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Abstract

This paper explores the effects of terrain morphology,
sampling density, and interpolation methods for scattered
sample data on the accuracy of interpolated heights in grid
Digital Elevation Models (DEM). Sampled data were collected
with a 2 by 2 meters sampling interval from seven different
morphologies, applying digital photogrammetric methods to
large scale aerial stereo imagery (1:5000). The experimen-
tal design was outlined using a factorial scheme, and an
analysis of variance was carried out. This analysis yielded
the following main conclusions: DEM accuracy (RMSE) is
affected significantly by the variables studied in this paper
according to “morphology > sampling density > interpola-
tion” method. Multiquadric Radial Basis Function (RBF) was
rated as the best interpolation method, although Multilog
RBF performed similarly for most morphologies. The rest

of RBF interpolants tested (Natural Cubic Splines, Inverse
Multiquadric, and Thin Plate Splines) showed numerical
instability working with low smoothing factors. Inverse
Distance Weighted interpolant performed worse than RBF
Multiquadric or RBF Multilog. In addition, it is found that
the relationship between the RMSE and the sampling density
N is adjusted to a decreasing potential function that may be
expressed as RMSE/Sdz = 0.1906(N/M)~%°%%4 (R? = 0.8578),
being Sdz the standard deviation of the heights of the M
check points used for accuracy estimation, and N the
number of sampling points used for creating the DEM.

The results obtained in this study allow us to observe the
possibility of establishing empirical relationships between
the RMSE expected in the interpolation of a Grid DEM and
such variables as terrain ruggedness, sampling density,

and the interpolation method, among others that could be
added. Therefore, it would be possible to establish a priori
the optimum grid size required to generate or storage a DEM
of a particular accuracy, with the economy in computing
time and file size that this would signify for the digital flow
of the mapping information.

Introduction

A Digital Elevation Model (DEM) is a digital and mathemati-
cal representation of an existing or virtual object and its
environment. As defined by the U.S. Geological Survey, a
grid DEM is the digital cartographic representation of the

elevation of the land at regularly spaced intervals in x and y
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directions, using z-values referenced to a common vertical
datum. Unless specifically referenced as a Digital Surface
Model (DsM), the generic DEM normally implies elevations of
the terrain (bare earth z-values) void of vegetation and man-
made features (Maune et al., 2001). It is precisely with this
meaning that we use the term DEM in this paper.

The diverse possibilities offered by analytical carto-
graphy allows us to exploit these DEMs in order to obtain
quantitative and qualitative information of great interest,
being widely used in hydrological analyses, natural resources
management, transport planning, determination of the en-
vironmental impact of an activity, calculating the risk of
floods in urban zones, military applications, and analysis of
the potential erosion of agricultural soil (e.g., Franklin, 2000;
Davis and Wang, 2001; Desmet et al., 1999).

At the same time, DEMs are absolutely necessary to
generate orthoimages, possibly one of the stellar products
offered by modern digital photogrammetry. It is in this field
where a very productive integration is taking place between
Image Analysis and Geographic Information Systems (GIS). In
fact, orthoimages and DEMs are becoming a primary data
source for GIS, contributing a fast methodology at a reason-
able cost for the actualisation of spatial information which
allows the shortening of conventional cartographic actuali-
sation cycles (Baltsavias and Hahn, 1999).

To obtain a good DEM, we need to treat two clearly
differentiated phases with great care. On the one hand, the
technology employed to acquire sampling points (stereo
photogrammetry (Heipke, 1995), conventional topography
(Kleim et al., 1999), radargrammetry (Toutin, 2002), laser
scanning or lidar (Fricker et al., 2002) which will depend
on the real model scale and the sampling density required,
among other factors. Second, we must be careful with the
selection of an interpolation method to fill in the initial
sampling points, as it could considerably affect the quality
of the DEM generated. Although one can find very thorough
reviews in the literature about the different interpolation
methods that exist, e.g., Lam (1983), Robeson (1997),
Burrough and McDonnell (1998), there are fewer studies
about the efficacy of interpolators applied to the same set of
data, the most commendable being those of Franke (1982),
Weber and Englund (1992), Weber and Englund (1994),
Declerq (1996), and Yang and Hodler (2000).
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Thus, in the last three decades Radial Basis Functions
(RBF) have emerged as a relevant tool for the approximation
theory in mathematical literature, being considered as a highly
effective and simple method for the interpolation of multivari-
ant functions starting from the irregular geometry sampling
networks (Lazzaro and Montefusco, 2002). The pioneering
work developed by Hardy (1971) exhibited a new analytical
method of representing irregular surfaces (topographic sur-
faces) that involved the summation of equations of quadric
surfaces having unknown coefficients. Since then, there have
been many applications of this approximation method in such
diverse fields as photogrammetry, surveying and mapping,
geodesy, geophysics, remote sensing, digital terrain modelling,
hydrology, signal processing, and artificial intelligence (Mitasova
and Mitas, 1993; Rippa, 1999; Li and Chen, 2002).

Conversly, just as some authors indicate (Li, 1992; Gao,
1995; Gao, 1997; Weng, 2002), the morphology of the mod-
elized topographic surface and the sampling density used can
have a significant influence on the accuracy of the DEM
concerned. In fact, some morphology derived variables, such
as average terrain slope, seem to be positively correlated with
the increase in global error of the modelized surface (Toutin,
2002; Felicisimo, 1992).

The objectives of this study are: (a) to evaluate, from an
exclusively quantitative viewpoint, the effects of terrain
morphology, sampling density, and interpolation methods for
scattered sample data on the accuracy (RMSE) of interpolated
heights in Grid DEM; and (b) to investigate the relationship
between the RMSE and such variables as sampling density
and terrain ruggedness. The next step in this study would be
the development and validation of empirical models which
would allow us to estimate the RMSE inherent to the interpo-
lation of a Grid DEM. These models can be used to offer the
means to decide how many points should be kept to guaran-
tee the quality requirements of a DEM.

Methodology

In order to achieve the objectives proposed above, a factorial
experimental design was carried out. This experimental
design allowed us to analyse the influence on the DEM
accuracy from factors such as the morphology of the topo-
graphic surface, the interpolation method employed, and the
number of sampling starting points or sampling density.

Study Sites and Data Sets

The study area is located in Campo de Nijar (Almeria),

Southeast Spain. The zone represents a semi-arid climate

where annual rainfall averages approximately 260 mm.
In order to cover varying terrain morphologies, seven

study sites with different topography were chosen from a

dry ravine typical of Southeastern Spain to a smooth hill-
side with an uniform slope. Table 1 summarizes some
charasteristics of these different terrain datasets. It includes
relief features that are closely connected with terrain vari-
ability and roughness, such as standard deviation of slope,
mean profile curvature (Mitasova and Hofierka, 1993), and
standard deviation of unitary vectors perpendicular to topo-
graphic surface. Each study site covered an area of 198
meters by 198 square meters (39,200 m?).

The DEM for each of the topographic surfaces selected
was obtained automatically by means of stereo image match-
ing (Heipke, 1995). Later, a revision and a manually edited
version of the DEM were carried out.

The photogrammetric flight presented an approximate
scale of 1:5000 and was carried out with a Zeiss RMK TOP15
metric camera using a wide-angle lens with a focal lenght of
153.33 mm. The negatives were digitalized with a Vexcel
5000 photogrammetric scanner with a geometric resolution
of 20 um and a radiometric resolution of 24-bits (8-bits per
RGB channel). For the construction of the DEM we employed
the module Automatic Terrain Extraction of the digital
photogrammetric system Leica Geosystems Systems SOCET
SET NT® 1.4.3.1, obtaining a final DEM in Grid format with a
spacing of 2 meters by 2 meters, orthometric elevations, map
projection UTM Zone 30, and European Datum 1950.

For better understanding, Figure 1 represents the pers-
pective block diagram of the different topographic surfaces
contemplated in this study.

Interpolation Methods Tested

The interpolation methods evaluated are some of those
included in the Radial Basis Functions (RBF) group, i.e.,
Multiquadric, Inverse Multiquadric, Multilog, Natural Cubic
Splines, and Thin Plate Splines. Likewise, an interpolator
widely used in the modelization of surfaces, Inverse Dis-
tance Weighted (1DW), has been introduced in this study for
comparison with interpolation methods based on RBF.

Inverse Distance Weighted

Inverse Distance Weighted is one of the most widely used
methods for surface modelling. It is based on the intuitive

idea that the closest observations must carry more weight in
determining the interpolated value in one point. It is an exact
and local interpolator which estimates the value of the variable
Z in a non-sampling point x, from the following expression:

E W[di)-Z(Xi)
Z(x) = (1)
w(d;)

1

TABLE 1. GENERAL CHARACTERISTS OF THE TOPOGRAPHIC SURFACES STUDIED

Terrain Descriptive Statistics Flat Rolling Flat-Rough Mountainous Smooth Hillside Gorge Dry Ravine

DEM size (points 2 by 2 m 10000 10000 10000 10000 10000 10000 10000
spacing)

Average elevation (m) 166.54 176.94 170.21 215.16 120.25 125.18 47.25

Maximum elevation (m) 170.01 185.57 173.24 237.76 124.71 141.57 65.12

Minimum elevation (m) 163.31 168.32 166.61 192.59 115.65 110.16 36.01

Elevation coeff. of 0.97 2.28 0.84 3.98 2.01 5.01 19.57
variation (%)

Average Slope (%) 3.30 9.27 3.30 31.18 4.52 25.45 23.13

Standard deviation of slope 0.92 2.42 1.21 6.64 0.46 8.65 11.59
(degrees)

Mean profile curvature 0.021 0.022 0.022 0.031 0.0138 0.035 0.029

Standard deviation of unitary 0.034 0.09 0.039 0.31 0.024 0.285 0.295

vectors
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Figure 1. Perspective block diagram of every one of the seven topographic surfaces studied: (a) Flat, (b) Flat
rough, (c) Smooth hillside, (d) Rolling, (e) Mountainous, (f) Gorge, and (g) Dry Ravine.
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where w(d;) shows the weight function on the n sampling
points which intervene in the calculation, z(x;) is the
elevation of every one of these n points and d; represents
the distance between each point and x,. With the restriction
of w(d) — « if d — 0 the weight functions adopt the general
form w = d7". The most common values of the exponent are
u=1and u = 2 (Lam, 1983), although some authors
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establish that exponent 2 usually offers more satisfactory
empirical results, besides requiring less computational effort
(Declerq, 1996). Obviously, the use of high exponents
implies less relative weight for the points which are farthest
away from X, and vice versa.

For this paper we carried out a previous study (Aguilar
et al., Unpublished Data, 2002) which determined the
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optimum exponent for each sampling density within each
analysed morphology, a value which was finally used in
later calculations. As a summary of all this, we can indicate
that the most frequently repeated optimum exponent was

u = 2, although in some cases exponents 1 and 3 were
preferable. In any case, we must highlight the fact that the
results offered through this interpolation method were not
very sensitive to the exponent when we moved in a 1 to 3
interval.

Radial Basis Functions

Radial Basis Functions comprise a vast group of exact
interpolators which use a basic equation dependent on the
distance between the interpolated point and the sampling
points. This basic equation must take into account that

the interpolation function minimizes an appropiate func-
tional which represents some measure of smoothness of this
function. The mathematical background for construction of
RBF can be consulted in the work published by Talmi and
Gilat (1977). As a rule, the value of variable Z in a point x
can be expressed as the sum of two components (Mitasova
and Mitas, 1993):

> b ¥(d) (2)

where ¢ (d}) shows the radial basis functions and d; the
distance between each known sample point and x. The
“trend” function, f{(x), can be considered as a member of a
basis for the space of polynomials of degree < m. The
coefficients a; and b; need to be calculated by means of the
resolution of the following system of n + m linear equa-
tions, n being the number of sampling points which inter-
vene in the interpolation of the surface Z(x):

m

Zlx) = Eaiﬁ'(xk)

i=1

+ > bu¥(dy) fork=12,...n (3)
=

> bifilx) =0 fork =1,2,..., m.

j=1

Although the said interpolators were devised for global
support, e.g., in the case of the surface spline (Yu, 2001),
their application to large volumes of data presents a series of
problems, such as the high computational cost, an increase
in the numerical instability of the solution found, and the
influence of all the sampling points on each interpolated
value (Lazzaro and Montefusco, 2002). For overcoming this
problem, some authors have suggested an approach based on
a segmentation procedure with flexible overlapping neigh-
borhood (Mitasova and Mitas, 1993). We have, therefore,
preferred to work with the local support of the eight neigh-
bours closest to the interpolated point, a procedure that,
following previous trials carried out by our group (Aguilar
et al., 2001; Aguilar et al., Unpublished Data, 2002), usually
yields good results in relatively uniform sampling networks,
and that coincides with that recommended by other authors
(Yang and Hodler, 2000; Robeson, 1997; Weber and Englund,
1994).

Among the various RBFs that can be found in the bibliog-
raphy, Franke (1982) recommends that the multiquadric as
the one providing the best results in terms of the statistical
and visual evaluation of the modelized surface. An equation
of topography based on multiquadric summation applies a
simple geometric concept, where the smoothness and shape
of the transition between data points are controlled princi-
pally by the characteristics of the basic quadric used in the
summation (Hardy, 1971). As an example, when the quadric
used is a right circular cone with the vertex located at the x
and y coordinates of each sample point, the coefficients b;
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associated with each sample point is the asymptotic slope of
the cone relative to the x, y plane. The algebraic sign of b;
determines which surface of the cone in two sheets is to be
entered into the summation.

In this study we have evaluated, apart from the multi-
quadric function (MQF), other interesting functions such as
multilog (MLF), inverse multiquadric (IMQF), natural cubic
splines (NCSF), and thin plate splines (TpsF). The radial
basis functions used for each case present the following
expressions:

MQF:  ¥(d) = Vd® + ¢
MLF:  ¥(d) = log(d® + ¢?)
1
IMQF:  ¥(d) = ——— 4
QA YD) = @
NCSF:  ¥(d) = (d2 + ¢?)?
TPSF:  ¥(d) = (d* + ¢*) - log(d* + ¢?)

where:
d equals the distance from the point to the node, and ¢
equals the smoothing factor.

The value of parameter ¢, which depends fundamentally
on the number, elevation, and spatial distribution of the
sampling points can have a marked influence on the inter-
polation results obtained (Rippa, 1999). There is no univer-
sally accepted method for introducing the smoothing factor,
although in the references section there are various empiri-
cal type approximations, as those proposed by Hardy (1971)
and Franke (1982), together with others of a statistical type
where cross-validation techniques are used (Li and Chen,
2002), or recursive algorithms which try to find the value of
¢ which minimizes the global error of the interpolated
surface (Rippa, 1999). In our case, we use the latter option,
obtaining values close to zero in the cases of MQF and MLF.
However, we need very large values working with IMQF,
NCSF, and TPSF because a pronounced numerical instability
was observed when low smoothing factors were used.

As an example, when ¢ equals 0 in the case of multi-
quadric function, the associated quadric is a right circular
cone, whereas if ¢ > 0 the function ¢ (d;) are taken to be the
upper sheet of a hyperboloid of revolution.

On the other hand, when we add the first term (“trend”
function) of Equation 2 to the MQF, the resulting surface is a
multiquadric solution on which the effects of a normally
low-degree polynomial are superimposed to reduce the
slopes to zero at the desired maximums and minimums
(hilltops and depressions). However, when ¢ equals 0 or
is small enough (cone or a sharp-nosed hyperboloid) the
“trend” function does not improve the accuracy of MQF
interpolant (Hardy, 1971). Likewise, Carlson and Foley
(1991) observe that adding polynomial precision does not
appear to improve the accuracy for MQF and IMQF inter-
polants. Hence, we decided avoiding the “trend” function in
the Equation 2 for every RBF interpolation methods, includ-
ing MLF, NCSF, and TPSF. This decision involves an important
simplification, always desirable, but also implies uncertainty
about the accuracy of the final results.

Statistical Evaluation of the Interpolation Grid bEm Accuracy

In Figure 2 we observe the flowchart of the procedure
employed for the evaluation of the interpolated Grid DEM
accuracy. Because this paper focuses primarily on the
assessment of interpolation accuracy in the Grid DEMs
interpolated from scattered sample data, the errors inherent
in the check points collection are not discussed. In other
words, we considered that the check points are free of error
(Li, 1992; Gao, 1995).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Original Grid DEM (P = 10000 points)
One for every morphology tested (e.g. Rolling)

Control data set M points (check points)

P-M points ﬂ
Comparation with control

Random sampling for true validation.
ﬁ | — [ ping }

data set (True Validation)

sample density (8 levels: N to Ny). Four
independent samples or replicates for

{ Stratified random sampling for every
every sample density N; (i=1to 8)

check points of control data set

!

Goodness of fit residual errors to a
1

[ Residuals assessment at the M }

Data sets = 8x4 =32
Data sets = 32x6 = 192

normal probability distribution.
Checking absence of bias and spatial
autocorrelation for residuals

by 2 meters, for every interpolation

Interpolated Grid DEM, spacing 2
Lmelhod tested (6 levels)

Root Mean Square Error values for
the residual errors at the check points

Figure 2. Flowchart of the scheme used to evaluate
interpolated Grid DEM accuracy.

It seems obvious that the inclusion of more check points
in the data set will lead to a more reliable results. However,
in many practical applications, a large number of check
points may be costly to produce. Therefore, an initial num-
ber of 400 randomly selected point were extracted from the
original Grid DEM corresponding to each study site or mor-
phology (Table 1). These points were used as check points
for the adjustment degree of the interpolated Grid DEM by
comparison with the real model, a technique known as true
validation (Voltz and Webster, 1990).

The most widely used global accuracy measure for
evaluating the performance of DEMs is the Root Mean Square
Error (RMSE) (Li, 1988; Yang and Hodler, 2000):

4 estimated __ ryrealy2
>z z)

RMSE =/ =1 - (5)

where Zestimated minug Z™al is the residual at each check
point, and n the number of points. Thus, the RMSE was
calculated over 400 check points extracted from each mor-
phology. It is worth pointing out that with a 400 point
sampling size, we can expect errors in the DEM global error
measure of approximately 3.54 percent (Li, 1991), values
which are sufficient to achieve the objectives of this study.
Some authors have proposed to consider other measures
of error apart from the RMSE, for example the 95-percentile
method. It is far simpler than the RMSE process for comput-
ing vertical accuracy, and it does not assume that all 100
percent of the residuals must have a normal distribution. In
fact, it works well when 95 percent or more of the check

points present a normal distribution (Daniel and Tennant,
2001). But, if we can prove that our population of errors is
normal (i.e., no gross errors or outliers), the conclusions will
be similar irrespective of the measure of the error used.

Once the check points had been extracted, a stratified
random sampling was carried out, with four repetitions per
sampling density and morphology in order to guarantee the
homogeneous distribution of sampling points within the
scope of the original Grid DEM (Burrough and McDonnell,
1998). The sampling densities obtained were those showed
in Table 2, i.e., from N1 = 96 points to N8 = 4,800 points.

The modeled surface was generated from each sampling
density and by each interpolation method using the software
SURFER® 8.01 (Golden Software, 2002), which allows the
storage of interpolated data in a Grid type format, the size of
which can be defined by the user. In our case, we used 100
nodes by 100 nodes grids. As the six interpolation methods
work on local support, it was necessary to indicate the
number of closest neighbors that would intervene in the
calculation of the interpolated value in each node and their
search method (simple, quadrant, and octant searching).
Following previous trials carried out by our group (Aguilar
et al., 2001; Aguilar et al., unpublished data, 2002), the
simple search of the eight closest neighbours was used.

After obtaining the residuals in each case and before
finding the RMSE, we checked that their distribution was
approximate to a normal distribution with a zero mean. That
is to say, that all systematic errors and outliers have been
removed and the estimation was unbiased. For this purpose,
the Smirnov-Kolmogorov test (Royston, 1982) was used and
the interval of the residuals average was determined with a
confidence level of 95 percent.

It is also important to know whether interpolation error
may be spatially autocorrelated. In fact, this property of DEM
error has been reported by several authors (Wood, 1996;
Weng, 2002). If error at the check points are in fact not
independent, we could state that the true sample size is less
than 400. Therefore, the use of a data set of 400 spatially
autocorrelated residuals would lead to a RMSE variability
lower than it should be, and that the F-statistics in the ANOVA
tests would be inflated. Thus, we checked the degree of
spatial autocorrelation for every residuals data set with a
semivariogram, finding a clearly defined spatial structure like
we can see in Figure 3a. It shows the experimental standard-
ized semivariogram and the fitted spherical model correspon-
ding to the following variables: Sample density = N1 (96
points), Flat terrain, MLF interpolant and 400 check points.
The curve that has been fitted through the experimentally-
derived data points displays a typical transitional semivari-
ogram with range, nugget, and sill. The range, approximately
20 meters in this case, gives us an answer to the question
posed. If the distance separating two check points is greater
than the range, then residuals measured at those check points
are not spatially autocorrelated. In fact, in Figure 3b we can
see the experimental standardized semivariogram corres-
ponding to the same case showed in Figure 3a, but now
only using 60 check points separated by a distance vector
greater than 20 meters. We can observe the absence of spatial

TABLE 2. SAMPLE DENSITIES TESTED, INDICATED BY N1 To N8 ARE COMPOSED OF SCATTERED SAMPLE DATA FROM STRATIFIED RANDOM SAMPLING
(ES = EQUIVALENT SPACING)

Sample Density N

Ny N, N; A Ns N N7 Ng
Points 96 192 480 960 1440 1920 2880 4800
ES (m) 20.2 X 20.2 14.3 X 14.3 9.0 X 9.0 6.5 X 6.5 5.2 X 5.2 4.5 X 4.5 3.7 X 3.7 2.8 X 2.8
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Figure 3. (a) Experimental standardized semivariogram
(circles) and the fitted spherical model (solid line) for
sample density N = 96 points, flat terrain, MLF interpo-
lant and 400 check points, (b) Experimental standardi-
zed semivariogram (circles) for sample density N = 96
points, flat terrain, MLF interpolant and 60 check points
separated by a distance greater than 20 meters, (¢) x-y
scatter plot of 400 check points sampling net, and

(d) x-y scatter plot of 60 check points sampling net.

structure or autocorrelation. Therefore, residuals measured at
these check points are not spatially autocorrelated. The x-y
scatter plots of check points sampling net is showed in
Figure 3c (400 check points) and Figure 3d (60 check points).
Finally, the information in the different semivariograms

corresponding to all experimental data sets has been used to
help optimize check points sampling. So, an average scheme
based on 60 points separated by a distance greater than 20
meters was used. Since the number of check points have been
changed from 400 to 60, the expected error in the DEM global
error measure was calculated again, finding a value of around
9.20 percent (Li, 1991) which is still sufficient to achieve the
objectives of this study.

The RMSE was the variable observed or dependent on
the general variance analysis of the factorial model designed.
The variation sources analysed were morphology, interpola-
tion method and sampling density, as well as every interac-
tion among them. When the analysis results of the variance
were significant, we proceeded to the separation of averages
using the Duncan multiple rank test.

The whole procedure described above was programmed
with the SCRIPTER® module, included in SURFER® 8.01 (Golden
Software, 2002), which allows the use of the tool Active X
Automation to work with the SURFER® modelization engine in
an environment that is compatible with Visual Basic®.

Results and Discussion

Qualitative Analysis
First, we note that some RBF interpolants tested, such as IMQF,
NCSF, and TPSF present unexpectedly large discrepancies
between some of the check points elevations and the eleva-
tions interpolated from our sampling points dataset. Although
the objective of this article is to evaluate the accuracy of
interpolated heights in Grid DEMs from an exclusively quanti-
tative viewpoint, the use of qualitative studies based on
visualization methods can be considered as an effective tool
for analyzing elevation model accuracy, because its flexibility
in interpretation and because easily convey the significance of
data uncertainty to the DEM users (Wood and Fisher, 1993).
This previous qualitative study of the efficiency of the
six interpolators examined yielded some especially encour-
aging results for the continuation of our work. In fact, like
the quantitative analysis indicated, those interpolants based
on RBF such as IMQF, NCSF, and TPSF presented a pronounced
numerical instability for most of the morphologies and
sampling densities used. In Table 3 we can see the cases of
flat and mountainous terrain, where the elevation rank of

TABLE 3. COMPARATION BETWEEN ELEVATION RANK OF THE SAMPLE POINTS AND INTERPOLATED GRID DEM USING SOME RBF METHODS

Elevation Rank of the Interpolated Points (m)

Elevation Rank of the

Sample Points (m) IMQF NCSF TPSF
Terrain Sample Density Z min. 7 max. Z min. 7 max. Z min. 7, max. Z min. 7 max.
N, 163.46 169.63 —2546.29 1162.98 163.42 169.96 163.33 169.90
N, 163.61 169.89 —619.80 708.39 163.14 170.05 68.49 172.40
N; 163.34 169.87 —2092.84 977.58 126.29 185.66 161.72 183.98
Flat N, 163.44 170.00 —553.53 249888 90.99 182.19 123.23 176.18
N; 163.37 169.97 —362.44 1992.68 144.20 252.21 —1586.3 519.12
N 163.31 169.94 —1621.22 109758 135.78 200.73 —56.63 482.16
N; 163.36 170.01 —475.82 1883.58 132.95 200.20 144.49 284.64
Ng 163.31 169.99 —2492.72 527.84 152.29 182.48 111.89 192.39
N, 196.04 231.17 —10580.70 2504.48 193.56 232.68 194.37 236.84
N, 195.37 237.28 —29258.20 8260.40 194.60 237.28 194.63 298.86
N; 192.65 237.50 —38838.70 12695.40 57.71 492.16 —561.59 363.60
Mountainous N, 192.65 237.40 —2436.43 4885.97 —30.77 308.26 139.91 325.12
Ns 193.06 237.40 —6909.89 10360.54 —19.20 322.88 118.65 543.36
N 192.65 237.50 —22830.40 17660.58 —115.77 17200.2 —384.45 1596.52
N, 192.59 237.40 —1172.94 5926.75 94.68 312.52 —33.32 3230.13
Ng 192.65 237.52 190.32 236.78 160.00 267.33 88.83 298.42
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the interpolated points surpasses, sometimes remarkably,
e.g., IMQF, the elevation rank of the sampling points.

In Figure 4, we present the perspective block diagrams
for true DEM (i.e., using all of the 10,000 sample points
available) and interpolated Grid DEM for the RBF methods. In
each case the N5 (1,440 points) sampling density extracted
from mountainous terrain was used as a basis. As can be
seen, whilst the MQF (Figure 4b) and MLF (Figure 4c) meth-
ods offer smoothed perspective block diagrams very similar
to that obtained with the true DEM (Figure 4a), NCSF and TPSF
present a more irregular 3D projection with numerous
“blunders.” IMQF is the poorest interpolator in the previous
qualitative comparison, although it is not shown in Figure 4
because the “blunders” are too large to be displayed with
the vertical scale used. In any case, and for these last three
interpolators, the interpolated values were highly influenced
by the geometry of the sampling points network.

But, what is the reason for these outliers? Splines, such
as natural cubic splines or thin plate splines, are a general
class of interpolation techniques that use a mathematical
formula to create a surface that minimizes the overall sur-
face curvature resulting in a smooth surface that passes
through the sample points. This method is very useful
for creating elevation models of areas with gently varying
terrain and smooth slope transitions. However, it is very
sensitive and not suitable for sharp changes in value over
short distances, such as steep cliffs or man-made features. In
such situations, it has a tendency to over-exaggerate the
value of neighboring sample points (Mitasova and Mitas,
1993). In the case of TPSF, overshoots appear due to the
plate’s stiffness. The stiffness of the plate can be suppres-
sed by including first derivatives to the smooth seminorm,
which enables the character of the interpolation surface be
tuned from thin plate to membrane (Mitas and Mitasova,
1988). Likewise, we must remember that we decided avoid-
ing the “trend” function in the Equation 2 for every RBF
interpolation methods. From Equations 2 and 3, we can see
that a surface developed by adding polynomial terms to the
radial basis surface can achieve polynomial precision, i.e., a
first polynomial trend is extracted from the data and the
radial basis function is applied to the residuals only. In
other words, removing the “trend” function with some RBF
methods often imposes a strong artifact in the resulting
generated surface to avoid the extreme change in curvature
which really does exist.

In the case of NCSF and TPSF, the elevation rank of the
interpolated points is similar to the elevation rank of the
sample points when sample density is low, mainly in flat
terrain. But, when sample density is greater, extremes dif-
ferences between closely neighboring data values can appear,
mainly in mountainous terrain. Then the system of interpo-
lation equations could be numerically unstable or even
unsolvable. When this condition occurs and the data set
contains such extreme data pairs, we must consider increas-
ing the tolerance for filtering duplicate points, adding the
“trend” function or increasing the smoothing factor. We
decided to increase the smoothing factor. Effects of adding
the “trend” function will be studied in future work.

As observed by Carlson and Foley (1991) or Rippa
(1999), the value of the optimal smoothing factor strongly
depends on the approximated function used. We note that
IMQF, NCSF, and TPSF data presented in Table 3 and Figure 4
corresponding to a squared smoothing factor values (c?)
around 4 m% We show, numerically, that the value of opti-
mal ¢? (the value that minimizes the interpolation error)
presents different behaviour depending on the RBF evaluated
(Figure 5). RBF Multilog (and also RBF Multiquadric) presents
an optimal smoothing factor close to zero with a lower RMSE
when ¢* decrease. However, IMQF, NCSF, and TPSF only show
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a regular relationship between RMSE and ¢* when the arti-
facts or “blunders” are removed, but it does not occur until
¢?* is greater than 2,300 m? to 2,500 m?, in the case of IMQF
or NCSF, and 700 m?, for TPSF interpolant. In other words,
we need very large ¢ values working with IMQF, NCSF, and
TPSF because a pronounced numerical instability is observed
when used low smoothing factors. It should be observed that
a highly smoothed factor will produce a very smoothed
modelized surface which will probably be very far removed
from the geometry of the real surface. In fact, we have found
that IMQF, NCSF, and TPSF, without the “trend” function but
using large smoothing factors for avoiding instability, per-
formed worse than MQF or MLF interpolants working in the
same conditions, particularly when the terrain becomes
steeper.

In view of these results, we decided to continue with the
quantitative analysis of the data, cutting down to three the
levels of the interpolation method variable: Multiquadric,
Multilog, and Inverse Distance Weighted.

Quantitative Analysis

The general variance analysis of the factors examined allows
us to check the significant influence (p <0.01) of the vari-
ables terrain morphology: (A) sampling density, (B) inter-
polator, and (C) in the RMSE of a grid DEM (Table 4). A great
part of the global variance of the model is explained by the
factors morphology and sampling density, closely followed
by the interpolation method. It should be noted that, although
all interactions are significant excepting A X B X C, the
interaction between morphology and sampling density
appears to be the most consistent, confirming the suitability
of implanting the method called Progressive Sampling in the
automatic generation of DEM (Makarovic, 1973), a technique
which increases the number of sampling points in rugged
topography zones. Although this technique can produce
highly redundant sampled data in the proximity of abrupt
changes in terrain surface, it can be avoided by sampling
these abrupt changes selectively. This optimal procedure is
called Composite Sampling (Makarovic, 1979).

Within the morphology factor, we can find four groups
of topographic surfaces where statistical differences are
significant (p <0.05). The less-rugged terrain presents an
average RMSE (including all sample densities and interpola-
tion methods) which is very close to or below 7.6 cm, while
as the terrain becomes more undulating, we observe a signi-
ficant increase in the RMSE, reaching its highest value at
61.6 cm in the case of the morphology known as “Gorge”
(Figure 6). In this way, Gao (1995) observed that gentle
terrain was more accurately represented than complex
terrain by DEMs of the same resolution.

Correlation coefficient between average RMSE for each
morphology and the different empirical measures showed in
Table 1 lead to propose standard deviation of unitary vectors
perpendicular to topographic surface, such as the best esti-
mation of terrain roughness (r = 0.99) for our dataset. Of
course, we need to develop more detailed studies to confirm
this finding.

Means separation for the variation source interpolation
method (Table 5) has yielded significant results (p <0.05)
which highlight the weakness of the IDW method with regard
to the RBF methods. The greatest problem presented by Dw
is likely to be that the interpolated heights are weighted
averages that always take values between the maximum and
minimum basis points (Lam, 1983) which reduces its
efficacy to estimate the highest or lowest levels of a topo-
graphic surface when these levels do not belong to the set of
sampling points.

The influence pattern of the RBF interpolation methods
on the accuracy of the DEM generated has been slightly
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TABLE 5. RMSE VALUES ACCORDING TO THE VARIABLES INTERPOLATION
METHOD AND MORPHOLOGY. FOR A GIVEN Row, DIFFERENT LETTERS BETWEEN
DATA IN DIFFERENT COLUMNS INDICATE SIGNIFICANT DIFFERENCES (P <0.05)

TABLE 4. GENERAL ANALYSIS OF VARIENCE FOR THE RMSE OBSERVED DATA
(DEPENDENT VARIABLE)

IDW MLF MQF
RMSE (cm)
General Means Separation Test 39.72a 27.68b 25.30c
Morphology
Flat 8.80a 5.82b 5.64b
Smooth hillside 12.20a 3.92c 5.76b
Flat-rough 9.27a 6.90b 6.58b
Rolling 22.25a 14.71b 13.34c
Dry ravine 72.63a 52.11b 44.27¢
Mountainous 80.04a 51.01b 48.87b
Gorge 72.87a 59.30b 52.65¢

Degrees of Sums of Mean

Source Freedom Squares Square F-test P-value

(A) Morphology 6 41.46 6.91 1382.49 P <0.01

(B) Sample 7 35.73 5.10 1021.42 P <0.01
density

(C) Interpolation 2 2.68 1.34 267.91 P <0.01
method

Interaction A X B 42 24.65 0.58 117.44 P <0.01

Interaction A X C 12 1.61 0.13 26.97 P <0.01

Interaction B X C 14 0.47 0.03 6.79 P <0.01

Interaction A X B X C 84 0.49 0.006 1.18 0.1498

Residual 504 2.52  0.005

different with regard to the basis morphology. For smooth
terrain, MLF presents a similar performance to that of MQF,
and even higher in the case of smooth hillside terrain.
However, as the terrain becomes steeper MQF works signifi-
cantly better than MLF (Table 5). Franke (1982) compared the
majority of the interpolation methods for scattered data
sets available at that time, and Hardy’s Mutiquadrics were
ranked as the best. The studies carried out by Yang and
Hodler (2000) lead to the same conclusion. It is more diffi-
cult to find references about the efficacy of the Multilog
Function interpolation method, which in any case, and
judging from the results obtained in this study, seems to be
more accurate than the classic Inverse Distance Weighted.
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In Figure 7 we can explore how the inherent error patt-
erns of the stereo photogrammetry influence the performance
of the interpolation methods tested. As MQF seems to be
significantly more accurate than MLF and IDW when sample
density decrease and the terrain becomes steeper (dry ravine
and gorge in Figure 7), it would be proposed like the more
effective interpolation method for filling the sampling gaps
produced where stereo photogrammetry methods can not
provide reliable measurements (such areas as shadows,
occlusions, and poor-texture).

Finally, as observed by Makarovic (1979), Li (1992) and
Gao (1995; 1997), sample density also had a significant
influence on the accuracy of the Grid DEMs generated. Means
separation for the variable sample density can be observed
in Figure 8, showing a significant (p <0.05) decrease in the
RMSE as the sample density increases in most levels studied.
Similar behavior is described by Gao (1997) when observed
that the accuracy of the DEMs decreases moderately at an
intermediate sample density, but sharply at low sample
density for all three terrain types tested.

In fact, it is found that the relationship between
the RMSE and the sampling density N is adjusted to a
decreasing potential function (Equation 6), being N the
number of sampling points used for creating the DEM
and Spz the standard deviation of the heights of the M
check points used for accuracy estimation. In any case, the
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The adjustment soundness of this model is quite re-
markable, with a regression coefficient of R* = 0.8578.
Notice that the regression weights differently the points
coming from different terrain morphology because of the
factor Spz, which is large for mountains and smaller for flat
terrains.

For practical purposes, and starting from the model
devised, we can infer for our rolling terrain (SnZ = 415 cm)
that decreasing the number of sampling points by 98 percent
(N = 200 points) with regard to the original 10,000 points,
the increase in the RMSE is in the order of 35.6 cm. How-
ever, if the decrease is of 80 percent (N = 2000 points), the
RMSE will only increase to an average value of 6.5 cm. This
result is crucial, since at the moment the problem does not
lie in obtaining the data of a DEM, a phase that has reached a
remarkable degree of development, (e.g., Fricker et al., 2002;
Paparoditis and Dissard, 2002), but in handling and main-
taining up to date such an amount of information (Graham
et al., 2001) using structures which will allow its efficient
integration and exploitation in GIS or CAD applications. In
the majority of cases it is preferable to have an optimised
DEM adapted to our needs, that is to say, without excess
information, than to have a vast amount of data the handling
of which will just create difficulties for us. Furthermore,
such an enormous amount of data inevitably involves some
redundancy.

However, if any DEM producer has a DEM already des-
cribed in a regular grid or raster format, and faces the prob-
lem of use less disk to store it, they could also use data
compression techniques such as JPEG (Fourier transform)
or JPEG2000 (Wavelets). So, we think that the most interest-
ing application of Equation 6 is the one of a DEM producer
who will create a DEM using scattered data. They should
decide the amount of RMSE they are willing to accept and
how many sampling points (measured on the ground) are
necessary.

Of course, the formula proposed in Equation 6 is
purely empirical, and it must be validated against other
datasets. Therefore, the next step in this study would be
the development and validation of a series of empirical
bivariant models which would allow us to estimate the
RMSE inherent to the interpolation of a Grid DEM in terms
of such variables as sampling density and terrain mor-
phology. Thus, proposals about empirical measures of
terrain variability and roughness would be welcome. Some
authors have proposed many parameters of terrain rough-
ness such as mean slope (Balce, 1987), the harmonic
vector magnitude (Ayeni, 1982), fractal dimension (Good-
child and Mark, 1987), Laplacian operator (Makarovic,
1979), or variance of unitary vectors perpendicular to
topographic surface (Felicisimo, 1992). These parameters
would allow the characterisation of the degree of rough-
ness in a topographic surface in order to include this
information in a predictive model of the accuracy of
interpolated heights in Grid DEM. These empirical models
would allow us to find out a priori the cost, expressed
as an increase in RMSE, of a reduction in the number of
sampling points for the generation and storage of a DEM.

Conclusions

The results obtained in this study allow us to conclude
that terrain morphology, sampling density of the points
observed and the interpolation method have a signifi-
cant bearing on the accuracy of interpolated heights
from scattered data in Grid Digital Elevation Models.
The global error of the aforesaid models was estimated
through the root mean square error taken from an appro-
priate check points sample. For example, it is important
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to check the absence of spatially autocorrelated errors for
avoiding that the F-statistics in the ANOVA tests will be
inflated.

The factor with the greatest incidence on the quality
of the interpolation was morphology, followed by sam-
pling density and interpolation method. The interaction
between morphology and sampling density appeared to be
the most consistent, confirming the suitability of implant-
ing Progressive Sampling method in the automatic genera-
tion of DEMs.

Interpolation by Multiquadric radial basis functions
with local support proved to be more accurate than the one
based on logarithmic functions in the case of undulating and
mountainous terrain, yielding similar results in flat or low
roughness terrain. Multiquadric radial basis function provi-
ded significantly better interpolation than Multilog function
working with low sample densities and steeper terrain. So
it would be proposed similar to the more reliable interpola-
tion method for filling the sampling gaps produced, where
stereo photogrammetry methods can not provide reliable
measurements.

The classic method Inverse Distance Weighted clearly
proved to be less appropriate than the two previous ones in
any case.

Conversly, the three interpolation methods based on
the radial basis functions studied, i.e., Inverse Multiquadric,
Natural Cubic Splines, and Thin Plate Splines showed a
high level of numerical instability when used low smooth-
ing factors. This fact was highlighted in the case of the
Inverse Multiquadric Function with the generation of numer-
ous artifacts or “blunders.” We also have found that Inverse
Multiquadric, Natural Cubic Splines, and Thin Plate Splines,
without the “trend” function but using large smoothing
factors for avoiding instability, performed worse than
Multiquadric or Multilog interpolants working in the same
conditions, particularly when the terrain became steeper.
Perhaps it could be explained because a highly smoothed
factor will produce a very smoothed modelized surface
which will probably be far removed from the geometry of
the real surface. In future work, we will study the effects
of adding the “trend” function to these three interpolation
methods.

The results obtained in this study allow us to observe
the possibility of establishing empirical relationships bet-
ween the RMSE expected in the interpolation of a Grid DEM
and such variables as sampling density, terrain ruggedness,
and the interpolation method used among others that could
be added. For example, we have showed that the relation-
ship between the RMSE and the sampling density is adjusted
with remarkable approximation to a decreasing potential
function. Therefore, it would be possible to establish a priori
the optimum grid size required to generate a DEM of a parti-
cular accuracy with the economy in computing time and file
size that this would satisfy the digital flow of the mapping
information. At the same time, they would also be very
useful for establishing adaptative sampling strategies with
regard to the morphology of the topographic surface that is
being modeled.
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