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The objective of this study is to determine the capability of an unmanned aerial vehicle

system carrying a multispectral sensor to acquire multitemporal images during the

growing season of a sunflower crop. Measurements were made at different times of the day

and with different resolutions to estimate the normalised difference vegetation index

(NDVI) and study its relationship with several indices related to crop status with the aim of

generating useful information for application to precision agriculture techniques. NDVI

was calculated from images acquired on four different dates during the cropping season.

On two of these dates, two images were acquired to determine how the time of day when

the images were taken influences NDVI value. To study the influence of image resolution

on NDVI, the original images were resampled to 30 � 30 and 100 � 100 cm pixel sizes. The

results showed that the linear regressions between NDVI and grain yield, aerial biomass

and nitrogen content in the biomass were significant at the 99% confidence level, except

during very early growth stages, whereas the time of day when the images were acquired,

the classification process, and image resolution had no effect on the results. The meth-

odology provides information that is related to crop yield from the very early stages of

growth and its spatial variability within the crop field to be harvested, which can subse-

quently be used to prescribe the most appropriate management strategy on a site-specific

basis.

© 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Precision agriculture (PA) is a production method that takes

into account the spatial variability of conditions that affect

crop production (e.g., soil characteristics, land elevation and
genierı́a, Universidad de
).
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weed infestation) and uses the information related to this

variability to determine the most effective management

strategy (Brisco, Brown, Hirose, Mcnairn, & Staenz, 1998;

Moran, Inoue, & Barnes, 1997). The main steps of PA are data

collection, field-variability mapping, decision-making, and
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the application of the management practices (Zhang and

Kovacs, 2012). Remote sensing techniques can be used in the

first three steps of the workflow (Copenhaver, 1998; Lan,

Thomson, Huang, Hoffmann, & Zhang, 2010; Stafford, 1999;

Warren & Metternicht, 2005), especially when the field vari-

ability maps are elaborated or updated to aid farmers to adapt

the appropriate strategy that is based on variable manage-

ment practices within a field according to the site conditions.

The information needed to apply PA is provided by new

technologies, such as geographic information systems (GIS),

global positioning system (GPS), remote sensing, yield moni-

toring devices, and machinery that is able to apply the inputs

in a variable-rate manner (Seelan, Laguette, Casady, &

Seielstad, 2003). Gathering the required information is one of

the key issues in PA that needs to be addressed to design

appropriate decision systems and to recognise significant

temporal variations (Lan et al. 2010; McBratney, Whelan, &

Shatar, 1997).

To gather information for PA, several sensor platforms,

including satellites and aircraft, have been used. Neverthe-

less, the platforms are not wholly adequate to provide infor-

mation at the required spatial and time resolutions, as the

images taken from them are expensive, and they can be

affected by weather conditions such as clouds (Ehsani,

Sankaran, Maja, & Camargo Neto, 2014; Hunt et al., 2014).

Even the latest generation of very high resolution satellite

images (e.g., GeoEye-1 andWorldView-2) is not able to provide

high frequency data for critical situations such as monitoring

nutrients or water stresses, diseases, or pest attacks. More-

over, manned airborne platforms are limited because of their

high operational complexity, cost and the long time needed to

deliver the images (Rango et al. 2009).

Unmanned aerial vehicles (UAV) have undergone a

remarkable development in recent years and are now

powerful sensor-bearing platforms for various agricultural

and environmental applications. A limited amount of

research on UAV applications for PA has been published. For

example, Hunt, Cavigelli, Daughtry, McMurtrey, and Walthall

(2005) used an unmanned helicopter with an image acquisi-

tion system to estimate biomass and nitrogen status for corn,

alfalfa, and soybeans crops. Berni, Zarco-Tejada, Suarez, and

Fereres (2009) acquired thermal and narrow band multispec-

tral images taken from an unmanned helicopter to estimate

biophysical parameters that were strongly correlatedwith leaf

area index, chlorophyll content and water stress. Swain,

Thomson, and Jayasuriya (2010) used a radio-controlled un-

manned helicopter platform to acquire quality spatial and

temporal resolution images to estimate grain yield and total

aerial biomass of a rice crop. Linear regressions between these

parameters and the normalised difference vegetation index

(NDVI; Rouse, Hass, Schell, & Deering, 1973), estimated from

images, yielded significant regression coefficients of 0.728 and

0.760, respectively. Agüera, Carvajal, and Saiz (2011) found a

good correlation between applied nitrogen and NDVI that was

estimated from images acquired from a quadrocopter flying at

70 m altitude over a sunflower crop.

Baluja et al. (2012) employed a UAV equipped with a mul-

tispectral sensor and a thermal camera to assess the water

status of a commercial rain-fed vineyard of Tempranillo cv.

(Vitis vinifera L.). Zarco-Tejada, Gonzalez-Dugo, and Berni
(2012) demonstrated the ability to track stress levels in a citrus

crop using thermal and hyperspectral imagery acquired from

a UAV. Garcı́a-Ruiz et al. (2013) used a UAV equipped with a

multispectral camera to identify a citrus greening disease

affecting citrus orchards. Recently, Hutn et al. (2014) used a

sensor mounted on a UAV to collect imagery of a potato crop

in near-infrared (NIR), red and green bands. From these im-

ages, they calculated the NDVI and green normalized differ-

ence vegetation index (GNDVI) and their relationshipwith leaf

area index, plant cover and chlorophyll content over the

growing season.

Because UAVs fly at low altitudes, ultra-high spatial reso-

lution images can be obtained at a low operational cost, and

the images can be acquired as frequently as necessary and

analysed in quasi-real-time (Agüera et al. 2011; Hardin &

Hardin, 2010; Xiang & Tian, 2011). Thus, it is necessary to

study the application of images from UAVs for PA.

The objective of the present study is to determine the

capability of a system composed of a UAV carrying a multi-

spectral sensor (red, green and near infrared bands) to acquire

multitemporal images during the growth season of a sun-

flower crop at different times of the day and with different

resolutions to estimate the normalized difference vegetation

index (NDVI) and study its relationship with several indices

related to crop status with the aim of generating useful in-

formation that can be applied to precision agriculture.
2. Materials and methods

2.1. Field experiment

The experiment was conducted at the Agricultural Research

Centre of C�ordoba (37�5102200 N, 4�4801900 W), southern Spain.

The soil is a deep sandy-loam, classified as Typic Xerofluvent

(Driessen & Dudal, 1991). C�ordoba has a Mediterranean-type

climate with high temperatures in the summer, and most of

the rainfall is concentrated between the autumn and spring.

A PR64E71 sunflower (Helianthus annuus, L.) hybrid cropwas

sown on 23 February 2012 with a plant density of

7.1 plants m�2, which is a plant population widely used by

local farmers.

The field was 30 � 30 m (Fig. 1), and two perpendicular

strips divided the field into four blocks, each with a different

irrigation treatment: full irrigation, which covered 100% of the

crop's water need (I1); full irrigation until anthesis and no

irrigation afterwards (I2), which simulated a typical sunflower

season in this area; half irrigation (I3), which covered 50% of

the crop's water needs; and no irrigation (I4). The irrigation

treatment began on 25May 2012. Each of these four blockswas

divided into eight elemental plots of 7 � 3.4 m2 (11 rows with

17 plants each), corresponding to eight nitrogen treatments,

and which resulted in 32 elemental plots. The nitrogen

application rates were 0, 20, 40, 60, 80, 100, 120 and

140 kg [N] ha�1; half was applied on the sowing date, and the

second half was applied on 20 May 2012. The experimental

design was not intended to study the influence of irrigation or

nitrogen application on crop yield. Rather, the objective was to

simulate a high variability of growing conditions to study the

relation of NDVI with several indices related to crop status. A

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.008
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Fig. 1 e Plot layout of the experimental field. I1, I2, I3 and I4

correspond to full irrigation, full irrigation until anthesis

and no irrigation after anthesis, 50% of water needs

irrigation, and no-irrigation treatment, respectively.

Numbers 0 to 7 represent the nitrogen application rate: 0,

20, 40, 60, 80, 100, 120 and 140 kg [N] ha¡1, respectively.

Fig. 2 e The Microdrones MD4-200 UAV with Tetracam

ADC Lite that was used for image acquisition.
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similar experimental design has been used in other works. For

example, Tremblay, Vigneault, B�elec, Fallon, and Bouroubi

(2014) who designed an experiment with eight unreplicated

N treatment rates, two sowing dates, two fields (one loamy

and one clayey) and with or without irrigation, for comparing

the performance of UAV and satellite imagery (Pl�eiades-1B) for

nitrogen status assessment in a corn crop.

At the end of the season, interference from birds made it

impossible to harvest the crop of 13 of the elemental plots. The

sole possible effect on the data is a reduction in the range of

environmental conditions, but considering that the number of

nitrogen doses was very high and that the affected elemental

plots were randomly distributed over the whole plot, there

was a sufficient range of growth conditions over the remain-

ing 19 elemental plots to ensure the generality of the results.

On 10 July, at the physiological maturity stage, the five

central rows of the 19 elemental plots were hand harvested,

and the seven central plants of each row were taken. This

avoided harvesting plants that were close to another

elemental plot that had a different nitrogen treatment. Yield

(kg ha�1), aboveground biomass (kg ha�1) and nitrogen con-

tent in the biomass (g [N] kg�1) were estimated for each of the

elemental plots. To estimate the yield, the grainwasmanually

separated from the rest of the plant. Aboveground biomass

was determined by drying the harvested plants at 60 �C until a

constant mass was attained. The nitrogen content in the

biomass was measured with an automated nitrogen analyser.

2.2. Unmanned aerial platform and digital camera

A Tetracam ADC Lite digital camera (TETRACAM INC.,

Chatsworth, CA, USA), was mounted on a Microdrones MD4-

200 (Microdrones GmbH's VTOL UAV, Siegen, Germany), to
take images of the field experiment during the crop season.

The Tetracam ADC Lite is a single CMOS camera with a reso-

lution of 1200 � 1024 pixels. Images were acquired in raw

format. Colour reconstruction of the raw images (de-mosaic-

ing processing using raw pixel data) was carried out using

PixelWrech2 (TETRACAM INC., Chatsworth, CA, USA), which

is a multispectral imaging editing software package included

with the Tetracam camera. After colour reconstruction, the

green, red and near infrared (G, R, NIR) spectral bands

approximately covered the following wavelength intervals:

520e570 nm (G), 600e690 nm (R) and 750e850 nm (NIR). Hunt

et al. (2014) found that a source of error in this process is the

colour correction matrix that is included in the Tetracam

PixelWrench software because the best matrix cannot be

determined if the spectral response function of the camera

sensor is not known. These researchers concluded that sensor

calibration is important when comparing data acquired on

different dates or from different locations. In our case, the

data were collected using a single picture, and all of the data

were related to crop yield components.

The Microdrones MD4-200 can be programmed to follow a

route defined by several way-points and actions. With a flight

altitude of 75 m, in combination with the camera focal length,

only one picture was necessary to cover the entire experi-

mental field.

Several tasks were necessary to make the camera fully

operational: a camera mount and an electrical power circuit

were built, and a servomechanism to control the shutter of the

camera was installed. The Tetracam ADC Lite digital camera

mounted on the Microdrones MD4-200 is shown in Fig. 2.
2.3. Image acquisition

Images were acquired on four different dates during the crop

season: 27 April 2012 (phenological stage: V6, (Schneiter &

Miller, 1981)), 19 May 2012 (phenological stage: R1), 30 May

2012 (phonological stage: R3) and 23 June 2012 (phenological

stage: R5, full anthesis). All of the images were acquired at

midday, except on 30 May, when due to technical problems

the image was acquired at 20:00 h under sunset light condi-

tions. Furthermore, on 19May and 23 June a second imagewas

taken at 16:30 h. Hence, a total of six images were taken over

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.008
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the season. Figure 3 shows the developmental stages of the

sunflower crop at the dates when the images were acquired.

At the beginning of the season, several targets were placed

on the ground in the corners of the plots. To georeference the

images, the coordinates of four targets were measured with a

Trimble R6 GPS receiver. On 27 April, a picture was taken with

an RGB digital camera (Fig. 4) and georeferenced using the

ground control points. From the georeferenced image, the

coordinates of the corners of the elemental plots were

deduced. The four targets of the corners of the main experi-

mental field were maintained throughout the crop season, so

that the pictures taken with the Tetracam could be georefer-

enced and the elemental plots could be identified in the

images.
Fig. 4 e Field experiment RGB image with targets for

elemental plot identification and georeferencing. In the

upper right corner, a detailed enlargement of a target

image is shown.
2.4. Image processing

After the colour reconstruction of the raw images using the

PixelWrench2 software (http://www.tetracamera.com/

Products_PixelWrench2.htm, last visit October 2014), a set of

TIFF images was produced.

The Ortho-Engine module in the PCI V10.0 software (http://

www.pcigeomatics.com/software/geomatica/education, last

visit October 2014) was used to georeference the images using

the targets mentioned in Section 2.3 as ground control points.

Thus, at the end of this process, a set of six georeferenced

images of the experimental field was acquired over the crop

season. Based on the sensor characteristics and the camera

height, the ground resolution cell was 1 � 1 cm. Furthermore,

each image was resampled to a ground resolution cell of

30 � 30 cm and 100 � 100 cm, to study the influence of image

resolution on the estimated NDVI value. Therefore, with the

initial resolution of 1 � 1 cm, a set of 18 images was used in

this study. The nearest neighbour interpolation method was

used to resample the images, which identified the grey level of
Fig. 3 e The sunflower crop when the images were taken on 27

2012 (d).
the pixel closest to the specified input coordinates and

assigned that value to the output coordinates (Lopes, Touzi, &

Nezry, 1990). NDVI was estimated as follows (Eq. (1)):

NDVI ¼ ðNIR� redÞ=ðNIRþ redÞ; (1)

where red and NIR are the digital values of the pixels corre-

sponding to those bands.

In an effort to avoid the influence of soil and shadow on the

NDVI estimation, a previous image classification process was
April 2012 (a), 19 May 2012 (b), 30 May 2012(c) and 23 June

http://www.tetracamera.com/Products_PixelWrench2.htm
http://www.tetracamera.com/Products_PixelWrench2.htm
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conducted with the goal of detecting the crop. This process

was only performed on the 1 � 1 cm and 30 � 30 cm pixel

resolution images because it was not possible to distinguish

the crop, bare soil and shadows in the 100� 100 cm resolution

images. Maximum likelihood classification (MLC), which is a

classifier that only takes into account the land-use spectral

signatures, was used for the supervised image classification.

Only the crop class was taken into account, but as a means of

improving the classification process, the class was divided

into three sub-classes according to tonality (light, medium

and dark). The result of the process was a set of binary images

for which the presence (crop) and absence (no crop) of crops

was discerned.

Next, the digital numbers of each band for each elemental

plot of each image were extracted. This was done using a Vi-

sual Basic 6.0 computer program developed by the authors.

The program inputs were the classification results and the

coordinates of the corner of each elemental plot. The program

reads the coordinates of the image pixels and the digital

number corresponding to each band. From the classification

results, it checked whether the pixel was classified as crop

and, if so, determined the elemental plot that contained the

pixel. Then, a file for each elemental plot was generated and

the digital number that corresponded to each band of each

pixel classified as crop was written into the file. For the un-

classified images (100 � 100 cm resolution), the digital

numbers were directly extracted, regardless of the classifica-

tion results. The NDVI of each elemental plot and each image

was estimated from those data.
3. Results and discussion

3.1. Images classification

Figure 5a shows the six false-colour images with 1 � 1 cm of

pixel resolution acquired over the season, and Fig. 5b shows

the original images taken on 19 May at midday with 1 � 1 cm

of pixel resolution and the resampled images with 30� 30 and

100 � 100 cm resolutions.

The classification process used to detect the crop gave good

results for all analysed images, with an overall classification

accuracy over 85% in all cases. Figure 6 shows the 1 � 1 cm

pixel resolution image classification for 27 March; the areas

that are classified as sunflower are red and the remaining land

cover is black. The results agree with those of other authors

working with the same image classification method to detect

crops. Thus, the overall classification accuracy achieved by

Kun, Bingfang, Yichen, Yuan, and Qiangzi (2011) to distinguish

different crops was greater than 95%. Lu, Oki, Shimizu, and

Omasa (2007) reported classification accuracies from 79.5 to

100% when detecting plant species near metropolitan Tokyo,

Japan.
3.2. Relation of NDVI and yield, aerial biomass and
nitrogen content in the biomass

Tables 1e3 show the correlation coefficients for the fitted

linear models that describe the relationships between NDVI
and grain yield, aerial biomass and nitrogen content in the

biomass, respectively, for all of the cases.

As seen in the three tables, data covering a phenological

range from R1 (mid-May) to R5 (end-June) showed similar

values and were statistically significant at the 99% confidence

level. The exceptions were data corresponding to the first date

(first row of Tables 1e3). This non-significant relationship at

the beginning of the season was expected because the crop

had not yet shown differences due to the nitrogen or irrigation

treatments. Working with sunflower, Pe~na-Barragan, Lopez-

Granados, Jurado-Exposito, and Garcia-Torres (2010) found a

coefficient correlation value of 0.6 for the linear model be-

tween the yield and NDVI calculated at the R1 phenological

stage (early reproductive phase), which is similar to those

shown in the second and third rows of Table 1. Meanwhile,

Reyniers and Vrindts (2006) found correlation coefficients of

0.53, 0.63 and 0.48, corresponding to the linear regressions

between NDVI calculated from an Ikonos satellite image that

was acquired at the end of the growing season of a wheat crop

and the grain yield, aerial biomass, and nitrogen content in

the biomass, respectively.

With respect to image resolution and image classification,

the data did not reflect any differences. Thus, the accuracy of

the linear regression between the yield and NDVI was the

samewhen images with 1� 1, 30� 30, or 100� 100 cm of pixel

resolution were compared.

The same result occurred when the effect of image classi-

fication was studied: no differences were found between the

correlation coefficients of the linear regressions for the clas-

sified images and those fitted for the unclassified images.

Thus, the elimination of bare soil using the image classifica-

tion process had no effect on the calculation of NDVI. In

agreement with those results, Myneni and Williams (1994)

found a good relationship between NDVI and canopy vigour

and colour, even in the presence of pixel heterogeneity.

Flowers, Weisz, Heiniger, Tarleton, and Meijer (2003) reported

similar results using infrared photography when studying the

in-season nitrogen status in winter wheat. Tremblay et al.

(2014), who were working with a maize crop and multispec-

tral imagery acquired from an UAV, observed that image

segmentation did not practically improve the correlation co-

efficient between the soil-adjusted vegetation index (SAVI)

and fresh biomass or leaf area index. In a sunflower crop,

Pe~na-Barragan et al. (2010) found that the best correlation

coefficients between NDVI calculated from an aerial image

and harvest indexes were associated with images that were

acquired aroundmaximum vegetative development or during

early productive development. To explain these results, they

theorized that the images acquired outside these stages had

pixels that were composed of amixture of vegetation and bare

soil. Zarco-Tejada, Ustin, andWhiting (2005) reported that the

best relationships were obtained in the early cotton growth

stages using structural indexes such as NDVI and concluded

that those indexes were better indicators of yield variability

during early growth stages. Similar results were reported by

Yang, Bradford, and Wiegand (2001) for yield estimation of

cotton, grain sorghum and maize crops. Their results indi-

cated that images acquired around maximum vegetative

development or during early productive development best

described yield variability. This trend was not observed in the

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.008
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Fig. 5 e (a) False colour images with 1 cm2 pixel resolution: 1) 27 March 2011 midday, 2) 19 May 2011 midday, 3) 19 May 2011

afternoon, 4) 30 May 2011 afternoon, 5) 23 June 2011 midday, 6) 23 June 2011 afternoon. (b) Image acquired on 19 May

midday, at 1) 1 £ 1 cm pixel resolution, 2) 30 £ 30 cm pixel resolution and 3) 100 £ 100 m pixel resolution.
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data shown in Tables 1e3; the correlation coefficients were

similar for all dates except for the first of them, whichwas at a

very early growing stage when the crop had not yet shown the

effects of nitrogen or irrigation treatments.

Tables 1e3 show that the time of the data collection had

practically no effect on the results that corresponded to im-

ages taken on the same date. Even the image acquired at

20:00 h under extreme light conditions yielded statistically

significant correlation coefficients. Furthermore, all of the

linear relationships between NDVI calculated from the imag-

ery acquired at midday and in the afternoon showed a sta-

tistically significant correlation coefficient and a regression
coefficient equal to one. In agreement with those results,

Reyniers (2003) found that while the reflectance values for red,

green, blue, and NIR wavelengths changed with changing

incident light intensity, the resulting NDVI varied only very

slightly.

As a result, we were able to obtain a good correlation be-

tween NDVI and grain yield, aerial biomass and nitrogen

content in the aerial biomass, with the NDVI indexes calcu-

lated from the R-G-NIR images acquired from the early

reproductive stage (R1) to the flowering stage (R5), indepen-

dent of image resolution (from 1 � 1 to 100 � 100 cm) and

independent of image classification to extract the crop.

http://dx.doi.org/10.1016/j.biosystemseng.2015.01.008
http://dx.doi.org/10.1016/j.biosystemseng.2015.01.008


Fig. 6 e Image classification output corresponding to the

Tetracam image taken on 27 March 2012. Areas in red

represent land classified as sunflower, and areas in black

represent the rest of the land cover.

Table 1 e Linear model correlation coefficients that describe th
images and grain yield, taking into account the date when the
imagewas classified. Except for the data corresponding to the fi
confidence level.

Date Resolution 1 � 1 cm 1 � 1 cm

Time Classified Not classified

27 March midday 0.136 0.150

19 May midday 0.744 0.739

19 May afternoon 0.770 0.698

30 May afternoon 0.736 0.816

23 June midday 0.750 0.861

23 June afternoon 0.834 0.673

Table 2 e Linear model correlation coefficients that describe th
images and aerial biomass, taking into account the date when t
imagewas classified. Except for the data corresponding to the fi
confidence level.

Date Resolution 1 � 1 cm 1 � 1 cm

Time Classified Not classified

27 March midday 0.171 0.145

19 May midday 0.748 0.897

19 May afternoon 0.953 0.922

30 May afternoon 0.684 0.820

23 June midday 0.773 0.573

23 June afternoon 0.398 0.420
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4. Conclusions

In this study, a UAV-mounted multispectral sensor (R, G, NIR)

system was used to obtain images of a sunflower crop

throughout the growth season to enable NDVI to be calcu-

lated. The correlation coefficients of linear regressions fitted

between NDVI and grain yield, aerial biomass and nitrogen

content in the biomass were statistically significant except

very early during the growing season. Thus, the NDVIs of a

sunflower crop, estimated from images taken with a R, G, NIR

sensor mounted on a UAV and acquired in the R1 stage, when

the floral button begin to be visible, to R5 (full anthesis), can be

used to detect differences in grain yield, aerial biomass and

nitrogen content in the biomass within crop fields. Further-

more, images taken at an appropriate time can enable the

early recognition of certain problems in the crop without

waiting until harvest to detect low yield zones. This allows the

farmer to apply PA techniques, adapting the dose of the

treatment (e.g., irrigation, nitrogen and phytosanitary prod-

ucts) to the specific needs of each specific site in the crop field,

with the economic, environmental and health benefits that

this entails.

As the NDVIs measured were not influenced by the hour

when the images were taken, images can be acquired at any

time of the day, thereby eliminating the constraint of time

from the task of taking images. Furthermore, image resolution

caused no significant differences in the calculated regression

coefficients. Thus, the flight altitude can be increase to achieve
e relationships between NDVI calculated from Tetracam
images were acquired, time, image resolution and if the
rst row, all of the data are statistically significant at the 99%

30 � 30 cm 30 � 30 cm 100 � 100 cm

Classified Not classified Not classified

0.060 0.120 0.125

0.691 0.775 0.511

0.775 0.690 0.765

0.708 0.818 0.739

0.737 0.844 0.651

0.625 0.719 0.715

e relationships between NDVI calculated from Tetracam
he images were acquired, time, image resolution and if the
rst row, all of the data are statistically significant at the 99%

30 � 30 cm 30 � 30 cm 100 � 100 cm

Classified Not classified Not classified

0.048 0.136 0.129

0.681 0.864 0.595

0.762 0.764 0.765

0.557 0.737 0.607

0.722 0.849 0.686

0.565 0.672 0.745
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Table 3 e Linear model correlation coefficients that describe the relationships between NDVI calculated from the Tetracam
images and the nitrogen content in the aerial biomass, taking into account the date when the images were acquired, time,
image resolution and if the image was classified. Except for the data corresponding to the first row, all of the data are
statistically significant at the 99% confidence level.

Date Resolution 1 � 1 cm 1 � 1 cm 30 � 30 cm 30 � 30 cm 100 � 100 cm

Time Classified Not classified Classified Not classified Not classified

27 March midday 0.088 0.100 0.043 0.156 0.126

19 May midday 0.773 0.954 0.675 0.796 0.656

19 May afternoon 0.980 0.967 0.813 0.735 0.796

30 May afternoon 0.800 0.897 0.838 0.863 0.823

23 June midday 0.772 0.527 0.602 0.705 0.591

23 June afternoon 0.445 0.478 0.549 0.447 0.446
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an equivalent pixel size of 100� 100 cm, whichwill reduce the

number of images and the flight time for a given plot.

The classification process followed by the use of the images

to detect the crop and calculate the NDVI from only pixels

corresponding to crop did not improve the correlation co-

efficients studied.

Images can be taken at critical moments throughout the

growing season with the type of platform and sensor used in

this work, without the limitation that result from weather

conditions or device availability. This is an advantage over

satellites and aircraft, which have many more operational

restrictions than UAVs such as used in this study.

The low cost of the aerial platform and sensor used in this

work compared to the cost of a satellite image, the absence of

limitations due to meteorological conditions (especially

clouds), and the fact that the images are immediately avail-

able, make the described equipment and methodology useful

for estimating certain crop indices for the application of PA

techniques.
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