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Abstract

In this paper we present the rotation-invariant mul-
tilayer Coordinated Clusters Representation (CCR)
colour texture descriptor. The central idea is to de-
scribe the colour content of an image by means of
a reduced set of representative colours, and then to
split the image into a stack of binary images, one for
each colour of the reduced palette. The feature vector
for each pixel consists of the codes of the correspond-

ing patterns of binary texture that occur in each layer.
The validity of the model has been demonstrated
through the segmentation of both synthetic mosaics
of OuTex textures and multispectral IKONOS-2 satel-
lite images. Experimental results show that the pro-
posed features have high discriminative power and
yield increased accuracy compared to other segmen-
tation methods.
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1 Introduction

Eyesight is the most important and complex human
sense. It provides a great amount of sensorial infor-
mation that is processed by the brain and let us in-
teract with the world around. This fact justifies the
significance of computer vision –image analysis us-
ing computers– as a research field. Recent advances
in imaging devices and computer processing power
have made feasible a wide variety of computer vision
applications, such as remote sensing, medical diag-
nosis, robot vision, process monitoring, quality control
or security, to cite some.

Image segmentation –splitting an image into mean-
ingful regions of homogeneous properties– is a pre-
processing stage in many computer vision applica-
tions. For image segmentation to be effective, a

proper characterization of the input image is needed.
Unfortunately, there does not exist a general purpose,
universal approach to feature extraction, and there-
fore, the feature set depends on the nature of and the
information conveyed by the images to be processed.

Texture and colour are two of the most commonly
used cues for image segmentation. These attributes
have been traditionally regarded as separated phe-
nomena. However, in recent years, fusion of colour
and texture into a single model has received a great
deal of attention [3, 4, 5, 6, 7, 9, 10, 13, 14, 18, 19,
20, 22].

Texture analysis techniques can be classified into four
groups: statistical, geometrical, model based and sig-
nal processing methods [21]. The Coordinated Clus-



ters Representation (CCR) is a binary texture descrip-
tor [11] that is halfway between geometrical and sta-
tistical methods. In this model a binary image is de-
scribed by a histogram of occurrence of elementary
patterns of binary texture –called texels– which are
defined over a square window. The set of all the
possible texels constitute a dictionary, in which each
pattern is represented by a decimal code. For this
method to be applied to grayscale images, a prior
global binarization is required. This is a major issue,
since the use of an inappropriate threshold can wipe
out textural information.
Recently, a robust CCR-based model has been pro-
posed for colour texture classification [5]. These
features, known as rotation-invariant multilayer CCR,
yield a twofold improvement with respect to the
grayscale CCR model. First, this approach relies on
circular rather than squared texels, which make the
model insensitive against changes in texture orienta-
tion. Secondly, the new texture model benefits from
colour information and makes it unnecessary to per-

form global thresholding.

In this paper we propose the application of rotation-
invariant multilayer CCR to image segmentation. The
central idea is to describe the textural and colour con-
tent of an image by splitting the original colour image
into a stack of binary images. To evaluate the per-
formace of the proposed features we have applied
this method to the segmentation of different colour
and multispectral images. Experimental results show
that rotation invariant multilayer CCR features have a
high discriminative power and yield increased accu-
racy with respect to other segmentation methods.

The remainder of this paper is organized as follows.
In Section 2 we present the rotation-invariant multi-
layer CCR model for colour texture. Section 3 out-
lines the overall segmentation method. Section 4 de-
tails the benchmark data used in this article. Sec-
tion 5 is devoted to describe the experimental results,
and Section 6 summarizes the conclusions that can
be drawn from this work.

2 Colour texture model

2.1 CCR features

The Coordinated Clusters Representation (CCR) is a
binary texture descriptor [12]. In this model the fea-
ture vector is the histogram of occurrence of the pos-
sible binary patterns (texels) that can be defined over
a square window. The dimension of these elemen-
tary patterns are usually set to 3 × 3 pixels, since
this size provides good discriminative power at a rea-
sonable cost in terms of both computing speed and
memory consumption. In this case, the feature vec-
tor –denoted by CCR3×3– has 29 = 512 components.
This binary texture descriptor was later extended to
grayscale texture images through thresholding [11].
However, the need for global binarization is a major
issue, since this preprocessing stage can wipe out
textural information.

2.2 Rotation-invariant CCR

Another serious drawback of the CCR model is the
sensitivity to changes in texture orientation, as even a
small rotation can dramatically degrade performance.
In practical applications it is of great importance that
features be invariant against rotation, since images
are rarely captured under steady viewing conditions.
Rotation invariant CCR features can be obtained fol-
lowing an approach similar to the one proposed for
the LBP3×3 operator [16].
The first step consists in replacing the squared neigh-
bourhood used to compute the CCR3×3 by a circu-
lar neighbourhood. The intensity of the pixels that
are not placed exactly on pixels positions is estimated

through bilinear interpolation. We denote this model
by CCR8,1.
In order to achieve rotation invariance, all the rotation-
ally equivalent texels are mapped to the same pat-
tern in the dictionary. This descriptor –denoted by
CCRri

8,1– reduces the dimension of the feature space
from 512 to 72.
If we only consider the uniform patterns, i.e., those
patterns where the number of transitions in the eight
peripheral pixels is at most two, regardless of the
value of the central pixel, a further reduction in the
dimension of the feature space can be achieved. To
be precise, there are 18 possible uniform texels in an
8-neighborhood of radius 1. The remaining non uni-
form patterns are accumulated into an additional 19th

histogram bin. We refer to this feature space as the
CCRriu2

8,1 .

2.3 Multilayer CCR

The multilayer CCR is an extension of the CCR that
makes it possible to integrate texture and colour into
a single model [5]. The central idea is to describe the
colour content of an image by means of a reduced set
of representative colours, and then to split the image
into a stack of binary images, one for each colour of
the reduced palette. To this end, each pixel is as-
signed an index encoding the colour of the palette
which most closely resembles the pixel colour, and
then is set to one in the layer corresponding to this
index, and is set to zero in the remaning layers. The
overall feature vector for each pixel is formed by the



Figure 1: Schematic representation of the procedure to extract rotation-invariant multilayer CCR features

codes of the corresponding binary patterns that occur
in each layer.
There are two main approaches to generate the re-
duced colour palette. On the one hand, a general pur-
pose palette can be generated by colour space quan-
tization, which can be straightforwardly implemented
by dividing the RGB colour cube into equal-sized par-
alelepipeds. This implies that the resulting palette
is fixed and it is the same for all the images to be
processed. This approach has been succesfully ap-
plied to colour texture classification [5]. Colour space
quantization can be readily generalized to multispec-
tral imaging by partitioning the n-dimensional space
into equal-sized buckets. On the other hand, a data-
dependent palette can be generated through colour
clustering. In doing so, the palettes corresponding to
different input images are themselves different since

the resulting palette contains the most representative
colours of the image to be processed. We tested
both approaches and found that colour clustering sig-
nificantly outperforms uniform colour space quantiza-
tion. Based on the results of this preliminary study
we adopted the latter approach, using one of the
most popular colour clustering implementations: the
k-means algorithm.
Once the colour palette is generated, the colour
triplet –or n-tuple in case of multispectral imaging–
of each pixel is replaced by the index of the colour
in the palette that most closely resembles the original
colour. This process is referred to as colour indexing.
To that end, it is necessary to quantitatively define
the “closeness” of a pair of colours. Several similar-
ity measures have been proposed in the literature. In
this work we used the euclidean distance.



3 Description of the method

The segmentation process is divided into two clearly
differentiated stages: training and testing. The first
step of the training phase consists in generating
a reduced colour palette of representative colours,
through either uniform colour space quantization
or colour clustering, as discussed in Section 2.3.
We found that colour clustering outperforms uniform
colour space quantization in roughly 20 percentage
points of segmentation accuracy, and hence this was
the approach we adopted. In our implementation the
n-tuples of the original image were fed to the k-means
clustering algorithm, where n denotes the number of
bands of the image. Then, the 3×3 square neighbour-
hoods are transformed into circular neighbourhoods
through bilinear interpolation (see Section 2.2), and
subsequently, each pixel is assigned the index of the
closest colour in the palette. In this work we used the
euclidean distance in the colour space as a similarity
measure between two colours.
The next step lies in assigning a feature vector to
each pixel. For this aim, the indexed circular patterns
are split into N binary circular patterns, one binary
pattern for each colour of the palette. A pixel that
has been assigned the index i in the indexed pattern
takes a value of 1 in the binary pattern corresponding
to colour i, and 0 in the rest of the binary patterns.
The resulting N circular binary patterns are mapped
to their associated rotationally equivalent binary pat-
terns, which are represented by a decimal code. The
pixel is finally assigned a feature vector which is made
up of the codes of the corresponding elementary pat-
terns. The overall procedure is schematically de-

picted in Figure 1.
It is well known that the learning algorithm must match
the structure of the domain. Since we had a lim-
ited knowledge beforehand, we considered that it
would be worthy to try different classifiers in order
to choose the best suited for our particular applica-
tion. To accomplish this task we used the Waikato
Environment for Knowledge Analysis (WEKA1) work-
bench [23]. The error rates obtained in these trials
were very similar, independently of the classification
scheme. In view of this, we chose the RandomTree
algorithm [23], due to its inherent ability to manage
with the kind of features we propose in this paper and
its reasonable computational complexity.
In the testing phase we have to compute rotation-
invariant multilayer CCR features for each pixel of
the image to be processed following the method just
described, with the only difference that in this case
we have to use the palette generated in the train-
ing phase. These features are then fed to the Ran-
domTree classifier which was previously learned, and
as a result the class membership of each pixel is de-
termined. It is convenient to note that in order to make
a realistic estimation of the generalization error, the
image used for testing should be different from the
image used for training.
Finally, to evaluate the accuracy of the method, seg-
mentation results are shown as indexed maps, where
the pixel labels assigned by the classification algo-
rithm are colour-coded for visualization purposes. Be-
sides these maps, we computed several figures of
merit to quantitatively assess performance.

4 Benchmark data

In order to assess the validity of the proposed method,
we applied the rotation invariant multilayer CCR
model to the segmentation of two different types of
images, which are briefly described in the following
subsections.

4.1 Synthetic images

The first group of images is formed by synthetic mo-
saics of OuTex textures. OuTex is being increasingly
used as an evaluation framework by the computer vi-
sion community [17]. We have chosen a subset of 25
textures of the group inca 100dpi from the OuTex li-
brary. Five different mosaics of 746× 538 pixels have
been generated, each mosaic being formed by five
different textures, as shown in Figure 2. It is impor-
tant to note that the mosaics used for training contain

the same textures than the mosaics used for testing,
but as one can readily see from Figures 2(a) and 2(b),
the patches of a given texture in the train mosaic and
the test mosaic correspond to non overlapping sam-
ples of the original OuTex texture. The mosaics were
created this way in order to keep the training and test-
ing stages independent of each other, and hence, to
avoid underestimation of the generalization error.

4.2 Satellite imagery

The second dataset is formed by high resolution
IKONOS-2 satellite imagery –R, G, B and NIR bands–
of an area in the east of the Almería province –south-
eastern Spain–. Two non overlapping subimages of
498 × 465 pixels and 634 × 594 pixels have been
cropped from the whole image, one for training and

1http://www.cs.waikato.ac.nz/ml/weka/



one for testing. These images are shown in Fig-
ure 3(a). The goal is to detect the areas covered by
greenhouses. Greenhouse agriculture located in the
southeast of Spain concentrates the highest produc-
tion of vegetables in the Iberian peninsula. The eco-
nomic strength of this sector has caused a rapid and
uncontrolled greenhouse surface expansion, and as a

consequence, environmental threats have arisen [1].
A proper way to measure and control the covered sur-
face and its evolution through time is being increas-
ingly demanded by the government. The application
of remote sensing and image processing techniques
would be a helpful tool for the agricultural authorities
to manage the greenhouse sector.

(a) (b) (c) (d) (e)

Figure 2: Synthetic mosaics of OuTex textures: (a) train images, and (b) test images, and segmentation
results obtained using a palette of: (c) 5 colours, (d) 15 colours, and (e) 35 colours. Each row corresponds to
a different mosaic.

5 Experimental results and discussion

We performed a set of segmentation experiments
using the rotation invariant multilayer CCR over the
two datasets described in the preceeding section.
We firstly studied the influence of colour quantiza-
tion on the performance of the proposed approach.
We found that segmentation accuracy is strongly af-
fected by the number of colours that form the reduced
colour palette. Figures 2(c) - 2(e) –corresponding to
a palette of 5, 15 and 35 colours respectively– clearly
show that the greater the palette size, the higher the
segmentation accuracy, as one could expect. How-
ever, it should be noted that enlarging the colour

palette beyond a certain limit is impractical, since it
would drammatically increase the computational bur-
den. In addition to the visual assessment provided by
Figure 2, we computed the percentage of pixels cor-
rectly classified as a figure of merit for the segmenta-
tion. Quantitative results obtained for OuTex mosaics
are gathered in Table 1. One can easily notice from
both this table and Figures 2(c) - 2(e) that there is a
great spread in performance: a success rate close
to 100% can be achieved, but there are also cases in
which considerable confusion between classes occur.
This fact is most evident in coarse textures and when



a mosaic contains two or more patches with similar
visual appearance.
The second part of the experimental activity focuses
on the satellite imagery described in Section 4.2.
Herein the objective is to discriminate the green-
houses from the rest of elements in the image –soil,
roads, water pools, etc.–. By simply viewing Fig-
ure 3(a) one can see that not all the grenhouses have
the same appearance. These differences should not
be surprising, as it is well-known that the spectral
signature of plastic changes drastically with the an-
gle of vision, its chemical composition and even its
age [2]. It is fair to think that considering all the
greenhouses as belonging to a unique class would
lead to under-detection. Thus, we have grouped the
greenhouses into four types from mere visual inspec-
tion. Figure 3(b) shows the manually defined ground
truth, and Figure 3(c) shows the segmentation re-
sults. Careful observation of the lower rightmost cor-
ner of region A reveals the presence of abandoned
greenhouses, which will likely introduce classifica-
tion errors. Apart from the percentage of pixels cor-
rectly classified, we computed two additional figures
of merit: sensitivity and precision. Sensitivity mea-
sures the proportion of target pixels correctly classi-
fied. Precision is the number of true positives divided
by the total number of elements labelled as positives,
so it can be regarded as a measure of exactitude
[23]. The numerical results are gathered in Table 2.
It should be noted that in the calculation of these fig-
ures of merit only two classes are considered: ‘green-
house’ and ‘background’, and therefore, all the pixels
labelled as greenhouse –irrespective of the particular
type of greenhouse– are merged into a single class.
In this experiment, the palette size was set to 15,
since this number of colours gives a good balance
between segmentation accuracy and computational

cost. Although IKONOS-2 imagery consists of 4
bands (R, G, B and NIR), we have used only the RGB
bands because we found that considering the infrared
band provides a negligible improvement on accuracy,
at the price of significantly increasing the computa-
tional burden.
The performance of the proposed features was com-
pared with two different approaches. First, we con-
sidered the well-known Bayesian classifier [8], a
technique commonly used in many classical pattern
recognition problems. We have also considered a
state-of-the-art algorithm, the Spatial AdaBoost [15],
an improvement over original AdaBoost which –for
each pixel– takes into account contextual information
of the neighbourhood. In both approaches the fea-
ture vector for each pixel is directly given by the band
intensities: a RGB triplet in OuTex mosaics and a
RGB/NIR 4-tuple in IKONOS-2 imagery. The results
of these tests are shown in Figures 4(a) and 4(b), and
Table 3.
A brief analysis of Figure 3(c) allows one to realize
that the vast majority of incorrectly classified pixels
either are isolated pixels or belong to small speck-
les, giving a noisy aspect to the results. This could
be so because the segmentation algorithm works on
a per-pixel basis, i.e., each pixel is assigned a class
label based exclusively on its feature vector. As de-
scribed in Section 2.3, this feature vector only takes
into account a 3 × 3 pixel neighbourhood, disregard-
ing the spatial relationships with more distant pixels.
One could reasonably expect that removing the small
isolated clusters of wrongly classified pixels from the
segmented image would increase accuracy. To this
end we succesfully implemented diverse morphology
and smoothing filters, which gave rise to improved
outcomes, as can be ascertained from Figure 4(c)
and Table 3.

6 Conclusions

In this paper we presented the rotation invariant multi-
layer CCR descriptor for colour texture. The validity of
the proposed model has been demonstrated through
the segmentation of both synthetic mosaics and satel-
lite imagery. Experiments show that the proposed
colour texture features have high discriminative power
and yield increased accuracy compared to other seg-

mentation methods, such as the maximum a poste-
riori probability rule and Spatial AdaBoost. Further-
more, the proposed feature set is robust, since sim-
ilar segmentation results are obtained by employing
different classifiers. These findings encourage further
research to solve some open issues, such as optimal
palette generation and class separability.
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Figure 4: Segmentation results obtained using: (a) Bayesian classifier, (b) Spatial AdaBoost, and (c) rotation-
invariant multilayer CCR, RandomTree classifier and median filtering. The test images corresponding to the
first and second rows are Figure 2(b) (second row) and Figure 3(a), respectively.


