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Abstract

The area occupied by plastic-covered greenhouses has undergone rapid growth in recent years, currently exceeding 500,000
ha worldwide. Due to the vast amount of input (water, fertilisers, fuel, etc.) required, and output of different agricultural wastes
(vegetable, plastic, chemical, etc.), the environmental impact of this type of production system can be serious if not accompanied
by sound and sustainable territorial planning. For this, the new generation of satellites which provide very high resolution imagery,
such as QuickBird and IKONOS can be useful. In this study, one QuickBird and one IKONOS satellite image have been used to
cover the same area under similar circumstances. The aim of this work was an exhaustive comparison of QuickBird vs. IKONOS
images in land-cover detection. In terms of plastic greenhouse mapping, comparative tests were designed and implemented, each
with separate objectives. Firstly, the Maximum Likelihood Classification (MLC) was applied using five different approaches
combining R, G, B, NIR, and panchromatic bands. The combinations of the bands used, significantly influenced some of the
indexes used to classify quality in this work. Furthermore, the quality classification of the QuickBird image was higher in all cases
than that of the IKONOS image. Secondly, texture features derived from the panchromatic images at different window sizes and
with different grey levels were added as a fifth band to the R, G, B, NIR images to carry out the MLC. The inclusion of texture
information in the classification did not improve the classification quality. For classifications with texture information, the best
accuracies were found in both images for mean and angular second moment texture parameters. The optimum window size in these
texture parameters was 3×3 for IK images, while for QB images it depended on the quality index studied, but the optimum window
size was around 15 × 15. With regard to the grey level, the optimum was 128. Thus, the optimum texture parameter depended on
the main objective of the image classification. If the main classification goal is to minimize the number of pixels wrongly classified,
the mean texture parameter should be used, whereas if the main classification goal is to minimize the unclassified pixels the angular
second moment texture parameter should be used. On the whole, both QuickBird and IKONOS images offered promising results
in classifying plastic greenhouses.
c© 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Plastic-covered greenhouses have undergone rapid
expansion in recent years, covering over 500,000 ha

∗ Corresponding author.
E-mail address: faguera@ual.es (F. Agüera).
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worldwide. The largest concentrations are in Asia (China
with 20,000 ha, Korea with 27,000 ha, and Japan with
70,000 ha), followed by the Mediterranean basin (cur-
rently with over 130,000 ha). In the Americas, this trend
has also been followed. Due to the high cost effective-
ness of this production system, greenhouse agriculture
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strongly influences the economy of the area where it is
implemented, in some cases representing practically the
only source of income. This is the case at the Almerı́a
coast, in south-eastern Spain, with an annual production
of approximately 3 × 109 kg of produce at an approxi-
mate value of 1900 × 109 Euros. As a consequence of
the rapid expansion of the greenhouse surface area, with
almost no planning in some of these areas, a number
of environmental problems have arisen and are becom-
ing more serious as this surface area keeps growing: the
generation and accumulation of vegetable and plastic
waste, over-exploitation of water resources in the area,
encroachment on protected natural areas, the absence of
a road network to cover the needs of existing transport,
etc. These factors render the production system unsus-
tainable and endanger the local economy (Parra, 2004).
In order to alleviate these problems and to find solutions
for the future, different organisations are seeking to es-
tablish methods to calculate as accurately as possible
the surface area occupied by greenhouses.

In Spain, Sanjuán (2004) carried out a study using
Thematic Mapper images from the Landsat 5 and 7
satellites in order to estimate the greenhouse surface
area in south-eastern Spain. The problems of the
imagery from these satellites to detect greenhouses
are similar to those that appear when working in
urban areas: few greenhouse pixels are thematically
pure, and land use must be inferred from image
characteristics or through the incorporation of ancillary
information (Guindon et al., 2004). Consequently, aerial
orthophotographs are used when working in areas with
this type of land use. The arrival of new satellites that
provide Very High Resolution (VHR) imagery, such as
IKONOS (IK) and QuickBird (QB), has opened new
ways of tackling this problem, as they can detect small
objects. Although the use of imagery from IK or QB
is widespread in urban areas, this is not the case in
greenhouse areas. Besides the study by Sanjuán (2004)
mentioned above, Agüera et al. (2006) also used a QB
image to examine the evolution of the surface area
occupied by greenhouses in a zone of south-eastern
Spain. These VHR images had already been used for
detecting buildings (Fraser et al., 2002; Weber and
Ranchin, 2003; Mesev, 2005), roads (Yan and Zhao,
2003; Jin and Davis, 2005), vegetation (Nichol and
Lee, 2005), and even buildings damaged by various
disasters (Al-Khudhairy et al., 2005). For greenhouse
detection by satellite imagery, a series of considerations
must be taken into account due to the construction
material used and its handling: the spectral signature
of plastic changes drastically depending on the vision
angle, chemical composition and even age of the plastic.
Fig. 1. Study site images from QuickBird (above) and IKONOS
(below).

Moreover, in some areas at certain times of the year
the plastic sheets are painted white to avoid excessive
light and heat inside the greenhouse. At other times of
the year, the plastic is not painted, and this changes
its response to the band of the infrared spectrum.
Also, different types of plastic are used in the same
greenhouse, due to partial replacements, (repair of
tears), and even materials other than plastic (i.e. the
mesh covering the opening for roof ventilation) are
used. All these factors trigger widely different spectral
responses from one greenhouse to another, even within
the same greenhouse, making it difficult to propose
a specific image-classification technique for detection.
Fig. 1 presents images from QB and IK for the
study site, showing the heterogeneity of plastic spectral
signature.

Most of the imagery classification methods are based
on the statistical analysis of each separate pixel. These
methods have shown good performance when used for
images with a relatively large pixel size (Wang et al.,
2004). In VHR imagery, with smaller pixel size, the
detectable spectral variability may increase within a
particular class, making the classification process even
harder (Cushnie, 1987; Shaban and Dikshit, 2001),
especially in the case of anthropogenic structures
(Kiema, 2002). To avoid this problem as much as
possible, different techniques have been developed that
take into account both the spectral information and
the information supplied by the texture of the image.
These techniques have been used mainly in urban
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Fig. 2. Location of the study area (shadow rectangle), where main
villages and roads have been located. Coordinates are UTM (zone 30,
ED50).

areas. The output image generated by texture analysis
is often classified directly or used as an additional
band together with other multi-spectral bands in the
classification procedure (Lee et al., 2003; Wang et al.,
2004; Puissant et al., 2005). The information regarding
the texture of the image has also been used by different
authors to establish parameters related to the area under
study. Kayitakire et al. (2006), deduced forest-structure
variables (age, top height, circumference and basal area)
from image-texture analysis and IKONOS-2 imagery.
Other authors, such as Franklin et al. (2001) and Rao
et al. (2002), have used the textural information from
satellite images for land-use classification in forest
areas.

The aim of the present study is to perform an
exhaustive comparison of QuickBird vs. IKONOS
images in terms of to their accuracy in classifying
land use. Focusing on plastic-greenhouse mapping, we
designed and implemented two comparison tests, each
with separate objectives. Firstly, to study the accuracy
of spectral bands for classifying land use, we made
the Maximum Likelihood Classification (MLC) using
five different approaches combining R, G, B, NIR, and
panchromatic bands. Secondly, to study the usefulness
of texture information in land-use classification, we
derived texture features from the panchromatic images
at different window sizes and with different grey-level
quantification, and these were added as a fifth band to
the R, G, B, NIR image to carry out the MLC.
2. Study site and data preparation

2.1. Study site

The area selected is situated in the east of the
Almerı́a province (south-eastern Spain, Fig. 2). This
is currently the most dynamic zone in the province
in terms of greenhouse spreading, with approximately
6000 ha concentrated in an area of 18 000 ha. However
it has low-quality water resources and shares a boundary
with the Cabo de Gata Natural Reserve, a spot of great
ecological wealth that is threatened by over-exploitation
of resources, and the activity derived from the vast
greenhouse overcrowding nearby (residues, sewage,
etc.). For our study we chose a rectangle of 2084.27 ha
(6425× 3244 m), with UTM coordinates (zone 30, ED-
50) of the SW and NE vertexes (572740, 4086640) and
(579165, 4089884), respectively.

2.2. Data preparation

In this study, we used two images, one from QB and
one from IK satellites. On 19 December 2004 a QB
basic image by DigitalGlobe was acquired. The basic
scene was centred on coordinates WGS-84 (latitude and
longitude) of 36.93045◦ N and 2.12685◦ W. The QB
basic product consisted of one panchromatic image and
one multi-spectral image collecting data on blue, green,
red, and near-infrared wavelengths (B, G, R, NIR). Data
for each band were stored with 11-bit quantification.
Basic imagery products were radiometrically and sensor
corrected, but not geometrically corrected or mapped
to a cartographic projection and ellipsoid. They are
accompanied by information related to satellite attitude,
ephemeris, and camera model information. Multi-
spectral and panchromatic imagery were orthorectified
with a resolution of 2.5 and 0.61 m, respectively (for
details of this process, see Aguilar et al. (2005)). In
September 2005, an archive image of the IK Geo
Ortho Kit, taken on 2 June 2005 was acquired from
European Space Imaging. Similarly to the QB imagery,
this product consisted of one panchromatic image and
one multi-spectral image (B, R, G, NIR), recorded
in 11 bits. Multi-spectral and panchromatic imagery
was orthorectified with a resolution of 4 and 1 m,
respectively.

To quantify the accuracy of the results of the
classification processes implemented, we manually
delineated the greenhouses from panchromatic QB and
IK orthoimages, as well as field data. A total greenhouse
surface area of 708.86 and 715.96 ha, respectively, was
quantified from these images.
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Table 1
Average number of pixels and standard deviation (in brackets), used in the five replications of training areas for each image

Image Pixels in sub-class 1 (SD) Pixels in sub-class 2 (SD) Pixels in sub-class 3 (SD)

QuickBird (2.5× 2.5 m) 4160 (131) 6610 (1078) 4094 (655)
IKONOS (4× 4 m) 8997 (1687) 20 755 (2270) 12 670 (2920)
3. Methods

3.1. Classification based on spectral information

The MLC method was chosen to help compare
the performance of the two different satellite-image
sources. Several studies have successfully used this
classification method, either alone or in combination
with other methods (e.g. Gong et al. (1992), Green
et al. (1998), Gao (1999), Lee et al. (2003), Wang et al.
(2004), Puissant et al. (2005) and Agüera et al. (2006)).

The aim of this classification was to portray the
areas occupied by greenhouses in both images as
accurately as possible. The study of the images showed
high variability in the reflectance of greenhouses.
Therefore, they were divided into three sub-classes
with more homogeneous spectral signatures in the RGB
combination bands. This is based on previous work
(Agüera et al., 2006) showing that three sub-classes
are sufficient to identify significant differences between
spectral clusters of greenhouses and other buildings.
Once the training sites had been defined, the MLC
was implemented using two different approaches. In
the first, only the multi-spectral bands were fed into
the MLC, and the results from this test provided a
comparison performance using only the multi-spectral
bands of the images. In the second approach, the
panchromatic band was taken into account and added
to the classification process together with the multi-
spectral bands. For this classification test, panchromatic
images of QB and IK were re-sampled at 2.5 and
4 m, respectively, and added to their multi-spectral
image, resulting in two five-channel images at a spatial
resolution of 2.5 and 4 m. The results from this
option were used to compare the contribution of the
panchromatic band to the accuracy of the classification
in both images.

For each image, five replications were made, taking
into account five different sets of training sites, which
were used for both types of classification. Table 1 shows
the average number of training pixels for each sub-
class and image. In each case, the number of training
pixels varied between 0.22 and 0.71% of the total of
the study area, which can be considered sufficient for a
correct classification (Lee et al., 2003; Van Niel et al.,
2005). PCI Geomatica V9.1 software was used for these
classifications.

3.2. Classification with the inclusion of texture infor-
mation

Texture is the visual effect caused by spatial variation
in tonal quantity over relatively small areas (Anys
and He, 1995). In the literature, the main approach
to texture analysis is based on the Grey Level Co-
occurrence Matrix (GLCM) method (Haralick et al.,
1973), although other approaches based on variograms,
fractal dimension, or neural networks can be found.
Most of the texture measures are computed from
GLCM directly. In addition, some texture measures
are computed from a Grey-Level-Difference Vector
(GLDV), which itself is derived from a GLCM.

In the present study, the methodology applied uses
the re-sampled panchromatic band to derive textural
information. The output image generated by texture
analysis is then added to the four multi-spectral
bands (R, G, B, NIR). The five-band image is then
classified using the MLC method and the result is a
spectral/textural classification (Puissant et al., 2005).
The co-occurrence matrix values were calculated with
seven window sizes (ws) (3 × 3, 5 × 5, 7 × 7, 9 × 9,
11 × 11, 15 × 15, 21 × 21), and the grey level with
six values (1024, 256, 128, 64, 32, 16). Displacement
vectors in four directions (0◦, 45◦, 90◦, 135◦) with a
spatial distance of 1 pixel were used to produce the
average value of each texture measure.

Ten texture measures were used:

– Homogeneity:

HOM =
N−1∑
i=0

N−1∑
j=0

P(i, j)

1+ (i − j)2 . (1)

– Contrast:

CON =
N−1∑
i=0

N−1∑
j=0

P(i, j)× (i − j)2. (2)

– Dissimilarity:

DIS =
N−1∑
i=0

N−1∑
j=0

P(i, j)× |i − j |. (3)
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– Mean:

MEAi =
N−1∑
i=0

N−1∑
j=0

i × P(i, j). (4)

– Standard deviation:

STDi =

[
N−1∑
i=0

N−1∑
j=0

P(i, j)× (i −MEAi)2

]1/2

. (5)

– Entropy:

ENT =
N−1∑
i=0

N−1∑
j=0

−P(i, j)× loge(P(i, j)). (6)

– Angular second moment:

ASM =
N−1∑
i=0

N−1∑
j=0

P(i, j)2. (7)

– Correlation:

COR

=

N−1∑
i=0

N−1∑
j=0

P(i, j)×(i−MEAi)×( j−MEA j)
STDi×STD j .

(8)

– GLDV angular second moment:

G-ASM =
N−1∑
k=0

V (k)2. (9)

– GLDV entropy:

G-ENT =
N−1∑
k=0

(−V (k))× loge(V (k)) (10)

where N is the number of grey levels, P is the
normalised symmetric GLCM of dimension N ×
N ; V is the normalised grey-level-difference vector
of dimension N ; P(i, j) is the normalised co-
occurrence matrix such that

∑N−1
i=0

∑N−1
j=0 P(i, j) =

1, and V (k) is the normalised grey level-difference
vector:

∑N−1
i=0

∑N−1
j=0 P(i, j), with |i − j | = k.

All these combinations of ws, grey levels, and texture
measures give a total of 6 × 7 × 10 = 420 different
classifications per image. For each classification, five
replications were carried out taking into account the five
different sets of training areas described in Table 1. The
texture measures were made with PCI Geomatica V9.1
software, but to automate the classification of all these
420 treatments×5 replications×2 images (4200) cases,
an application developed by the authors in Visual Basic
6.0 programming language was used. For input, it took
the multi-spectral bands, the texture measures and the
training areas, and for output gave the pixels classified
as greenhouse.

3.3. Performance evaluation for greenhouse extraction

The quality of the greenhouse extraction process
was assessed from the indexes defined by Mckeown
(1999). The greenhouses automatically detected were
compared pixel by pixel with those manually delineated
ones (true classification). The results for each pixel in
the image fell into one of four categories:

(1) True positive (TP): both the automated and manual
methods label a pixel as greenhouse.

(2) True negative (TN): both the automated and
manual methods label a pixel as background (non-
greenhouse).

(3) False positive (FP): only the automated method
labels a pixel as greenhouse.

(4) False negative (FN): only the manual method labels
a pixel as greenhouse.

Using these four categories, the following summary
statistics were computed:

(1) Branching factor (BF): FP/TP.
(2) Miss factor (MF): FN/TP.
(3) Greenhouse detection percentage (GDP): 100

TP/(TP+ FN).
(4) Quality percentage (QP): 100 TP/(TP+ FP+ FN).

The branching factor provides an incorrect pixel
fraction labelling them as greenhouses, while the miss
factor indicates the ratio of pixels not classified as
greenhouses, despite actually being greenhouses. These
two factors are calculated with regard to the pixels
correctly classified as greenhouses (TP), and describe
the two types of possible errors that can appear in
the classification process. The greenhouse detection
percentage is the percentage of greenhouse pixels
correctly detected by the automatic process. The quality
percentage indicates the likelihood of a pixel being
correctly classified. In the classification process, the aim
should be to reduce the two types of possible errors: FP
and FN. The statistics described above were calculated
for each repetition in the different treatments.

To determine whether the treatments of the classifi-
cation based on spectral information significantly influ-
enced the outcome of the classification, several two-way
ANOVA tests were applied (Steel and Torrie, 1980), in
which the dependent variable was one of the different
statistics described above, while the factors consisted of
the images and the various band combinations used to
carry out the MLC. Furthermore, to determine whether
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Table 2
ANOVA tables of the significance of the two factors (treatment: bands
used to carry out the classification, and image: image from QuickBird
and IKONOS), and their interactions on quality classification indexes
(df: degree of freedom)

Source df Sum of squares F-values P-values

BF
Image (A) 1 0.24366 15.1 <0.001
Treat. (B) 3 0.08981 1.85 0.1572
A∗B 3 0.0043 0.09 0.9657
Residual 32 0.51652
Total 39 0.85427

MF
Image (A) 1 0.00119 3.24 0.0811
Treat. (B) 3 0.06801 61.67 <0.001
A∗B 3 1.46E−04 0.13 0.9401
Residual 32 0.01176
Total 39 0.08112

GDP
Image (A) 1 7.76717 3.3 0.0788
Treat. (B) 3 469.933 66.46 <0.001
A∗B 3 0.91645 0.13 0.9418
Residual 32 75.4181
Total 39 554.035
QP
Image (A) 1 758.871 23.31 <0.001
Treat. (B) 3 31.5435 0.32 0.8087
A∗B 3 14.8972 0.15 0.9273
Residual 32 1041.95
Total 39 1847.26

the texture parameters significantly affected the out-
come of the classification, several multi-way ANOVA
tests were made in which the dependent variable was
one of the different statistics described above, whereas
the factors consisted of the two different images, the tex-
ture parameter, ws, and grey level.

4. Results and discussion

4.1. Comparison of the classification based on spectral
information

Table 2 presents the ANOVA results of the
significance of the two factors (bands used to carry
out the classification, and image type), and their
interactions on quality classification indexes described
in Section 3.3. Table 3 lists the average values of the
quality indexes obtained from the classification carried
out with the spectral information from each of the
images studied. Table 2 indicates that factor A (image)
was significant to explain only the overall variation of
BF and QP indexes, and in both cases mean differences
for this factor were found significant using the LSD
test (p < 0.05), showing the significant higher indexes
in the QB image (Table 3). Factor B (bands used to
carry out the classification) was significant to explain
the overall variation of MF and GDP (Table 2). The
LSD test indicated that treatment 1 (RGB bands to
carry out the classification) gave the best indexes, as
reflected in Table 3 (0.032 and 0.040 for MF, and
96.89 and 96.12 for GDP, in QB and IK respectively).
Factor B did not explain the overall variation of BF
and QP, signifying that the fraction of pixels incorrectly
labelled as greenhouses did not significantly improve
when different band combinations were used. Agüera
et al. (2006), also working with greenhouses, found
no differences in the BF, either, when using different
multi-spectral band combinations to define the training
areas and to carry out a MLC classification of a QB
image. That work showed a similar tendency of MF
as in our work: a significantly higher MF when the
classification was made by adding NIR than when using
only RGB bands (treatment 1). This behaviour of MF
could be explained by taking into account that training
areas were defined from image with RGB bands, and
the addition of a new band to carry out the classification
could interfere negatively in the classification accuracy.
We can see in Table 3 that MF and GDP tended to
become worse when bands other than RGB were added
to carry out the MLC. Furthermore, there were no
significant interactions between factors, meaning that
the behaviour of the classification accuracy to the band
combination were similar for both images, as reflected
in Table 3.

A general analysis of the classification presented in
this section indicates that not all classifications behave
similarly. On the one hand, the QB classification gave
Table 3
Quality indexes in the image classification of the multi-spectral images

Treatment BF MF GDP QP
QB IK QB IK QB IK QB IK

1: R, G, B 0.33 0.46 0.032 0.040 96.89 96.12 73.85 66.88
2: R, G, B, NIR 0.23 0.40 0.075 0.091 93.06 91.70 77.21 67.21
3: R, G, B, Pan 0.23 0.38 0.078 0.085 92.76 92.22 76.74 68.58
4: R, G, B, NIR, Pan 0.18 0.36 0.146 0.158 87.30 86.45 76.08 66.38

The values correspond to the mean of five repetitions in each treatment.
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Fig. 3. BF index value for each window size and grey level values used to calculate the MEA texture parameter, for each of the images studied
(right: IK image, left: QB image). Grey levels: � = 1024, � = 256, N = 128, × = 64, ☼ = 32,• = 16.
better values for the BF and QP indexes than did the
IK classification, and on the other hand treatment 1
(RGB band combination) gave the best values of MF
and GDP in both images while no significant differences
were found between the images for these indexes. Better
values of QP in the QB image than in the IK image
were not associated with worse values of MF and GDP
in the QB image, as shown in Table 3. This contrasts
with the results of Lee et al. (2003), who, working
with an IK image to detect buildings in urban areas,
found an increase in the MF and a decrease in the BDP
(Building Detection Percentage), linked to an increase
in the QP when different classification methods were
used. In the study by Wang et al. (2004), the capability
of a QB image and an IK image of the same area
was compared in order to detect different mangrove
varieties; examining seven land-cover classes, which
included some types other than mangrove, the authors
found that classification based on the IK image using
only multi-spectral bands (equivalent to our treatment 2)
was slightly but significantly more accurate than when
based on multi-spectral QB imagery. This contrasts with
our results since, for this treatment, we found significant
differences for BF and QP in favour of the QB image,
whereas none were found between images for indexes
MF and GDP.

The results from the study by Wang et al. (2004)
showed that adding the panchromatic band to the
classification (equivalent to our treatment 4) did not
significantly improve accuracy with regard to the
equivalent of our treatment 2, although the IK image
still showed considerably better results. We found
that, although neither QP nor BF varied when the
panchromatic band was added, MF and GDP did
significantly differ in these treatments, with the best
values appearing for the treatment in which only multi-
spectral bands were taken into account for classification
(treatment 2). As in the previous case, our results
indicate that the significant differences between images
appeared in indexes BF and QP, in both cases in favour
of the QB image. In any case, when these authors
focused on the classes corresponding to the mangrove
varieties, they found that, in terms of the variety under
study, each image differed in the accuracy of the
classifications.

4.2. Comparison of classifications based on spectral
and texture information

Table 4 presents the ANOVA table of the significance
of the image, texture parameter, window size, and grey
level, and their interactions on the classification quality
indexes. Furthermore, Table 5 shows the average values
of the quality indexes for each texture parameter and for
each image.

Table 4 indicates that all single factors were
highly significant in explaining the overall variation of
BF, while two- and three-way interactions were not
statistically significant. The LSD test to compare the
means of BF by the single factors left indicated that by
factor A (image), the QB image showed a significantly
lower value than the IK image. By factor B (texture
parameter), the MEA parameter showed a significantly
lower value than the rest of texture parameters (Table 5).
By factor C (window size), only the 3 × 3 showed a
worse value than the rest of levels of this factor, which
formed a homogeneous group. By factor D (grey level),
only the 1024 grey level registered a worse value than
the rest of levels, which formed a homogeneous group.
The minimum BF value was found in both images for
the MEA parameter: 0.104 in QB, with a ws of 15× 15
and grey levels of 16, 64, 128 and 256; and 0.237 in IK,
with a ws of 3 × 3 and grey level of 128. Fig. 3 shows
the BF index value for each ws and grey level used to
calculate the MEA texture parameter, for each of the
images studied.

All single factors were highly significant in
explaining the overall variation of MF (Table 4), and
the interaction between factors B (texture parameter)
and C (window size), and interaction between factors
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Table 4
ANOVA table of the significance of the image, texture parameter, window size, and grey level, and their interactions on image-classification
accuracy (df: degrees of freedom)

Source df Sum of
squares

F-
values

P-
values

Source df Sum of
squares

F-
values

P-values

BF GPD

Image (A) 1 22.6779 4531.83 <0.001 Image (A) 1 1 185.54 271.51 <0.001
Texture parameter (B) 9 2.22443 49.39 <0.001 Texture parameter (B) 9 8 280.86 210.72 <0.001
Window size (C) 6 0.20432 6.8 <0.001 Window size (C) 6 1 200.28 45.81 <0.001
Grey level (D) 5 0.22969 9.18 <0.001 Grey level (D) 5 577.948 26.47 <0.001
A∗B 9 0.02451 0.54 0.8439 A∗B 9 1 423.15 36.21 <0.001
A∗C 6 0.02832 0.94 0.4634 A∗C 6 99.8944 3.81 <0.001
A∗D 5 0.00125 0.05 0.9973 A∗D 5 53.0567 2.43 0.0327
B∗C 54 0.21706 0.8 0.848 B∗C 54 885.797 3.76 <0.001
B∗D 45 0.20862 0.93 0.6129 B∗D 45 482.254 2.45 <0.001
C∗D 30 0.00951 0.06 1 C∗D 30 116.206 0.89 0.6436
A∗B∗C 54 0.10574 0.39 1 A∗B∗C 54 274.593 1.16 0.1927
A∗B∗D 45 0.02231 0.1 1 A∗B∗D 45 329.315 1.68 0.0033
A∗C∗D 30 0.00125 0.01 1 A∗C∗D 30 120.715 0.92 0.5894
B∗C∗D 270 0.03257 0.02 1 B∗C∗D 270 452.989 0.38 1
Residual 3630 18.165 Residual 3630 15 850.5
Total 4199 44.1524 Total 4199 31 333.1
MF QP

Image (A) 1 0.25061 289.53 <0.001 Image (A) 1 73 262.3 6259.03 <0.001
Texture parameter (B) 9 1.62525 208.63 <0.001 Texture parameter (B) 9 3 410.31 32.37 <0.001
Window size (C) 6 0.25142 48.41 <0.001 Window size (C) 6 117.837 1.68 0.1212
Grey level (D) 5 0.11295 26.1 <0.001 Grey level (D) 5 138.662 2.37 0.0369
A∗B 9 0.30524 39.18 <0.001 A∗B 9 894.711 8.49 <0.001
A∗C 6 0.01237 2.38 0.0266 A∗C 6 24.7449 0.35 0.9088
A∗D 5 0.009 2.08 0.0642 A∗D 5 41.136 0.7 0.6237
B∗C 54 0.1606 3.44 <0.001 B∗C 54 799.42 1.26 0.0932
B∗D 45 0.10007 2.57 <0.001 B∗D 45 600.363 1.14 0.2423
C∗D 30 0.00917 0.35 0.9995 C∗D 30 80.0735 0.23 1
A∗B∗C 54 0.04361 0.93 0.6143 A∗B∗C 54 291.065 0.46 0.9997
A∗B∗D 45 0.06417 1.65 0.0044 A∗B∗D 45 250.486 0.48 0.9988
A∗C∗D 30 0.00961 0.37 0.9993 A∗C∗D 30 49.1496 0.14 1
B∗C∗D 270 0.03843 0.16 1 B∗C∗D 270 437.793 0.14 1
Residual 3630 3.14207 Residual 3630 42 489.4
Total 4199 6.13457 Total 4199 12 2887
Table 5
Quality indexes in the image classification based on spectral and texture information

Text. param. BF MF GDP QP

QB IK QB IK QB IK QB IK

HOM 0.185 0.332 0.166 0.187 85.82 84.37 74.32 65.86
CON 0.162 0.314 0.201 0.195 83.35 83.70 73.60 66.31
DIS 0.160 0.310 0.216 0.191 82.31 84.01 72.84 66.66
MEA 0.120 0.266 0.176 0.205 85.04 83.05 77.25 68.03
STD 0.157 0.294 0.151 0.186 86.86 84.43 76.66 67.63
ENT 0.184 0.328 0.146 0.170 86.98 85.58 75.76 66.77
ASM 0.204 0.348 0.125 0.147 88.78 87.24 75.62 66.89
COR 0.189 0.345 0.152 0.178 86.82 85.00 74.91 65.69
G-ASM 0.190 0.338 0.147 0.165 87.18 85.96 75.08 66.61
G-ENT 0.179 0.323 0.166 0.178 85.82 85.00 74.64 66.69

The values correspond to the mean of all classifications for each parameter. In each column, the best values obtained by the LSD test (p < 0.05),
have been shaded.
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Fig. 4. MF index value for each window size and grey level values used to calculate the ASM texture parameter, for each of the images studied
(right: IK image, left: QB image). Grey levels: � = 1024, � = 256, N = 128, × = 64, ☼ = 32,• = 16.
Fig. 5. GDP index value for each window size and grey level values used to calculate the ASM texture parameter, for each of the images studied
(right: IK image, left: QB image). Grey levels: � = 1024, � = 256, N = 128, × = 64, ☼ = 32,• = 16.
B and D (grey level) were also statistically significant.
The rest of the two- and three-way interactions were not
statistically significant, signifying that the behaviour of
the texture parameters was statistically sensitive to the
variation of ws and grey level. The LSD test to compare
the means of MF by the single factors indicated that by
factor A (image), the QB image showed a significantly
lower value than did the IK image. By factor B (texture
parameter), the ASM parameter showed a significantly
lower value than did the rest of texture parameters
(Table 5). By factor C (window size), the 3 × 3 level
showed the best value. By factor D (grey level), the
128 grey level showed the best value. In both images,
the minimum MF value was found in parameter ASM:
0.116 in QB, with ws of 11× 11 and 21× 21, and grey
levels of 256 and 128; and 0.134 in IK, with a ws of
3× 3 and grey level of 128. Fig. 4 shows the MF index
value for each ws and grey level used to calculate the
ASM texture parameter, for each of the images studied.

In the GDP index, all single factors were highly
significant to explain its overall variation (Table 4), and
except for the interaction between factors A (image)
and D (grey level), and between factors C (window
size) and D, the rest of the two-way interactions
were significant. The three-way interactions were not
statistically significant. The LSD test to compare
the means of GDP by the single factors indicated
that by factor A (image), the QB image showed a
significantly higher value than the IK image, although
these differences were slight, and even GDP for the
IK image was higher in the IK image than in the QB
image for CON and DIS texture parameters, as reflected
in Table 5. By factor B (texture parameter), the ASM
parameter showed a significantly higher value than did
the rest of texture parameters (Table 5). By factor C
(window size), the 3 × 3 and 15 × 15 levels showed
the best values and by factor D (grey level), the 128 and
256 levels gave the best values. The best results were
found in both images for parameter ASM: 89.608% in
QB, for a ws of 15 × 15 and a grey level of 256; and
88.256% with a ws of 3 × 3 and a grey level of 128
in the IK image. Fig. 5 shows the GDP index value
for each ws and grey level used to calculate the ASM
texture parameter, for each image studied.

The significant main factors explaining overall
variation of the QP index were only A (image) and
B (texture parameter), and the interaction between
them was also significant (Table 4). The rest of the
main factors, two- and three-way interactions were not
significant. The LSD test to compare the means of QP
by the single factors revealed that by factor A (image),
the QB image had a significantly higher value than
the IK image, this difference being considerable, as
reflected in Table 5. By factor B (texture parameter),
the MEA parameter showed a significantly higher
value than the rest of the texture parameters. The best
results were given in both images for parameter MEA:
89.608% in QB, for a ws of 15× 15 and a grey level of



644 F. Agüera et al. / ISPRS Journal of Photogrammetry & Remote Sensing 63 (2008) 635–646
Fig. 6. QP index value for each window size and grey level values used to calculate the MEA texture parameter, for each of the images studied
(right: IK image, left: QB image). Grey levels: � = 1024, � = 256, N = 128, × = 64, ☼ = 32,• = 16.
256; and 88.256% with a ws of 3 × 3 and a grey level
of 128 in the IK image. Fig. 6 shows the QP index value
for each ws and grey level used to calculate the MEA
texture parameter, for each image studied.

The results analysed in this section up to this point
can be compared with those reported by other authors
in similar studies. For example, the above-mentioned
study by Wang et al. (2004) verified that the capacity
for mapping mangrove changed when a band related to
the texture of the image was added to the multi-spectral
bands of a QB image and an IK image. Their results
reveal that when the STD texture parameter was used,
there was a significant improvement in the classification
in both images, with just a 21 × 21 ws, although there
were no significant differences from one image to the
other. In all the window sizes studied, the results were
better in IK than in QB. Nevertheless, our results show
opposite trends between the images: except on two
occasions (Table 5), the quality indexes were better in
the QB image than in the IK image, and differences
were generally significant in favour of the QB image.
Also, our results did not show a clear tendency of the
influence of the ws, as illustrated in Figs. 3–6. With
regard to ws, our results for the parameter STD partially
coincide, although a higher QP value was found in the
QB image for a ws of 21 × 21, whereas in IK the
maximum value occurred for an 11 × 11 ws, and in
neither case were they significantly different from those
found with the rest of the ws (data not shown). Whereas
in Wang’s study the lowest classification accuracy was
detected in both images for a ws of 7 × 7 and 9 × 9
in the IK image and in the QB image respectively, the
tendency observed in our case varied in each image:
in the QB image the QP index increased with the ws,
whilst the maximum value in the IK image occurs for
an 11 × 11 ws. When texture parameters CON, COR
and ENT were used for this study, it was verified that
the classification results were worse, a trend noted also
in our results. In our work, the texture parameter which
yielded the best quality classification indexes differed in
behaviour: in the IK image the best indexes were found
for a ws of 3 × 3 (this factor was not significant for
the QP index), while for the QB image this trend was
not similar, since the best values of BF and GDP were
found for a ws of 15 × 15, the best value of MF for ws
values of 11× 11 and 21× 21, and the best value of QP
was found for a ws of 3 × 3 (in this case, the ws factor
was not statistically significant).

Chen et al. (2004) used a 1 m resolution multi-
spectral aerial image (R, G, B) of an urban area,
which was degraded to different resolutions (4, 8,
12, 16, 20 and 24 m). The lowest resolution that
yielded results was 4 m, with 8 different classes being
considered. The classification results that took into
account only the multi-spectral bands were compared
with those found taking into account a texture band
added to the multi-spectral image and different ws
while using parameter STD. When the texture band
was added, results improved in the classification with
lower resolution values (4, 8 and 12 m), for different
ws values. These researchers conclude that there is
no optimal pixel size or ws, but that these parameters
depend on the characteristics of the terrain to be
classified. With regard to resolution, our results differ,
as the QB image classification was more accurate than
was the IK image classification in all cases studied by
adding texture information to the multi-spectral image,
and, except for the QP index, an optimal ws for the
MEA and ASM texture parameters was found, as stated
above.

Puissant et al. (2005) compared the effect of adding a
texture band (HOM, DIS, ENT and ASM) to the multi-
spectral bands (R, G, B), and the ws used to calculate the
texture parameter on the classification results of various
images with different resolutions (1, 2.5, 5 and 10 m).
The classification was focused on 7 different classes,
and the results revealed a very slight improvement when
the texture band was added to all the images, although
the parameter that caused the improvement was not the
same one. This does not coincide with the outcomes of
our study, where a homogeneous performance of the
images was observed when confronted with the same
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texture parameter (the best quality index values were
found in both images for the same texture parameters),
and we did not detect improvement of the classification
accuracy when the texture information was added to the
multi-spectral image. On the other hand, the resolutions
that were most affected when the texture information
was added were the 1 and 2.5 m. Another important
issue from Puissant et al. (2005) is that the same
parameter did not influence all classes in the same way.
Thus, for example, the 1 m images, which improved
the most, overall, did so at the expense of three classes,
making the rest worse.

5. Conclusions

In the present study, the utility of the texture analysis
has been studied with regard to improving classification
by pixel in a rural area, where the classification
objective was to detect plastic-cover greenhouses. This
study was carried out on a QB and an IK image, which
allowed us to compare the capability of these images to
detect greenhouses.

Some of the major findings from the experimental
results are as follows:

1. When only multi-spectral and panchromatic bands
were taken into account for classification, all the
quality indexes calculated, except GDP, were better
in the QB image than in the IK image, although the
difference was not always significant.

2. The inclusion of a band with texture information did
not significantly improve the quality index values,
in relation to those found when only multi-spectral
bands were taken into account (the exception being
the BF index, which did improve).

3. The classification quality indexes behaved similarly
in both images. The better BF and QP values were
found for the MEA texture parameter. Furthermore,
the better MF and GDP values were found for the
ASM texture parameter. The optimum ws in these
texture parameters was 3× 3 for the IK image, while
for the QB image it depended on the quality index
studied but the optimum ws was around 15 × 15.
With regard to the grey level, the optimum was 128.
Thus, the optimum texture parameter depends on
the main objective of the image classification. If the
main classification goal is to minimize the pixels
wrongly classified (low BF and then high QP), the
texture parameter to be used should be the MEA,
whereas if the main classification goal is to minimize
the unclassified pixels (low MF and then high GDP),
the texture parameter to be used should be the ASM.
4. To generalise the results of this study with regard to
the utility of the texture parameters for an improved
per-pixel classification, it would be desirable to have
a set of images from different sensors and to include
them in the classification of a greater number of
classes.
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