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classification in urban environments

M.A. Aguilar*, M.M. Saldaña, and F.J. Aguilar

Departamento de Ingeniería Rural, University of Almería, Escuela Superior de Ingeniería, 04120
Almería, Spain

(Received 11 June 2012; accepted 5 October 2012)

The latest breed of very high resolution (VHR) commercial satellites opens new pos-
sibilities for cartographic and remote-sensing applications. In fact, one of the most
common applications of remote-sensing images is the extraction of land-cover infor-
mation for digital image base maps by means of classification techniques. The aim of
the study was to compare the potential classification accuracy provided by pan-sharp-
ened orthoimages from both GeoEye-1 and WorldView-2 (WV2) VHR satellites over
urban environments. The influence on the supervised classification accuracy was eval-
uated by means of an object-based statistical analysis regarding three main factors: (i)
sensor used; (ii) sets of image object (IO) features used for classification considering
spectral, geometry, texture, and elevation features; and (iii) size of training samples to
feed the classifier (nearest neighbour (NN)). The new spectral bands of WV2 (Coastal,
Yellow, Red Edge, and Near Infrared-2) did not improve the benchmark established
from GeoEye-1. The best overall accuracy for GeoEye-1 (close to 89%) was attained
by using together spectral and elevation features, whereas the highest overall accuracy
for WV2 (83%) was achieved by adding textural features to the previous ones. In the
case of buildings classification, the normalized digital surface model computed from
light detection and ranging data was the most valuable feature, achieving producer’s
and user’s accuracies close to 95% and 91% for GeoEye-1 and VW2, respectively. Last
but not least and regarding the size of the training samples, the rule of ‘the larger the
better’ was true but, based on statistical analysis, the ideal choice would be variable
depending on both each satellite and target class. In short, 20 training IOs per class
would be enough if the NN classifier was applied on pan-sharpened orthoimages from
both GeoEye-1 and WV2.

1. Introduction

The successful launch of the first very high resolution (VHR) satellites, such as IKONOS
in September 1999 or QuickBird in October 2001, marked the beginning of a wholly new
age in remote sensing. In fact, VHR satellites are able to capture images of the Earth’s
surface with a ground sample distance (GSD) of 1 m and even less. Currently, GeoEye-1,
launched in 2008, is the commercial VHR satellite with the highest geometric resolution
in both panchromatic (PAN) and multispectral (MS) products (nominal GSD at nadir of
0.41 and 1.65 m, respectively). More recently, on 4 January 2010, VHR satellite imagery
of WorldView-2 (WV2) with 0.46 and 1.84 m nominal resolution at nadir in PAN and
MS, respectively, started to become available commercially. However, image products from
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GeoEye-1 and WV2 have to be down-sampled to 0.5 and 2 m in PAN and MS, respec-
tively, for commercial sales, as a requirement levied by the US Government. Nevertheless,
and without any doubt, the most relevant technical innovation of WV2 lies in an improve-
ment of its potential spectral performance since the number of bands that comprise its MS
product has been increased to 8, instead of the four classic bands (Blue, Green, Red, and
Near Infrared) offered by all previous VHR satellites. The new spectral bands of WV2
(Coastal, Yellow, Red Edge, and Near Infrared-2) could provide a significant improvement
in classification accuracy ranging from 5% to 20% for certain land-cover types such as
man-made materials, selected vegetation targets, soils, shadows, turbidity in water, and
deeper bathymetry (Marchisio, Pacifici, and Padwick 2010). On the other hand, and work-
ing with WV2 imagery for land-cover identification of hazelnuts fields, Taşdemir and Reis
(2011) reported that the overall accuracy was surprisingly higher considering only the four
traditional bands instead of the available eight bands. In this regard, Marshall, Lewis, and
Ostendorf (2012) concluded that there was no benefit in using the additional four bands of
WV2 to discriminate invasive grass species.

Furthermore, the evolution and dynamism of new man-made infrastructure, houses,
and buildings requires a frequent updating of urban cartographic databases. Traditionally,
this specific task has been carried out by photointerpretation of aerial images, which is
expensive and time consuming (e.g. Hermosilla et al. 2011). However, many recent stud-
ies have used different VHR satellite imagery for automatically extracting georeferenced
data in urban environments such as IKONOS (e.g. Turker and San 2010; Pu, Landry, and
Yu 2011), GeoEye-1 (e.g. Grigillo and Fras 2011; Hussain et al. 2011), and WV2 (e.g.
Longbotham et al. 2012; Zhou et al. 2012). In fact, automatic building extraction or classi-
fication from VHR is a very challenging task and has been the focus of intensive research
for the last decade. In this way, a higher local variance of urban land-cover classes is found
when the resolution of the input image is increased (Myint et al. 2011), and therefore the
accuracy of the traditional pixel-based classification approaches is reduced and the results
can show a ‘salt and pepper’ effect (Treitz and Howarth 2000; Pu, Landry, and Yu 2011).
Classification accuracy is particularly problematic in urban environments, which typically
consist of mosaics of small features made up of materials with different physical properties
(Mathieu, Aryal, and Chong 2007). To overcome this problem, object-based image analy-
sis (OBIA) has been pointed out as a very interesting option to improve the performance
of supervised classifiers (Carleer and Wolff 2006; Im, Jensen, and Tullis 2008; Blaschke
2010; Lu, Hetrick, and Moran 2010; Myint et al. 2011). In fact, it is a new paradigm in
the field of geographic information science, in which images are segmented into meaning-
ful segments (or objects) according to different criteria before classification is carried out.
OBIA techniques are based on aggregating similar pixels to obtain homogenous objects,
which are then assigned to a target class. Using objects instead of pixels as a minimum
unit of information minimizes the salt and pepper effect due to the spectral heterogeneity
of individual pixels. Furthermore, and unlike traditional pixel-based methods that only use
spectral information, object-based approaches can use shape, texture, and context infor-
mation associated with the objects and thus have the potential to efficiently handle more
difficult image analysis tasks (e.g. Marpu et al. 2010). Thus, the number of available OBIA
works is increasing rapidly, and they are focusing on subtopics such as specific OBIA
hierarchy and scale concepts (Addink, de Jong, and Pebesma 2007), image segmentation
(Drăguţ, Tiede, and Levick 2010; Marpu et al. 2010), OBIA change detection (Im, Jensen,
and Tullis 2008), and OBIA accuracy assessment (Platt and Rapoza 2008; Albrecht, Lang,
and Hölbling 2010; Lang et al. 2010). A comprehensive review of the advantages and dis-
advantages of using OBIA techniques for image classification, as well as the state of the art
of these methods, can be found in Blaschke (2010).
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Bearing in mind that supervised classification is one of the most commonly undertaken
analyses in remote sensing, it is important to note that the attained classification accuracy
is a function of the training data used, mainly size and quality (e.g. Foody 1999; Tsai and
Philpot 2002; Foody and Mathur 2006). In this way, classifiers can need different kinds of
training information (Foody 1999), i.e. a particular training set can produce a highly accu-
rate classification from one classifier and may yield a considerably lower accuracy if used
with another classifier. The literature, however, generally pleads for a relatively uniform or
classifier-independent approach regarding training set design. Guidance on the design of
the classification training phase typically calls for the use of large samples (the larger the
better) of randomly selected pure or meaningful objects to characterize the corresponding
target classes. It is common practice in remote sensing to ensure that the number of training
samples for each class should comprise at least 10–30 times the number of wavebands used
in the analysis (Piper 1992; Mather 2004). However, the nature of an ideal training set is
unclear and it mainly depends on the aim of the training stage.

In this article, object-based supervised classification accuracies in urban environments
have been tested from both GeoEye-1 and WV2 pan-sharpened orthoimages captured
almost in the same conditions. The variables studied were the following: (i) sensor used, (ii)
sets of image object features used for classification (features vector), and (iii) percentage of
training samples considered. A statistical test was carried out to strengthen the conclusions.

2. Study site and data sets

2.1. Study site

The study area comprises 17 ha in the little seaside village of Villaricos, located in
the province of Almería, southern Spain (Figure 1). Its urban landscape presents high
heterogeneity, mixing old buildings and new housing developments.

2.2. GeoEye-1 orthoimages

One image of GeoEye-1 Geo acquired over the study site was captured in reverse scan
mode on 29 September 2010, simultaneously recording the PAN band (spectral range from
450 to 800 nm) and all four MS bands: Blue (450–510 nm), Green (510–580 nm), Red

Figure 1. Location of the working area. Coordinates WGS84 37.2489◦ N, 1.7709◦ W.
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(655–690 nm), and Near Infrared (780–920 nm). It was ordered with a dynamic range of
11 bits per pixel and without any adjustment (i.e. maintaining absolute radiometric accuracy
and full dynamic range for scientific applications). Moreover, and due to US Government
Licensing, it was resampled to 0.5 and 2 m for the PAN andMS cases, respectively. The cor-
responding pan-sharpened image, with 0.5 m GSD and containing the spectral information
gathered from the MS image (four bands), was attained by using the PANSHARP module
included in Geomatica v. 12 (PCI Geomatics, Richmond Hill, ON, Canada). Lastly, two
0.5 m GSD orthoimages (PAN and pan-sharpened) were computed by using OrthoEngine,
the photogrammetric module of Geomatica. Both orthoimages were obtained by applying
the rational function model with zero-order transformation in image space and using very
accurate ancillary data such as seven ground control points (GCPs) measured by DGPS
and a lidar (light detection and ranging) derived digital elevation model (DEM), which will
be explained in depth in Section 2.4. These orthoimages presented a two-dimensional root
mean square error (RMSE2d) of 0.46 m computed on 75 independent check points (Aguilar
et al. 2012a). Other characteristics of the employed GeoEye-1 Geo bundle are shown in
Table 1.

2.3. WV2 orthoimages

One Ortho Ready Standard Level-2A (ORS2A) bundle image (PAN + MS) of WV2 was
acquired on 18 August 2011, covering the entire study area (Table 1). Its corresponding
0.5 m PAN image presented a spectral range from 450 to 800 nm, whereas its 2 m MS
image was composed of eight bands: Coastal Blue (400–450 nm), Blue (450–510 nm),
Green (510–580 nm), Yellow (585–625 nm), Red (630–690 nm), Red Edge (705–745 nm),
Near Infrared-1 (760–895 nm), and Near Infrared-2 (860–1040 nm). The delivered products
presented a dynamic range of 11 bits. Any colour correction or contrast enhancement was
carried out. Finally, PAN and pan-sharpened (eight bands) orthoimages with 0.5 m GSD
were generated from WV2 following the same aforementioned procedure that was applied
to GeoEye-1. The RMSE2d planimetric accuracy attained for both products was 0.46 m
(Aguilar, Saldaña, and Aguilar 2012b).

Table 1. Characteristics of the bundle images from GeoEye-1 Geo and WV2 ORS2A acquired at
the study site.

Product
GeoEye-1 Geo

PAN
GeoEye-1 Geo
4 band MS

WV2 ORS2A
PAN

WV2 ORS2A
8 band MS

Acquisition date 29 September 2010 18 August 2011
Acquisition time (GTM) 11:01 11:23
Cloud cover 0 % 0%
Scan direction Reverse Reverse
Sun azimuth 159.3◦ 152.8◦
Sun elevation 48.4◦ 63.8◦
Collection elevation 69.4◦ 80.0◦
Collection azimuth 221.9◦ 216.1◦
Collected col GSD 0.46 m 1.84 m 0.47 m 1.89 m
Collected row GSD 0.45 m 1.80 m 0.48 m 1.90 m
Product pixel size 0.5 m 2 m 0.5 m 2 m
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2.4. Normalized digital surface model

The highly accurate elevation data used in this work, presenting 1 m grid spacing, were
generated from lidar data taken on 28 August 2009 through a combined photogrammetric
and lidar survey at a flying height above ground of approximately 1000 m. The Leica
ALS60 airborne laser scanner (35 degrees field of view, FOV) was used with the sup-
port of a nearby ground GPS reference station to capture on average around 1.61 points
m−2. The estimated vertical accuracy computed on 62 open-terrain independent check
points took a value of 8.9 cm. The corresponding normalized digital surface model (nDSM)
was generated by subtracting DEM from DSM. In this way, buildings can be easily distin-
guished (Figure 2(c)). At the same time, the digital mapping camera Intergraph Z/I Imaging
DMC was used for collecting RGB + Nir VHR digital images from which 0.15 m GSD
orthoimages were attained.

3. Methodology

3.1. Image segmentation

Image segmentation is a crucial step of OBIA that splits an image into separated and homo-
geneous regions (objects). There exist several types of image segmentation algorithms
developed for a variety of applications in various fields of image analysis. Most of them
largely depend on specified parameters, which implies that segmentation is not an easy task.
At this point, it should be clearly stated that much of the work referred to as OBIA has been
originated around the software eCognition. Indeed, about 50–55% of the papers related to
OBIA used this software package (Blaschke 2010). Thus, the OBIA software used in this
research was eCognition v. 8.0. It uses a segmentation algorithm known as multiresolution
segmentation, which is based on the Fractal Net Evolution Approach (Baatz and Schäpe
2000), and has achieved good segmentation accuracy (Marpu et al. 2010). This segmen-
tation approach consists of a bottom-up region-merging technique starting with one-pixel
objects. In numerous iterative steps, smaller image objects (IOs) are merged into larger
ones (Baatz and Schäpe 2000). The multiresolution segmentation algorithm is an opti-
mization procedure that, for a given number of IOs, minimizes the average heterogeneity
and maximizes their respective homogeneity. The outcome of this segmentation algorithm
is controlled by three main factors: (i) the homogeneity criteria or scale parameter that

(a) (b) (c)

Figure 2. Detailed information (110 m × 135 m) attained on the study area: (a) pan-sharpened
orthoimage from GeoEye-1, (b) pan-sharpened orthoimage from WV2, and (c) nDSM.
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determines the maximum allowed heterogeneity for the resulting IOs, (ii) the weight of
colour and shape criteria in the segmentation process, and (iii) the weight of the compact-
ness and smoothness criteria (i.e. the higher the compactness weight, the more compact
IOs may be). The optimal determination of these three somewhat abstract terms is not easy
to carry out. Traditionally, a systematic trial-and-error approach validated by the visual
inspection of the quality of the output IOs would be required for setting these parameters
(Mathieu, Aryal, and Chong 2007; Tian and Chen 2007). Moreover, the configuration of
the optimal parameter depends on the desired objects to be segmented (e.g. Tian and Chen
2007). Recently there have emerged new tools for a fast estimation of the scale parameters
of multiresolution segmentation (Drăguţ, Tiede, and Levick 2010), as well as for evaluating
the final segmentation accuracy (Marpu et al. 2010).

However, and although accepting that VHR satellite imagery segmentation is a fun-
damental step for attaining high accuracies at the final classification (Song, Civco, and
Hurd 2005; Liu and Xia 2010), we have to clarify that the goal of this article was strictly
focused on comparing classification accuracy between pan-sharpened orthoimages taken
from GeoEye-1 and WV2 satellites. Therefore, the segmentation step only had to assure
pure objects (i.e. grouping pixels belonging to an only class) to later classify them and
assess the final classification accuracy by using a ground truth based on IOs. Note that it
was necessary to count on two manually delineated ground truths, one for each satellite,
due to changes mainly on the shadow’s position (see Section 3.2). Despite this, an attempt
was made to achieve a similar number of IOs both for GeoEye-1 and WV2 orthoimages.
In that sense, and by means of a trial-and-error process, 2723 pure IOs (Figure 3(a)) were
finally segmented from GeoEye-1’s orthoimages, which, after visual inspection, matched
well with the feature boundaries of the land-cover types in the study area (mainly build-
ings). In the same way, 2720 pure IOs were finally extracted in the case of WV2’s test
(Figure 3(b)). In both tests, the multiresolution segmentation approach was used in two iter-
ative steps. Furthermore, the compactness criterion was assigned a weight of 0.5 and the
shape value was fixed at 0.3 (weight of colour = 0.7) in all the segmentations carried out.

For the pan-sharpened orthoimage from GeoEye-1, the first step was undertaken by
applying a scale value of 20 at pixel level, being the second step carried out on the first

(a) (b)

Figure 3. Detailed (110 m × 135 m) multiresolution segmentation: (a) GeoEye-1 and (b) WV2.
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segmentation level (bottom-up segmentation) by using a larger scale value of 70. The
segmentation was always computed by taking into account the four equal-weighted bands
corresponding to the pan-sharpened orthoimage.

In the case of WV2, the first segmentation at pixel level was carried out with a
scale of 10.7, whereas the second bottom-up segmentation presented a scale value of 43.
In this case, the eight equal-weighted bands corresponding to the WV2’s pan-sharpened
orthoimage were used to perform multiresolution segmentation.

3.2. Manual classification

As mentioned earlier, our main objective was to carry out a methodology to compare the
capabilities of eight bands of WV2 and four bands of GeoEye-1 orthoimages using well-
known and often used OBIA techniques in urban environments. Thus, to minimize the
impact of the segmentation step on the final classification, two different ground references
(manual classifications) for each segmentation were produced in the ArcGIS environment
by careful visual inspection of separate data sources, including PAN and pan-sharpened
orthoimages from GeoEye-1 and WV2, the orthoimage from Z/I Imaging’s DMC, and the
lidar-derived nDSM. In this sense, a reference map was manually produced by the visual
inspection of each IO from GeoEye-1’s segmentation. In the same way, another indepen-
dent reference map was interpreted based on each IO from WV2’s segmentation. This task
was carried out and cross-validated by two interpreters, who considered ten target classes
(Table 2). It is worth noting that the proposed accuracy assessment based on two inde-
pendent ground reference maps, always exactly matching the segmented IOs, artificially
removes the segmentation errors (i.e. extra pixels and lost pixels defined by Marpu et al.
2010).

For the GeoEye-1’s segmentation, 1894 out of the initial 2723 IOs were visually inden-
tified as meaningful objects (Table 2). A subset of 945 well-distributed IOs were selected
to carry out the training phase, whereas the remaining 949 IOs, also well-distributed in the
working area, were used for the validation phase. Note that for each class approximately
50% of the IOs belonged to the training subset, while the remaining 50% were applied to
the validation subset. In the same way, and in the case of WV2’s segmentation, 1759 out
of 2720 IOs were manually classified (Table 3) and the training (876 IOs) and validation
(883 IOs) subsets were assigned. The total surface areas occupied by IOs for each class

Table 2. IOs after GeoEye-1’s segmentation and manual classification related to the target classes.

Area (m2)

Class No. IOs Total area Mean σ Validation IOs Training IOs

Red Buildings 298 22217 74.55 51.62 149 149
White Buildings 558 17034.25 30.53 37.57 279 279
Grey Buildings 68 5279.5 77.64 57.11 34 34
Other Buildings 55 3086.25 56.11 34.04 28 27
Shadows 477 21600 45.28 63.59 239 238
Vegetation 194 17192.5 88.62 88.13 97 97
Bare Soil 93 15464 166.28 126.84 47 46
Roads 72 15720.5 218.34 161.99 36 36
Streets 71 7317.75 103.07 109.06 36 35
Swimming Pools 8 342.25 42.78 10.2 4 4
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Table 3. IOs after WV2’s segmentation and manual classification related to the target classes.

Area (m2)

Class No. IOs Total area Mean σ Validation IOs Training IOs

Red Buildings 315 24209.5 76.86 50.81 158 157
White Buildings 315 10241.75 32.51 33.68 158 157
Grey Buildings 88 6528 74.18 61.95 44 44
Other Buildings 78 5116.75 65.60 49.57 39 39
Shadows 431 14404.5 33.42 32.48 216 215
Vegetation 159 13289 83.58 73.73 80 79
Bare Soil 147 18663.75 126.96 103.46 74 73
Roads 116 17489 150.77 96.21 58 58
Streets 97 8934.5 92.11 70.61 49 48
Swimming Pools 13 482.25 37.10 13.97 7 6

in the final ground references, as well as their mean and standard deviation (σ ), are also
shown in Tables 2 and 3.

The manually assigned reference maps based on previous segmentation results are
shown in Figure 4, where the four classes related to buildings are presented as only one
class, named Buildings. Although the number of non-classified IOs (spectrally mixed seg-
ments difficult to assign to an only target class; white pixels) in the reference maps is similar
for both cases, the area occupied by these IOs is quite larger in the case of WV2 ground
truth. This fact points out the under-segmentation problems. However, it should be noted
that both IOs used as training samples and those employed to carry out the accuracy
assessment were always meaningful objects.

3.3. Classifier and selection of training areas

A very well-known and traditional classifier like Nearest Neighbour (1-NN) was used in
this work, although comparative studies have shown that classification by more sophisti-
cated methods such as the support vector machine (SVM) approach can be more accurate
than classical classifiers (Foody and Mathur 2004; Melgani and Bruzzone 2004). Despite
SVM usually turning out to be more stable in high-dimensional feature spaces and need-
ing only a small sample in training (e.g. Foody and Mathur 2006; Chen and Ho 2008),
the classification accuracy of SVM models is largely dependent on the selection of
the model’s parameters (Chang and Lin 2011). From our point of view, this variabil-
ity strongly supports the use of a parameter-free classifier like 1-NN for comparative
purposes.

From GeoEye-1’s segmentation, four different repetitions of 5%, 10%, 15%, and 20%
IOs, respectively (16 training sets in total), were extracted from the training subset of
945 IOs. The training percentage was kept constant for each class, both according to
the number of IOs and their mean area or size. For example, for GeoEye-1’s test, the
298 IOs from the class Red Buildings yielded a mean area of 74.55 m2 per object. Thus,
for every different repetition chosen in this work, the training areas for the class Red
Buildings had always a mean area of around 74 m2. In the same way, another 16 dif-
ferent repetitions of training sets were selected from the training subset of 876 IOs in
WV2’s test. Table 4 depicts the number of IOs chosen for 1-NN classifier training in both
cases.
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(a) (b)

(c) (d)
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m

Figure 4. GeoEye-1 pan-sharpened orthoimage (a) and manual classifications from GeoEye-1 seg-
mentation (b). WV2 pan-sharpened orthoimage (c) and manual classifications from WV2 segmenta-
tion (d).

3.4. Feature extraction and selection

The object features used to carry out the supervised classification are presented and
described in Table 5. A total of 23 and 31 features, grouped into five categories, were
tested for GeoEye-1 and WV2, respectively. More in-depth information about these fea-
tures can be found in the Reference Book of Definiens eCognition Developer 8 (Definiens
eCognition 2009). The mean and standard deviation values of the digital number for all
of the pixels inside an IO for each band and the kind of orthoimages (pan-sharpened and
PAN) were catalogued as Basic Spectral Information. Another three features (Normalized
Difference Index for Blue, Green, and Red bands) extracted from the spectral information
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Table 4. Number of IOs used for classifier training regarding each satellite and target class (four
replicates for every training set).

GeoEye-1 WV2

Class
5%

training
10%

training
15%

training
20%

training
5%

training
10%

training
15%

training
20%

training

Red Buildings 15 30 45 60 16 32 48 63
White Buildings 28 56 84 112 16 32 48 63
Grey Buildings 4 7 11 14 5 9 14 18
Other Buildings 3 6 11 15 4 8 12 16
Shadows 24 48 72 96 22 44 65 87
Vegetation 10 20 30 39 8 16 24 32
Bare Soil 5 10 14 19 8 15 23 30
Roads 4 8 11 15 6 12 18 24
Streets 4 8 11 15 5 10 15 20
Swimming Pools 1 1 2 2 1 2 2 3

included in the pan-sharpened orthoimages (see Table 5) were grouped under the Band
Index strategy. In the Texture category, only five texture features based on the grey-level co-
occurrence matrix (GLCM) were considered among the 14 originally proposed by Haralick,
Shanmugam, and Dinstein (1973) due to the strong correlation frequently reported between
many of the features (e.g. Cossu 1988; Baraldi and Panniggiani 1995). They were always
computed over the PAN image considering all the directions. The five selected features
were contrast (con), entropy (ent), mean, standard deviation (stdv), and correlation (cor).
The same subset of texture features had already been selected by Stumpf and Kerle (2011)
working on a similar feature space for landslides mapping. Under the category Shape and
Geometry, two geometric features based on shape (Rectangular Fit and Shape Index) and
two based on polygons (Compactness and Number of Edges) were considered. Finally, last
but not least important, one more feature corresponding to Elevation Data and containing
the corresponding nDSM was also included.

Seven sets of features for both GeoEye-1 and WV2 were carried out, considering each
of them as different strategies for classification.

(1) Basic 1. This set only included Basic Spectral Information (see Table 5). Ten fea-
ture types were considered for GeoEye-1’s IOs, comprising the mean and standard
deviation values computed for each band (Blue, Green, Red, NIR, and PAN). In this
sense, 18 feature types were computed for WV2 (Coastal, Blue, Green, Yellow, Red,
Red Edge, NIR1, NIR2, and PAN). An alternative strategy named Basic 2 (10 fea-
ture types) was tested only for WV2. In this case, the information corresponding to
the newest bands (i.e. Coastal, Yellow, Red Edge, and NIR2) was not considered.

(2) Elevation. It was composed of the Basic 1 set plus the feature mean elevation for
each IO coming from the nDSM (11 and 19 feature types for GeoEye-1 and WV2,
respectively).

(3) NDIs. It was composed of the Basic 1 set plus the three Normalized Difference
Indexes (13 and 21 feature types for GeoEye-1 and WV2, respectively).

(4) Elevation + NDIs. Basic 1 set plus NDIs and nDSM (14 and 22 feature types for
GeoEye-1 and WV2, respectively).
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(5) Texture. Basic 1 set plus texture feature types (15 and 23 features for GeoEye-1 and
WV2, respectively).

(6) Geometry. Basic 1 set plus shape and geometric feature types (14 and 22 features
for GeoEye-1 and WV2, respectively).

(7) All. All the features presented in Table 5 (23 and 31 features for GeoEye-1 and
WV2, respectively).

3.5. Classification and accuracy assessment

The seven aforementioned strategies (eight for WV2 when considering Basic 2) were run
by applying 1-NN classifier to extract the target classes. Bearing in mind that there were
16 sets of training samples for each sensor, 240 different classification projects were carried
out in eCognition (i.e. 112 and 128 for GeoEye-1 andWV2, respectively). In all of them, the
accuracy assessment was computed by means of an error matrix based on IOs. For GeoEye-
1’s classification projects, classification accuracy was finally assessed on a validation set
always composed of the same 949 IOs (Table 2), whereas the 883 validation segments
(Table 3) were kept constant for the WV2’s projects.

It is noteworthy that the four classes related to buildings (i.e. Red, White, Grey, and
Other buildings) were grouped in only one class named Buildings before computing the
accuracy indexes explained later. Note that the class Buildings was the more extended class
along the working area, presenting a total area percentage over the manual classification
surface of more than 38% both for GeoEye-1 and WV2 (see Tables 2 and 3). On the other
hand, Streets, and especially Swimming pools, were the two classes covering less extension
along the working area.

User’s accuracy (UA), producer’s accuracy (PA), and overall accuracy (OA), together
with the overall and per class (Buildings, Shadows, Vegetation, Bare Soil, Roads, Streets,
and Swimming Pools) kappa index (Congalton 1991; Congalton and Green 2009), were
the accuracy values (based on error matrix) computed in this work. UA details errors of
commission (i.e. when an object is committed to an incorrect class), whereas PA details the
errors of omission (i.e. when a segment is incorrectly classified into another category and
so it is omitted from its correct class). Furthermore, OA is the number of correctly classified
objects divided by the total number of objects. Finally, the kappa statistic incorporates the
off-diagonal observations of the rows and columns, as well as the diagonal values of the
error matrix, to give a more robust accuracy assessment than OA measures.

3.6. Statistical analysis

In order to study the influence of the analysed factors (i.e. type of sensor, different strate-
gies, and size of training samples) on the final classification accuracy, several analysis of
variance (ANOVA) tests for three factors (univariate general linear model) or only for one
of them (one-way ANOVA) were carried out by means of a factorial model with four rep-
etitions (Snedecor and Cochran 1980). The observed variables were OA, PA, UA, and
overall and per class kappa index of agreement (KIA and KIAclass). When the results of
the ANOVA test turned out to be significant (p < 0.05), the separation of means was car-
ried out using the Duncan’s multiple range test at 95% confidence level. Furthermore,
the Kolmogorov–Smirnov test was used as a goodness of fit to a standard normal
distribution.
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4. Results

4.1. Differences between tested images

First of all it is important to highlight that clear visual differences can be appreciated
between the final pan-sharpened orthoimages from GeoEye-1 (Figure 2(a)) and WV2
(Figure 2(b)). The GeoEye-1 image presented a higher off-nadir angle (20.6◦ off-nadir)
than the one corresponding to the WV2 image (10◦ off-nadir). This greater tilt of GeoEye-
1 caused an increase in image-projected building facades (usually white), resulting in a
higher number of IOs classified as White Buildings. Moreover, sun elevation turned out to
be quite different between GeoEye-1 and WV2, taking values of 48◦ and 64◦, respectively.
It provoked an important increase of shadows in the GeoEye-1 orthoimage with respect
to the WV2 orthoimage. Also, vegetation looked quite different and, casually, the number
of objects (e.g. vehicles) situated along streets was larger in the case of the WV2 image.
Finally, the WV2 orthoimage looked a little bit fuzzy, being blurrier and hence showing a
lesser contrast than the GeoEye-1 orthoimage. In this sense, perhaps as a result of different
post-processing carried out by the imaging companies, a notable compression of the his-
togram for each band was observed on both the PAN and MS products contained in the raw
WV2 image (Figure 5), especially for PAN and blue bands. This behaviour has also been
observed in a WV2 ORS2A bundle image taken in July 2011 used by Aguilar, Saldaña,
and Aguilar (2012b) over the same working area. Also, this effect can be clearly appreci-
ated, as compared with the GeoEye-1 images, in Figure 2 of the recent work published by
Agugiaro, Poli, and Remondino (2012) over Trento testfield (Italy).

Although the observed blurring effect might be due to the operational aspects of image
acquisition such as sensor viewing angle, sun acquisition angle, and atmospheric condi-
tions (Poli, Angiuli, and Remondino 2010), we hypothesized that differences in sampling
rate, footprint speed, and the specific radiometric characteristics of both sensor systems
might be the main factor responsible for the more accentuated blurring effect found in the
WV2 image. Thus, the results obtained from this work should be carefully managed and
contrasted with further studies.

4.2. Overall classification accuracy

The observed variables related to the classification accuracy assessment fit well to a nor-
mal distribution (Kolmogorov–Smirnov test) except for the accuracy values corresponding
to the class Swimming pools. This non-normal distribution was due to the small num-
ber of segments manually classified as Swimming pools for both GeoEye-1 (8) and WV2
(13) orthoimages. In this sense, the results obtained from the class Swimming pools will
be ignored in this work.

The first global ANOVA test was performed considering the effects on the overall clas-
sification accuracy, measured as OA and KIA, of the three analysed factors. From this
analysis, it can be highlighted that the OA and KIA values showed a similar behaviour.

In short, three main factors turned out to be significant (p < 0.05), the type of satellite
being the most important source of variation, followed by the applied features vector, and
finally the percentage of training. The cross-interaction between type of sensor and features
vector was also significant, although its corresponding F-test value was lesser than the one
computed for the three main factors.

Table 6 shows the comparison of OA and KIA mean values according to the first global
ANOVA test. With regard to the set of features tested, note that geometry and texture fea-
tures had little influence on the OA and KIA values, whereas both nDSM and NDIs added
valuable information to the Basic 1 strategy. Concerning training size, Table 6 confirms that
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Figure 5. Histograms of digital numbers from PAN, MS Red, MS Green, and MS Blue bands of the
original GeoEye-1 (left) and WV2 (right) images used in this work.

the larger the number of training IOs the better. Finally, there was a significant difference
between the overall classification accuracy (OA and KIA) provided by our GeoEye-1 and
WV2 orthoimages. The results regarding overall classification accuracy for each satellite
will be explored in depth in the following sections by focusing on each one of the sets of
features and training areas tested.

4.2.1. Sets of features

Table 7 shows the independent classification accuracy assessment for each sensor con-
sidering only the factor set of features (one-way ANOVA). In general, for both satellites,
the best accuracies in terms of OA and KIA were achieved just when the feature nDSM
was included (i.e. Elevation, Elevation + NDIs, and All). Another similarity was that the
Geometry set did not work well in any case. On the other hand, bearing in mind that all
findings are only valid for the special conditions of both used images here, higher OA and
KIA values were attained in the case of GeoEye-1. Moreover, as compared to the Basic
1 strategy, the texture features significantly improved both OA and KIA for the WV2 test,
whereas any statistical effect was detected in the case of GeoEye-1. Focusing on GeoEye-1,
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Table 6. Comparison of mean values for the global ANOVA of overall accuracy
(OA) and kappa (KIA) for the three main factors tested.

Factors Disaggregated factors OA (%) KIA

Sets of Features Geometry 75.0f 0.633f

Basic 1 76.8e 0.663e

Texture 77.9d 0.679d

NDIs 79.5c 0.703c

Elevation 80.8b 0.722b

Elevation + NDIs 82.9a 0.753a

All 83.6a 0.760a

Training 5% 77.9d 0.677d

10% 78.8c 0.693c

15% 80.4b 0.714b

20% 81.0a 0.724a

Satellite WV2 75.7b 0.659b

GeoEye-1 83.4a 0.743a

Note: For each factor tested, values in the same column followed by different superscript letters
indicate significant differences at a significance level, p < 0.05.

Table 7. Comparison of mean values of overall accuracy (OA) and kappa (KIA) for the
sets of features or strategies and sensor tested.

GeoEye-1 WV2

Strategies OA (%) KIA OA (%) KIA

Basic 2 − − 71.3d 0.598d

Geometry 78.3d 0.665d 71.7d 0.601d

Basic 1 81.5c 0.717c 72.1d 0.609d

Texture 81.0c 0.707c 74.9c 0.652c

NDIs 84.9b 0.769b 74.1c 0.638c

Elevation 84.3b 0.761b 77.4b 0.683b

Elevation + NDIs 87.2a 0.806a 78.6b 0.701b

All 86.4a 0.791a 80.7a 0.729a

Note: Values in the same column followed by different superscript letters indicate significant
differences at a significance level, p < 0.05.

the best performance sets of features (p < 0.05) were both All and Elevation + NDIs sets,
yielding an OA value close to 87% (i.e. both values are followed by the letter ‘a’, which is
not repeated in any other value of the same column). However, looking at the WV2 case,
the best and significant (p < 0.05) accuracy was attained by using the set of features All,
achieving OA values in the range of 80%.

It is worth noting that, under our experimental conditions, the strategy named Basic 2,
where only the MS traditional four bands of WV2 were considered (i.e. Blue, Green, Red,
and NIR1), produced the same accuracy results as Basic 1 (i.e. no statistical differences).

4.2.2. Training size

The influence of training size was studied here for each satellite. Table 8 shows the com-
parison of mean results from the one-way ANOVA analysis carried out for the overall
classification accuracy (OA and KIA). The rule of ‘the larger the better’ is also true here,
since OA and KIA always improved when a larger percentage of training was applied.
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Table 8. Comparison of mean values of overall accuracy (OA) and kappa (KIA) for the
training percentage of samples and sensor tested.

GeoEye-1 WV2

Size of training (%) OA (%) KIA OA (%) KIA

5 81.7b 0.719b 73.6b 0.627b

10 83.1a,b 0.741a,b 74.0b 0.6373b

15 84.1a 0.756a 76.2a 0.665a

20 84.7a 0.765a 76.7a 0.675a

Note: Values in the same column followed by different superscript letters indicate significant
differences at a significance level, p < 0.05.

However, in statistical terms, the most efficient choice in the case of GeoEye-1 would
be about 10% of training samples (this size is not statistically different to 15% or 20%),
whereas 15% of training would be the best option for WV2. This fact could be related to
the different number of available bands in each sensor. In other words, a larger size of train-
ing areas is needed for a higher number of bands (Piper 1992; Mather 2004). As will be
outlined later, training size is very dependent on the target class.

4.3. Buildings

The class Buildings is usually the most important in urban environments, in our case
representing more than 38% of the manual classified area. According to Table 9, the most
relevant feature for classifying Buildings from both GeoEye-1 and WV2 turned out to
be the nDSM from laser scanning. This fact has already been reported by many authors
such as Hermosilla et al. (2011), Awrangjeb, Ravanbakhsh, and Fraser (2010), Turker
and San (2010), or Longbotham et al. (2012). Paying attention to our GeoEye-1 image,
the best strategies were Elevation + NDIs and All features, achieving consistently
high-accuracy values in the range of 95% for both PA and UA. On the other hand,
Elevation, Elevation + NDIs, and All features were the best performance strategies
(without significant differences between them) for WV2 orthoimages, attaining PA and
OA values close to 91%.

Table 9. Comparison of mean values for the class Buildings of producer’s accuracy (PA),
user’s accuracy (UA), and kappa (KIAbuildings) for the sets of features or strategies and
sensor tested.

GeoEye-1 WV2

Strategies PA (%) UA (%) KIAbuildings PA (%) UA (%) KIAbuildings

Basic 2 − − − 85.5b 83.5d 0.731b

Geometry 89.4d 88.2d 0.777d 84.7b 83.6d 0.720b

Basic1 89.1d 89.7c 0.777d 83.9b 84.5c,d 0.705b

Texture 91.0c 89.6c 0.811c 85.0b 85.7b 0.734b

NDIs 91.4c 91.0b 0.822c 85.0b 85.4b,c 0.728b

Elevation 94.0b 94.6a 0.877b 91.1a 91.7a 0.839a

Elevation + NDIs 95.3a 94.9a 0.903a 90.8a 91.2a 0.834a

All 95.8a 94.9a 0.911a 92.1a 91.6a 0.856a

Note: Values in the same column followed by different superscript letters indicate significant
differences at a significance level, p < 0.05.
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In the case of the class Buildings, the influence of training size was not significant
regarding classification accuracy indexes (PA, UA, and KIAbuildings), though a slight trend
was observed to improve them by increasing the percentage of training samples (data not
presented). It is important to highlight that only 5% of training percentage for Buildings
already included more than 40 segments for both GeoEye-1 and WV2.

4.4. Shadows

Classifying the class Shadows was extremely challenging since shadows vary spectrally
based on the features that are casting them. In addition, the spectral characteristics of
Shadows can be either similar to other surface materials such as water (Sawaya et al. 2003)
and dark or grey roof (Bhaskaran, Paramananda, and Ramnarayan 2010). Furthermore,
shadows are particularly significant in high-spatial resolution imagery in urban environ-
ments, where elevation varies dramatically across short distances (Dare 2005; Yuan 2008).
The introduction of the class Shadows is necessary to prevent shaded pixels in the urban
area from being classified as water or dark roof building (Shackelford and Davis 2003).
Table 10 shows that the tested GLMC texture features were the best choice for their clas-
sification by means of 1-NN from both GeoEye-1 and WV2 orthoimages. Texture features
are a potentially powerful method for detecting Shadows as they are highly distinctive,
do not depend on colours, and are robust to illumination changes. In this way, Su et al.
(2008) improved the Shadows classification in urban areas by using textural features based
on GLMC as additional information bands. However, GLMC-based features require high
computation time.

Summing up, the best results in terms of PA, UA, and KIAshadows were attained by using
Texture or All strategies, achieving an accuracy of around 90% (PA and UA) for GeoEye-
1 and slightly lower values for WV2 orthoimages. In this case, the statistically significant
worst results for WV2 were obtained when using the set of features named Basic 2.

In the same way as Buildings, Shadows classification accuracy did not depend on the
training size used (data not presented). Note that in the case of class Shadows, 5% of train-
ing samples involved 24 and 22 IOs for GeoEye-1 and WV2, respectively. In this way, at
least 15 sample plots for each training class were used by Lu, Hetrick, and Moran (2010)
working with QuickBird imagery.

Table 10. Comparison of mean values for the class Shadows of producer’s accuracy (PA),
user’s accuracy (UA), and kappa (KIAshadows) for the sets of features or strategies and sensor
tested.

GeoEye-1 WV2

Strategies PA (%) UA (%) KIAshadows PA (%) UA (%) KIAshadows

Basic 2 − − − 71.6c 79.7e 0.636c

Basic 1 92.7a 88.8a,b 0.901a 84.2b 81.8c,d,e 0.779b

Geometry 88.6c 86.4c 0.846c 85.1b 80.9d,e 0.799b

NDIs 89.9b,c 90.4a 0.865b,c 83.7b 83.0c,d 0.783b

Elevation 90.3b,c 86.4c 0.869b,c 84.0b 82.9c,d 0.788b

Elevation + NDIs 88.7c 89.1a,b 0.850c 83.4b 83.5b 0.780b

Texture 92.7a 88.9a,b 0.902a 89.5b 85.6a,b 0.857a

All 91.1a,b 88.7b 0.881a,b 89.7a 87.0a 0.863a

Note: Values in the same column followed by different superscript letters indicate significant
differences at a significance level, p < 0.05.
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4.5. Vegetation

Regarding the class named Vegetation (Table 11), the overall results for GeoEye-1 and
WV2 were very heterogeneous. However, mainly focusing on KIAvegetation, the best perfor-
mance sets of features were those containing the NDIs features. It is noteworthy that one of
the three indexes included in the NDIs set is the well-known normalized difference vegeta-
tion index (NDVI). In fact, Vinciková et al. (2010) reported that NDVI is one of the most
commonly used vegetation indices in remote-sensing applications. Moreover, Zerbe and
Liew (2004) pointed out that the normalized difference of blue band index (NDBI) could
help to distinguish Vegetation class. In another way, authors such as Haala and Brenner
(1999) demonstrated that the use of lidar data improved tree detection, beside buildings, in
an urban area. On the basis of these above data, Elevation + NDIs set could be considered
as the optimal choice for the detection of class Vegetation.

For class Vegetation, as opposite to Buildings and Shadows classes, the classification
accuracy (KIAvegetation) depended on the percentage of training samples used (data not pre-
sented). The more efficient training size, in statistical terms, looked very similar to the one
shown in Table 8 from KIA figures. It meant an optimum training percentage of 10% in
GeoEye-1 case (20 training IOs) and 15% for WV2 (24 training IOs).

4.6. Roads, Bare Soil, and Streets

The results of the three remaining classes (i.e. Roads, Bare Soil, and Streets) are summa-
rized in Table 12 by means of KIA per class values. The Bare Soil class achieved very poor
accuracy results, with the best PA and UA values for both GeoEye-1 andWV2 ranging from
45.5% to 53.3%, respectively. It could be due to the high heterogeneity of this class, which
included agricultural soils, non-asphalted roads, building lots, and even beaches. The same
can be applied to the class Streets that groups together pavements, concrete streets, or sport
courts. Misclassification problems were detected between Buildings and Streets owing to
spectral similarities regarding materials covering these surfaces. However, many of them
were corrected when nDSMwas included in the classification project (Table 12). Regarding
the class Streets, the best PA and UA values (PA = 59.9% and UA = 65.2% for GeoEye-
1, PA = 50% and PA = 50.7% for WV2) were always attained by using Elevation +
NDIs set.

Table 11. Comparison of mean values for the class Vegetation of producer’s accuracy
(PA), user’s accuracy (UA), and kappa (KIAvegetation) for the sets of features or strategies
and sensor tested.

GeoEye-1 WV2

Strategies PA (%) UA (%) KIAvegetation PA (%) UA (%) KIAvegetation

Basic 2 − − − 68.8a,b,c 68.6b 0.658a,b

Basic 1 71.2c 83.8b 0.685c 64.1b,c 69.5b 0.615b,c

Geometry 54.4e 63.1e 0.501e 54.2d 63.8c 0.504d

Texture 63.3d 71.4d 0.596d 63.4c 71.3a,b 0.588c

Elevation 72.3c 79.6c 0.696c 66.4a,b,c 69.4b 0.633a,b,c

NDIs 86.1a 90.1a 0.846a 69.7a,b,c 70.9a,b 0.668a,b

Elevation + NDIs 86.7a 88.8a 0.853a 72.0a 71.7a,b 0.693a

All 79.6b 86.1a,b 0.776b 70.5a,b 75.7a 0.678a,b

Note: Values in the same column followed by different superscript letters indicate significant
differences at a significance level, p < 0.05.
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Table 12. Comparison of mean values for the classes Roads, Bare Soil, and Streets of
producer’s accuracy (PA), user’s accuracy (UA), and kappa per class for the sets of features
or strategies and sensor tested.

GeoEye-1 WV2

Strategies KIAroads KIAbare KIAstreets KIAroads KIAbare KIAstreets

Basic 2 − − − 0.560a 0.209d 0.293b,c

Basic 1 0.368d 0.366b,c 0.315c,d 0.422d,e 0.279c 0.288b,c

Geometry 0.350d 0.339b,c 0.209e 0.397e 0.290c 0.244c

Texture 0.353d 0.305c 0.249d,e 0.453c,d,e 0.330b,c 0.321b

Elevation 0.358d 0.407a,b 0.588a 0.452c,d,e 0.347b 0.469a

NDIs 0.550a 0.453a 0.372b,c 0.483b,c,d 0.287c 0.324b

Elevation + NDIs 0.488b 0.473a 0.637a 0.519b,c 0.371a,b 0.481a

All 0.428c 0.468a 0.444b 0.541a,b 0.407a 0.438a

Note: Values in the same column followed by different superscript letters indicate significant
differences at a significance level, p < 0.05.

Regarding the class Roads (Table 12), the best accuracy for GeoEye-1 was achieved by
using the set of feature NDIs. It is noted that this strategy included NDBI, which had been
already pointed out by Dinis et al. (2010) to discriminate between bare soil and roads from a
QuickBird satellite orthoimage. In addition, the set of features named All and, surprisingly,
Basic 2 reached the best accuracy results in the case of the WV2 image. The PA and UA
values for GeoEye-1 and WV2 ranged from 52.6% to 62.6%.

From a statistical point of view, our results indicate that the more efficient WV2 training
size would be close to 10% (i.e. 15 IOs corresponding to Bare Soil and 10 to Streets). In the
case of GeoEye-1, the best accuracy results were attained by using 10 Bare Soil IOs (10%
of training percentage) and 15 Streets IOs (20% of training percentage). In the case of class
Roads, again 10% was recommended as the more adequate training size, meaning 8 and
12 Roads IOs for GeoEye-1 and WV2, respectively.

5. Discussion

Bearing in mind the aforementioned differences between the images tested in this work
and the typical heterogeneity within urban landscape classes, especially in VHR satellite
images, the best overall classification accuracy attained here by using the tested GeoEye-
1 four bands pan-sharpened orthoimage, as compared with the results offered by the
WV2 eight bands pan-sharpened orthoimage, should not be taken as a conclusive result.
In fact, the authors, once this differentiated performance has been detected, are trying to
find out whether this is due to satellite image quality differences (blurrier images in the case
of WV2). To the knowledge of the authors, this is the first publication that points out the
possible radiometric differences between both VHR satellites. Thus, it is extremely impor-
tant to take this research line on to investigate whether the blurring effect shown by the
tested WV2 image might actually affect the final classification accuracy results. Yet there
are some other causes that could explain the obtained results and so they would have to be
tested through further works. Among others, the following hypotheses could be stressed.

(1) The different off-nadir angles and sun elevations between the original images
from WV2 and GeoEye-1 used through this work. It caused substantial differences
mainly in the area covered by Shadows and White Buildings (presence of facade
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effect due to high off-nadir angles) classes. To avoid this undesirable effect, which
could pollute somehow the final comparative accuracy results, a new test involving
two images from WV2 and GeoEye-1 with very similar off-nadir and sun elevation
should be carried out.

(2) The multiresolution segmentation was carried out for attaining, approximately, the
same number of IOs from WV2 and GeoEye-1 orthoimages. In this way, it is very
probable that segmentation results were not optimal in both cases and so under-
segmentation error could adulterate the final classification accuracy results (Liu
and Xia 2010). Note that WV2 segmentation has been somehow forced to fit the
goal of obtaining approximately the same number of IOs for each tested image.
In this sense, including thematic layers of buildings and/or nDSM in the segmenta-
tion approach could help to achieve a better match between the considered classes
and the extracted IOs to make them spectrally purer. However, the goal in this arti-
cle was not headed up to compare the best possible results from an OBIA process
(obviously the best segmentation would be necessary to produce the best final map-
ping results via object-based classification) but comparing exclusively the relative
classification accuracy regarding pan-sharpened orthoimages from GeoEye-1 and
WV2 VHR satellites. It has been faced through the manual classification of two
object-based ground truths (one extracted from each previously segmented satel-
lite orthoimage) to carry out an independent accuracy assessment for every tested
classification project based on its corresponding ground truth.

(3) Classifications algorithms frequently used in object-based classification, as is the
case of 1-NN, do not perform well on a high-dimensional feature space due to
problems related to feature correlation (the widely known curse of dimensionality).
In this sense, for WV2’s Basic 1 strategy, 16 features were used, whereas only
eight were involved in the same strategy for GeoEye-1. However, bearing in mind
that there were no significant differences between the overall results attained for
WV2 from both Basic 1 and Basic 2 strategies (Table 7), this hypothesis could
be considered as clearly weak. As a further work, to avoid as much as possible
this disturbing effect, we propose to apply SVM-based classification algorithms
that have previously shown a good performance in dealing with a large number of
features (Melgani and Bruzzone 2004).

6. Conclusions

The overall accuracy assessment tests carried out in this study showed significant differ-
ences (p < 0.05) regarding object-based classification accuracy in urban environments
gathered from both GeoEye-1 and WV2 pan-sharpened orthoimages. The overall accu-
racies attained from GeoEye-1 (four bands) orthoimages were always better than the
computed ones from WV2 (eight bands) for every set of features tested. Disaggregating
the results by class, the classification accuracy from GeoEye-1 significantly improved the
one attained from WV2 in the cases of Buildings, Shadows, Vegetation, and Bare Soil
classes. However, mainly due to the differences found between the images tested, these
results should be contrasted by means of further works. In fact, hypotheses related to the
disturbance effects due to the different off-nadir angles and sun elevations between the orig-
inal images used in this work, the segmentation approach and likely under-segmentation
problems, the high-dimensional feature space used in some tested classification strategies,
and the differences observed between the radiometric distribution and visual appearance of
PAN and MS images from both sensors (blurrier images in the case of WV2), have been
already raised in Section 5.
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Regarding the set of features applied to carry out the classification, the best overall
accuracy from GeoEye-1 orthoimages (87.2%) was attained when the Elevation + NDIs
set of features was used, whereas All features had to be taken into account for attaining the
best overall accuracy in the case of WV2 orthoimages (80.7%). It is noteworthy that the
All features strategy included the five texture features based on GLCM, being much more
time consuming in terms of CPU requirements. On the other hand, the shape and geometric
features (Geometry) did not contribute to improving the classification attained by the basic
spectral features set (Basic 1). Perhaps its contribution could be upgraded by using better
initial segmentations and so better defined IOs geometries. In the particular case of WV2,
there were no significant differences between the overall results offered by Basic 1 (eight
bands) and Basic 2 (using the four equivalent bands to GeoEye-1) strategies.

In general, nDSMwas the most important feature for detecting Buildings, as it has been
already reported by many authors working on different sources of images, such as Ikonos,
WV2, or digital aerial images. The inclusion of NDVI, together with NDBI within the NDIs
strategy, significantly improved the classification of Vegetation and Roads classes. In the
same way, texture features added valuable information for detecting the Shadows class.

Finally, the other significant factor in the classification accuracy results was training
size. For the main classes (Buildings, Shadows, and Vegetation), around 20 training IOs
were needed for attaining the best results, whereas for Roads, Bare Soil, and Streets a
number of IOs ranging from 8 to 15 were enough. It must be underlined that the IOs from
the last three classes were larger than those from the first three (i.e. each IO covered a larger
area on average, so occupying more image pixels). In this way, 20 training IOs would be
enough for attaining good accuracies from using object-based supervised classification by
applying 1-NN classifier.
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