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Let k be an algebraically closed field of characteristic 0 and let D,, be the dihedral
group of order 2m with m = 4¢; ¢t > 3. This talk will be based on a joint work with
Fernando Fantino [2], where we classify all finite-dimensional Nichols algebras over
D,, and all finite-dimensional pointed Hopf algebras whose group of group-likes is
D,,, by means of the lifting method. As a byproduct we obtain new examples of
finite-dimensional pointed Hopf algebras. In particular, we give an infinite family of
non-abelian groups with non-trivial examples of pointed Hopf algebras over them and
where the classification is completed. The difference with the case of the symmetric
groups S3 y Sy, see [1] and [3], respectively, is that each dihedral group provide an
infinite family of new examples.
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Joint work with F. Fantino.

On pointed Hopf algebras over dihedral groups, Pacific J. Math, to
appear.
Preprint: arXiv:1007.0227v1.
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Let m =4t = 2n > 12 and recall that

Dm:=(g,h | g2=1=h"gh=h"'g).

Theorem [FG]

Let H be a finite-dimensional pointed Hopf algebra with

G(H) = Dp,. Then H is isomorphic to

(a) B(M)#KDy, with [ = {(i,k)} € Z, k # n.

(b) B(Mp)#KD,, with L € L.

(¢) Ai(A\,y)with I €Z, |l| >1or | ={(i,n)} and v = 0.

(d) Bri(Av,6,p) with (I, L) € K, |/| >0 and |L] > 0.
Conversely, any pointed Hopf algebra of the list above is a lifting
of a finite-dimensional braided Hopf algebra in g:yp.

where
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e w &€ Gy, is an m-th primitive root of unity.

Z={1=111{(is, ks)} : w*ks = —1 and wisketitks = 1,
1<is<nl<ks<m}.

L={L=1];_{ts}:1<4,...,¢ < n, odd}

K={(,L): 1€Z,LeLandw’=-1kodd
V(i,k)yel,lel}

A= (Ap.a,ik)(p.a)(ik)el ¥ = (Yo, k)(p,a)(isk)el

0 = (0p,q,0)(p.q)etecL, and 1 = (pip,q,6)(p.g)et eer Tamily of
parameters in k that satisfy:

Apﬂ'ﬂ*k,i,k = )\i7k:p7m7k and ,Ypakzi7k = ,yi',kzp7k'
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If I ={(i,k)}, k # n, then B(M;)#kD, is generated by g, h, x, y
which satisfy

gi=1=h", ghg = ™1,
gx = yg, hx = wxh, hy = wkyh,
x? =0, y2=0, xy+yx=0

It is a Hopf algebra with

Alg) =g @8, A(h) =h& h,
AX)=x®1+H ®x, Ay)=y®1+h'®y.
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Let L € £, B(M)#kD, is generated by zy, wy, £ € L which satisfy:

gi=1=h" ghg = h™ 1,
8zy = wyg, hzy = wlzh, hwp = w—twyh,
zl? =0, W€2 =0, zwp+wpzp=0, Zzpzpp + zprzg =0.

It is a Hopf algebra with

Alg)=g®g, A(h)=h® h,
Az)=z201+h @z, Aw)=w®Ll+h"Qw.
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For any I € Z, A;(), ) is the algebra generated by g, h, x5 4, ¥p.q
with (p, q) € I satisfying:
g2=1=n", ghg = h"1,
8%p,a = Yp.a8: hxp,q = wIxpgh, hyp.q = w™ypqh,
Xp,qXiok T XikXp,g = Og,m—kAp,q,ik(l — hP+')7

Xp,q¥ik t YikXp,g = Oq.kVp,q,ik(1 — hp_i)-

It is a Hopf algebra with

Alg) =g ®ag, A(h) = h® h,
A(Xp,q) = Xp,g ® 1+ I ® X 4, A(Yp,q) = Ypg®@1+h PR ypq.
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Let (/,L) € K, By ,i(A, 7,0, 1) is the algebra generated by
g, h, Xp.q, Yp.q> 20, we, (p,q) € I,£ € L, satisfying: g, h as before &

8Xp,q = Yp,q8> hxp,q = wIxp qh,
_ _
8zp = weg, hzy = wzph,
Xg,q =0= yg,q Zowp + wpzp =0 Zzpzp +zpzp =0

Xp.aXik + XikXp.g = Oq.m—kAp.q.ik(l — APTT),
Xp.qVik + YikXp.g = Oq.kVp.q.ik(l — hP77),
Xp,qZt + ZeXp,g = 0g,m—10p,q.0(1 — h"tP),
Xp,qWe + WeXp,.g = Og ottp,q.e(1 — h"tP).
It is a Hopf algebra with g, h group-likes and
Axp,q) = Xpg ® 1+ M @ x4, AlYpg) = Ypg®L+h PR ypgq,
Alz)) =z @1+ h"® z, Alw) =w @1+ h" @ wy.
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Let H be a pointed Hopf algebra, Hy = kG(H).
{Hi}i>o coradical filtration of H.

Fact: If Hp is a Hopf subalgebra, then
gr H = ®n>0gr H(n) is a graded Hopf algebra,
grH(n) = Hp/Hp—1, H-1 = 0.

If 7 : gr H— Hp denotes the homogeneous projection, then
R=(grH)*°" ={he H: (denr)A(h)=h® 1}

is the diagram of H; and gr H ~ R#kG(H).
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R is a (braided) Hopf algebra in the category ﬂgyD of
Yetter-Drinfel’d modules over Hjy.

R is a graded subalgebra of gr H.

The linear subspace R(1), together with the braiding of ﬁgyD,
is called the infinitesimal braiding of H and coincides with

P(R)={reR: Ar(r)=r®1+1Qr}.

The subalgebra of R generated by P(R) = V is (isomorphic
to) the Nichols algebra B(V).
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L Main steps

Let G be a finite group and Hy = kG. Main steps for classifying
finite-dimensional pointed Hopf algebras over G are
(a) determine all Yetter-Drinfel'd modules V' such that B(V) is
finite-dimensional,
(b) For such V, determine all Hopf algebras H such that
gr H ~ B(V)#Hoy, H is called a lifting of B(V) over G.

(c) Prove that any finite-dimensional pointed Hopf algebra over G
is generated by group-likes and skew-primitives.
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L Main results obtained with the method

It was introduced by Andruskiewitsch and Schneider
Complete classification of finite-dimensional pointed Hopf algebras
over G (with non-trivial examples) where

e G finite and abelian with (|G|,210) =1 [AS].

e G =S3, [AS & Heckenberger].

e G =S4, [AHS] and [G. & A. Garcia Iglesias].
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L Yetter-Drinfel'd modules over group algebras
Let G be a finite group. Recall that a Yetter-Drinfel'd module
over kG is a G-module and a kG-comodule M such that

5(g.m) = ghg ' @ g.m, Vme Mpg,he G,

where M, = {me M: §(m)=h®@ m}, M = SpecMp.

Proposition

e Finite-dimensional Yetter-Drinfel'd modules over G are
completely reducible.
e Irreducible modules are parametrized by pairs (O, p), where

O is a conjugacy class of G and (p, V) is an irreducible
representation of the centralizer Cg (o) of some o € O.

We denote by M(O, p) the Yetter-Drinfel’d module and by
B(O, p) the associated Nichols algebra.
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Conjugacy classes of Dy, are
o Op ={h"}, Cpo = Dp,.
o O, = {h"}, Cp = (h) ~ Z/m, Rep: X(k)» X(ky(h) = wk.
o Oy = {gh :j even}, Ogh = {gh : j odd}
Recall the irreducible representations of D;:
e n— Llirred. repr. of degree 2, p; : D, — GL(2, k),

0 1\ /wf 0)\°
apby __
pg(gh)-(l 0) (0 w_é)’ 1<i<n.

e 4 irred. repr. of degree 1:
’0 ‘1‘ h" \h’,lgbgn—l\ g ‘gh‘

1] 1] 1 1 1] 1
xa | 1| 1 1 “1] -1
xs [ 1] (=1)" (1) 1 ] -1
xa | 1] (=1)" (1) -1]1
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L Nichols algebras of irreducible Yetter-Drinfel'd modules

Andruskiewitsch & Fantino determined the dimension of
B(Opn, m) and B(Opi, X(k))-

For the others we have

dim B(Og, p) = dim B(Ogn, ) = oo for all p € Gy, (g) and

—

Summarizing
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L Nichols algebras of irreducible Yetter-Drinfel'd modules

Conj. class Centr. Rep. dimB(V)
e D any oo [AF]
O = 1A}, D, X1, X2, X3, Xa, | 00 [AF]
| Opn |= 1 p¢, £ even
pe, ¢ odd 4 [AF]
B(Me)
Opi = {h"Y, i #0,n, | Z/m=(h) X(k)» w* = —1 | 4 [AF]
| Opi |=2 B(Mix)
X(k)» wk £ —1 | oo [AF]
Og = {gh : j even} 7]2 X ]2 ~ | any 00
| Og [=1n (g) © (")
Ogh = {gh : j odd} 7)2 X 7.J2 ~ | any 00
| Ogn [=n (gh) @ (h")
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L Nichols algebras of Yetter-Drinfel'd modules

» Define Z = {/ = [1._1{(is, ks)} : w'sks = —1 and wiskeTicks =
1,1 <is<n1< ks <m} and

M= P Mix

(i,k)el

Then B(M;) = A M; and dimB(M;) = 4l'l.

» Define £={L=T1,_1{¢s}:1<t1,....4 < n, odd} and

M, = @I\/Ig.

el

Then B(M;) = A M and dimB(M,) = 4ltl,
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L Nichols algebras of Yetter-Drinfel'd modules

» Define K = {(/,L): I €Z,L € L and w'* = —1, k odd,
V (i,k) € 1,£ € L} and

= @ wan | (@)

(i k)el teL

Then B(M; ;) ~ A M;; and dimB(M, ;) = all+IL]

Let B(M) be a finite-dimensional Nichols algebra in kD’"J}D Then
B(M) ~ A M, with M isomorphic to M; with | € Z, or M; with
LeL, or My with (I,L) € K.
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Using that all finite-dimensional Nichols algebras are exterior
algebras one can prove the generation in degree one:

Let H be a finite-dimensional pointed Hopf algebra with
G(H) = Dp,. Then H is generated by group-likes and
skew-primitives.

i.e. grH ~B(M)#kD,, for some M.
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Let M € %Z)}D. Forall1 <r,s<m,let
M;={aeM: §(a)=h*®a,h-a=w"a}. Then M=¢p, ;M.

Using the description obtained above we find the possible
deformations of the relations of the Nichols algebras over Dy:

Proposition [FG]

Let H be a finite-dimensional pointed Hopf algebra with

G(H) = Dy, and infinitesimal braiding M. Let a € M?, b € MY
with 1 < r.s,u,v < m and denote x = g(a#1l), y = o(b#1).
Then there exists A € k™ such that

Xy + yx = 8ym—r M1 — A°TY).
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Not all Nichols algebras admit deformations:

Let H be a finite-dimensional such that its infinitesimal braiding M
is isomorphic to M; with [ = (i, k) CZ, k # n or M, with
L€ L. Then H~B(M;)#kDp, or H ~ B(M)#kDp,, resp.

Using the proposition we define the quadratic algebras A;()\, )
and By (A, 7,6, 1) as above and the first part of the main theorem
is proved.

To prove that these algebras are liftings one first shows that

dim A;(A,y) < |Dp| dim B(M;) and
dim B/’[_(A, v, 9, ,u) S |Dm| dim %(M[’L).

The equality follows by finding a representation whose restriction
to Dpy, is faithful and is not trivial on the skew-primitives.
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