

 How many colors do we need to destroy the symmetry of a given graph completely?

 How many colors do we need to destroy the symmetry of a given graph completely?

 How many colors do we need to destroy the symmetry of a given graph completely?

 How many colors do we need to destroy the symmetry of a given graph completely?

$$\chi_D(G)$$

Distinguishing chromatic number

The minimum number of colors in completely asymmetric **colorings**.

■ Distinguishing number

The minimum number of colors in completely asymmetric **color assignments**

$$\chi_D(Q_3) = 4$$
, $D(Q_3) = 3$

Graphs that triangulate closed surfaces...

The complete graphs

$$\chi(K_n) = \chi_D(K_n) = D(K_n) = n$$

$$\gamma(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$$

The complete tripartite graphs

$$\chi(K_{n,n,n}) = 3, \ \chi_D(K_{n,n,n}) = 3n$$

$$D(K_{n,n,n}) = n+1$$

$$\gamma(K_{n,n,n}) = \frac{(n-1)(n-2)}{2}$$

Four Color Theorem

Appel & Haken, 1976

Every planar graph is 4-colorable.

No restriction, No upper bound

 There is no upper bound for the distinguishing chromatic number of 2-connected graphs on any surface.

Polyhedral graphs

Two faces meet in at most one vertex or along at most one edge.

Every 3-connected planar graphs is...

- polyhedral.
- uniquely and faithfully embedded on the sphere.

Any automorphism of a graph can be realized as a symmetric transformation over the sphere.

- Rotation around an axis
- Reflection in the plane, or
- Antipodal map

Re-embeddings and the frame

• Every 3-connected planar graph is 6-distinguishing colorable.

3-Connected planar graphs...

• Theorem (Fijavž, Negami and Sano, 2011) Every 3-connected planar graph is 5-distinguishing colorable unless it is isomorphic to $K_{2,2,2}$ or DW_6 .

3-Connected planar graphs...

Theorem (Sano, 2012)

If a 3-connected planar graph G is isomorphic to none of the followings, then:

$$\chi_D(G) \leq \chi(G) + 1$$

Exceptions:

$$\overline{K}_2 + C_{2r} \ (r \ge 2), \quad \overline{K}_2 + P_{2k+1} \ (k \ge 1)$$
 $K_1 + C_6, \quad Q_3, \quad R(Q_3), \quad S(Q_3)$

Closed surfaces...

Cup open a closed surface into ...

Re-embedding structures of triangulations

A facial cycle that bounds in all of re-embeddings

A facial cycle that is not a panel.

Re-embedding structures of triangulations

The subgraph induced by the edges of holes

• Any re-embedding of triangulations with non-empty frame is determined by how the frame is mapped.

Re-embeddings and the frame

• If the frame is fixed, then so is the whole

$$\chi_D(G) \leq \chi_D(\operatorname{Fr}(G)) + \alpha...$$

$$\chi_D(G) \leq |V(\operatorname{Fr}(G))| + \chi(G) - 3$$

Bounded by the maximum number of vertices of locally nonplanar graphs

By Map Color Theorem

Being Faithful embedded

■ Faithful embedding

 $\operatorname{Fr}(G) = \phi$

All automorphisms preserve all faces.

 Theorem The distinguishing chromatic number of a polyhedral graph faithfully embedded on a closed surface does not exceed its chromatic number plus 2 unless it is one of the following exceptions.

$$\chi_D(G) \le \chi(G) + 2$$

$$O(\sqrt{g})$$
By Map Color Theorem

Exceptions 3-Colorable triangulations with maximum degree at most 10 $\chi_D(G) \leq 6$

Upper bound for triangulations

• Theorem Given a closed F^2 , there exists an upper bound for the distinguishing chromatic numbers of triangulations on F^2 of linear order with respect to its genus g:

$$\chi_D^{tri}(F^2) = O(g)$$

$$\chi_D^{tri}(F^2) = O(\sqrt{g}) \dots ?$$

Upper bounds for triangulations

	Sphere	Projective plane	Torus	General
Chromatic number	4	6	7	$O(\sqrt{g})$
Distinguishing number	4 (2)	6 (3)	7 (6)	O(g)
Distinguishing chromatic number	6 (5)	7 (6)	9 (8) $7 + \sqrt{1+48}$	O(g)
$\chi(K_n) = D(K_n) = \chi_D(K_n) = n^{2}$ $\frac{9 + \sqrt{9 + 728}}{2}$				
$\chi(K_{n,n,n})$	D(R) = 3, D(R)	$(X_{n,n,n}) = n +$	1, $\chi_D(K_{n,n})$	(n) = 3n

For Spanish friends

- Establish another proof for the theorem on 3-connected planar graphs without Four Color Theorem.
- Find a class of 3-connected planar graphs G with rich symmetry such that $\chi_D(G) = \chi(G)$.

