likely
explanation is that the terrain where they developed the research
presented an average slope ranging between 2% and 5%, a much
too low slope to detect significant effects on DEM accuracy due to
LiDAR point density variation.

4.2. Validation of the developed model

The full model was validated using the datasets described
in Section 3.2. Validation using the Bristol dataset provided the
results depicted in Fig. 7. As can be seen in Fig. 7, the results
offered by the developedmodel fit reasonably well to the observed
errors, reproducing quite accurately the experimental relationship
plotted against total error and LiDAR point density. It is necessary
to point out that a mean correlation coefficient for sample
point elevations was previously computed for the Bristol area by
means of the grid correlogram, which indicates how well height
values correlate across the grid DEM. This value can notably vary
depending on the separation distance and terrain complexity. In
the case of Bristol area, themaximum separation distance between
sample points was about 35 m and the terrain can be considered
as quite smooth, resulting in a mean correlation coefficient ρ of
0.80 for a separation distance lower than 35 m. This value was
incorporated to Eq. (13) by means of its corresponding curve in
Fig. 2.
Regarding the validation carried out over the Gador dataset,

a mean correlation coefficient of around 0.40 was estimated
within the separation distance range employed mainly due to
the high terrain complexity of this area. It should be underlined
that the estimated values performed by the proposed model
fitted the observed data closely (see Fig. 8), depicting an even
better agreement than that obtained using the Bristol dataset. In
this regard, it is worth noting that the accuracy assessment of
LiDAR-derived DEMs for the Bristol area presented an estimated
average error of around 14.3%, according to the theoretical method
proposed by Aguilar et al. (2007b), basically due to the low
number of check points used. In the case of the Gador area, where
there was a greater number of check points, the corresponding
estimated error was about 5.1%, much lower than the Bristol
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Fig. 7. Validation results corresponding to the Bristol dataset. Sd is the standard
deviation of residuals at check points for every LiDAR point density tested.

Fig. 8. Validation results corresponding to the Gador mountain range dataset. Sd
is the standard deviation of residuals at check points for every LiDAR point density
tested.

dataset. Therefore, the experimental data derived from Gador can
be considered as more reliable than that from Bristol. Given the
exhaustive number of subsets tested, and the carefulmethods used
to filter the LiDAR raw data, these results may be deemed as highly
significant to validate the proposed model.
Considering the simplification of the formulae to provide a

more practitioner-suited approach, it should be highlighted that
Eq. (13) has been developed to deal with the IDWmethod, and that
the way the sample point error is propagated to the grid points
is by means of this interpolation method. Hence, similar formulas
could be deduced to deal with other interpolation methods. It is,
therefore, non-trivial to simplify the general equation because the
contribution of every term depends on the values for slope, SDELC ,
and point density. The normal values for M under operational
conditions use between 4 and 10 closest neighbours, with the final
total error being largely insensitive to variations in M when it is
within this range. It is likely that the most troublesome variable
to select, in the absence of an adequate set of check points, would
be SDELC . In this case, and merely as a rule of thumb, using values
that satisfy the US National Digital Elevation Program (Stoker
et al., 2007) could be recommended (i.e. around 0.15 m vertical
error (RMSE) in the case of open terrain and 0.37 m for non-open
terrain). Regarding the point density estimation over non-open
terrain, it is suggested, from an operative point of view, to start
from the nominal point density based on the flying height and
applying a reduction rate for that density based on the nature of
the land cover (e.g. 25% penetration rate for densely vegetated land
cover). Obviously, such a penetration rate should be based on user
experience.
It is worthy to note that the proposed model could be consid-

ered as a suitable method to carry out what is called terrain gen-
eralization (Weibel, 1992), or more widely expressed as surface
generalization. That is, through model application, the amount of
data points required to correctly model the terrain can be reduced
without practically losing accuracy (or, at least, knowing the er-
ror which is being introduced through the generalization process).
Such an approach presents important advantages regarding the
computer efficiency for the management of initially very dense
point clouds like those obtained by laser scanning, where a previ-
ousmesh optimization process is almost always needed. Very CPU-
time consuming DEM applications such as terrain visualization
(Kraak, 2003), surface matching and registration for change de-
tection (Miller et al., 2008), earthwork computation (Agüera et al.,
2007), hydrological analysis (Gong and Xie, 2009), etc., can be op-
timized by controlled data reduction based on the generalization
methods. After the corresponding generalization, and taking into
account that this study has dealtwith grid DEMs, data compression
techniques can be utilized to address the problem of using less disk
space to store the final raster format file.

5. Conclusions

This article has described the development of a hybrid theo-
retical–empirical model for modelling the error of LiDAR-derived
DEMs under non-open terrain. Both terrain slope and sampling
densitywere incorporated in the empirical component through the
calibration phase, resulting in a very good agreement between pre-
dicted and observed data (R2 = 0.9856; p < 0.001). Regarding
the validation results, Bristol observed vertical errors, correspond-
ing to different LiDAR point densities, offered a reasonably good fit
to predicted errors. Even better results were achieved in the more
rugged morphology of the Gador mountain range dataset.
Very little work has been done to determine the minimum data

requirements for specific applications of DEMs, although there is
an ever increasing tendency to collect larger volumes of elevation
data. In the majority of cases, it is preferable to have an optimized
DEM adapted to user needs rather than to have a vast amount of
data, which will be more difficult to handle and process. In the
particular case of LiDAR data, it must be emphasized that higher
LiDAR resolutions generally require an increment in the overall
survey costs (e.g. sensor with a higher pulse rate, lower altitude
over-flight, narrower scan angle, and so more flight-lines to cover
the same area). Despite the fact that the results reported should
be regarded as preliminary, the model requiring further testing
against more datasets, the findings presented in this article could
be used as a guide for the selection of appropriate operational
parameters, essentially point density, in order to optimize survey
costs as a function of terrain complexity, in projects related to
LiDAR survey in non-open terrain, for example those projects
dealing with forestry applications.
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