DOMINATION AND ROMAN DOMINATION IN SOME PRODUCT GRAPHS

ISMAEL GONZALEZ YERO

Departamento de Matemáticas, Universidad de Cádiz - Escuela Politécnica Superior de Algeciras, Av. Ramón Puyol s/n, 11202 Algeciras, España
E-mail: ismael.gonzalez@uca.es

Joint work with D. Kuziak and J. A. Rodríguez-Velázquez
Index

1. Introduction
2. Cartesian product graphs
3. Strong product graphs
4. Rooted product graphs
Index

1. Introduction
2. Cartesian product graphs
3. Strong product graphs
4. Rooted product graphs
Index

1. Introduction
2. Cartesian product graphs
3. Strong product graphs
4. Rooted product graphs
Index

1 Introduction

2 Cartesian product graphs

3 Strong product graphs

4 Rooted product graphs
Index

1. Introduction

2. Cartesian product graphs

3. Strong product graphs

4. Rooted product graphs
Domination in graphs

- $G = (V, E)$, a simple graph. $S \subseteq V$, set of vertices of G.
- S is a dominating set if $N(S) = V$, i.e., every vertex $v \in \bar{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters
- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Domination in graphs

- $G = (V, E)$, a simple graph. $S \subseteq V$, set of vertices of G.
- S is a dominating set if $N(S) = V$, i.e., every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Domination in graphs

- $G = (V, E)$, a simple graph. $S \subseteq V$, set of vertices of G.
- S is a dominating set if $N(S) = V$, i.e., every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Domination in graphs

- $G = (V, E)$, a simple graph. $S \subset V$, set of vertices of G.
- S is a dominating set if $N(S) = V$, i.e., every vertex $v \in S$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Domination in graphs

- $G = (V, E)$, a simple graph. $S \subseteq V$, set of vertices of G.
- S is a dominating set if $N(S) = V$, i.e., every vertex $v \in \overline{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Domination in graphs

- $G = (V, E)$, a simple graph. $S \subseteq V$, set of vertices of G.
- S is a dominating set if $N(S) = V$, i.e., every vertex $v \in \bar{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Domination in graphs

- \(G = (V, E) \), a simple graph. \(S \subseteq V \), set of vertices of \(G \).
- \(S \) is a dominating set if \(N(S) = V \), i.e., every vertex \(v \in \overline{S} \) is adjacent to a vertex of \(S \).
- \(\gamma(G) \), domination number of \(G \): minimum cardinality of any dominating set in \(G \).

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: \(k \)-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Domination in graphs

- $G = (V, E)$, a simple graph. $S \subseteq V$, set of vertices of G.
- S is a dominating set if $N(S) = V$, i.e., every vertex $v \in \bar{S}$ is adjacent to a vertex of S.
- $\gamma(G)$, domination number of G: minimum cardinality of any dominating set in G.

Domination related parameters

- Domination plus conditions on vertices of the dominating set or its complement: Total domination, connected domination, independent domination, etc.
- Conditions over the style of domination: k-domination, distance domination, etc.
- Dominating functions: Roman domination, signed domination, minus domination, etc.
Roman domination

A map $f : V \rightarrow \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.

The weight of f if $f(V) = \sum_{v \in V} f(v)$.

$\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.

Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}$, $i \in \{0, 1, 2\}$.

$\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$

$\gamma(G) = \gamma_R(G)$ if and only if $G = K_n$.

G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.

There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map $f : V \to \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}$, $i \in \{0, 1, 2\}$.

- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = K_n$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map $f : V \rightarrow \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}$, $i \in \{0, 1, 2\}$.

- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = K_n$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map $f : V \rightarrow \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}$, $i \in \{0, 1, 2\}$.

- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = K_n$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map $f : V \rightarrow \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}$, $i \in \{0, 1, 2\}$.

- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = K_n$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map $f : V \rightarrow \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}$, $i \in \{0, 1, 2\}$.

- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map \(f : V \rightarrow \{0, 1, 2\} \), Roman dominating function for \(G \), if for every \(v \in V \) with \(f(v) = 0 \) there exists \(u \in N(v) \) such that \(f(u) = 2 \).
- The weight of \(f \) if \(f(V) = \sum_{v \in V} f(v) \).
- \(\gamma_R(G) \), Roman domination number of \(G \): minimum weight of any Roman dominating function for \(G \).
- Every Roman dominating function induces three sets \(B_0, B_1, B_2 \) such that \(B_i = \{v \in V : f(v) = i\} \), \(i \in \{0, 1, 2\} \).

- \(\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G) \)
- \(\gamma(G) = \gamma_R(G) \) if and only if \(G = \overline{K_n} \).
- \(G \) is called a Roman graph if \(\gamma_R(G) = 2\gamma(G) \).
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map $f : V \rightarrow \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}$, $i \in \{0, 1, 2\}$.

- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Roman domination

- A map $f : V \to \{0, 1, 2\}$, Roman dominating function for G, if for every $v \in V$ with $f(v) = 0$ there exists $u \in N(v)$ such that $f(u) = 2$.
- The weight of f if $f(V) = \sum_{v \in V} f(v)$.
- $\gamma_R(G)$, Roman domination number of G: minimum weight of any Roman dominating function for G.
- Every Roman dominating function induces three sets B_0, B_1, B_2 such that $B_i = \{v \in V : f(v) = i\}, i \in \{0, 1, 2\}$.

- $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$
- $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.
- G is called a Roman graph if $\gamma_R(G) = 2\gamma(G)$.
- There is an open problem related to characterizing all Roman graphs (Roman trees are characterized).
Product graphs

Cartesian product graphs, $G \square H$
Product graphs

Cartesian product graphs, $G \Box H$

Direct product graphs, $G \times H$
Product graphs

Cartesian product graphs, $G \Box H$

Direct product graphs, $G \times H$

Strong product graphs, $G \boxtimes H$
Product graphs

Cartesian product graphs, $G \square H$

Direct product graphs, $G \times H$

Strong product graphs, $G \boxtimes H$

Rooted product graphs, $G \circ H$
Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs:
 \[\gamma(G □ H) \geq \gamma(G)\gamma(H). \]
- Several Vizing-like results for other domination (also not domination related) parameters.
- \[\Gamma(G □ H) \geq \Gamma(G)\Gamma(H), \gamma(G \times H) \leq 3\gamma(G)\gamma(H), \gamma(G ⊠ H) \leq \gamma(G)\gamma(H), \text{ etc.} \]
- The best approximation to Vizing’s conjecture:
 \[2\gamma(G □ H) \geq \gamma(G)\gamma(H) \] (Clark and Suen).

Roman domination

- \(\gamma_R(G □ H) \geq \gamma(G)\gamma(H). \)
- There were no more results in this topic.
- So, we did it.
Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs:
 \(\gamma(G \Box H) \geq \gamma(G)\gamma(H). \)

- Several Vizing-like results for other domination (also not domination related) parameters.
 \(\Gamma(G \Box H) \geq \Gamma(G)\Gamma(H), \gamma(G \times H) \leq 3\gamma(G)\gamma(H), \gamma(G \boxtimes H) \leq \gamma(G)\gamma(H), \) etc.

- The best approximation to Vizing’s conjecture:
 \(2\gamma(G \Box H) \geq \gamma(G)\gamma(H) \) (Clark and Suen).

Roman domination

- \(\gamma_R(G \Box H) \geq \gamma(G)\gamma(H). \)

- There were no more results in this topic.

- So, we did it.
Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs:
 \[\gamma(G \square H) \geq \gamma(G)\gamma(H). \]
- Several Vizing-like results for other domination (also not domination related) parameters.
 \[\Gamma(G \square H) \geq \Gamma(G)\Gamma(H), \quad \gamma(G \times H) \leq 3\gamma(G)\gamma(H), \quad \gamma(G \boxdot H) \leq \gamma(G)\gamma(H), \text{etc.} \]
- The best approximation to Vizing’s conjecture:
 \[2\gamma(G \square H) \geq \gamma(G)\gamma(H) \] (Clark and Suen).

Roman domination

- \[\gamma_R(G \square H) \geq \gamma(G)\gamma(H). \]
- There were no more results in this topic.
- So, we did it.
Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs:
 \[\gamma(G \Box H) \geq \gamma(G)\gamma(H). \]
- Several Vizing-like results for other domination (also not domination related) parameters.
 \[\Gamma(G \Box H) \geq \Gamma(G)\Gamma(H), \quad \gamma(G \times H) \leq 3\gamma(G)\gamma(H), \]
 \[\gamma(G \boxdot H) \leq \gamma(G)\gamma(H), \] etc.
- The best approximation to Vizing’s conjecture:
 \[2\gamma(G \Box H) \geq \gamma(G)\gamma(H) \] (Clark and Suen).

Roman domination

- \[\gamma_R(G \Box H) \geq \gamma(G)\gamma(H). \]
- There were no more results in this topic.
- So, we did it.
Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs: \(\gamma(G \square H) \geq \gamma(G) \gamma(H)\).
- Several Vizing-like results for other domination (also not domination related) parameters.
- \(\Gamma(G \square H) \geq \Gamma(G)\Gamma(H)\), \(\gamma(G \times H) \leq 3\gamma(G)\gamma(H)\), \(\gamma(G \boxtimes H) \leq \gamma(G)\gamma(H)\), etc.
- The best approximation to Vizing’s conjecture: \(2\gamma(G \square H) \geq \gamma(G)\gamma(H)\) (Clark and Suen).

Roman domination

- \(\gamma_R(G \square H) \geq \gamma(G)\gamma(H)\).
- There were no more results in this topic.
- So, we did it.
Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs:
 \[\gamma(G \Box H) \geq \gamma(G) \gamma(H). \]
- Several Vizing-like results for other domination (also not domination related) parameters.
 \[\Gamma(G \Box H) \geq \Gamma(G) \Gamma(H), \quad \gamma(G \times H) \leq 3\gamma(G) \gamma(H), \]
 \[\gamma(G \boxdot H) \leq \gamma(G) \gamma(H), \text{ etc.} \]
- The best approximation to Vizing’s conjecture:
 \[2\gamma(G \Box H) \geq \gamma(G) \gamma(H) \text{ (Clark and Suen)}. \]

Roman domination

- \[\gamma_R(G \Box H) \geq \gamma(G) \gamma(H). \]
- There were no more results in this topic.
- So, we did it.
Introduction

Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs:
 \[\gamma(G \Box H) \geq \gamma(G) \gamma(H). \]
- Several Vizing-like results for other domination (also not domination related) parameters.
 \[\Gamma(G \Box H) \geq \Gamma(G) \Gamma(H), \quad \gamma(G \times H) \leq 3 \gamma(G) \gamma(H), \]
 \[\gamma(G \boxtimes H) \leq \gamma(G) \gamma(H), \text{ etc.} \]
- The best approximation to Vizing’s conjecture:
 \[2 \gamma(G \Box H) \geq \gamma(G) \gamma(H) \] (Clark and Suen).

Roman domination

- \(\gamma_R(G \boxdot H) \geq \gamma(G) \gamma(H) \).
- There were no more results in this topic.
- So, we did it.
Domination versus product graphs

Vizing’s conjecture

- One of the most important problems about domination in graphs: \(\gamma(G \Box H) \geq \gamma(G)\gamma(H) \).
- Several Vizing-like results for other domination (also not domination related) parameters.
 \[\Gamma(G \Box H) \geq \Gamma(G)\Gamma(H), \gamma(G \times H) \leq 3\gamma(G)\gamma(H), \gamma(G \boxplus H) \leq \gamma(G)\gamma(H), \text{ etc.} \]
- The best approximation to Vizing’s conjecture:
 \[2\gamma(G \Box H) \geq \gamma(G)\gamma(H) \] (Clark and Suen).

Roman domination

- \(\gamma_R(G \Box H) \geq \gamma(G)\gamma(H) \).
- There were no more results in this topic.
- So, we did it.
Index

1. Introduction

2. Cartesian product graphs

3. Strong product graphs

4. Rooted product graphs
A general bound

V_1 and V_2, the vertex sets of G and H, respectively.
A general bound

- V_1 and V_2, the vertex sets of G and H, respectively.
- $S = \{u_1, \ldots, u_t\}$, a dominating set for G, $t = \gamma(G)$.
A general bound

- V_1 and V_2, the vertex sets of G and H, respectively.

- $S = \{u_1, ..., u_t\}$, a dominating set for G, $t = \gamma(G)$.

- $\Pi = \{A_1, A_2, ..., A_{\gamma(G)}\}$, a vertex partition of G such that $u_i \in A_i$ and $A_i \subseteq N[u_i]$.

![Diagram showing Cartesian product graphs with vertex sets $A_1, A_2, ..., A_t$ and dominating set $S = \{u_1, ..., u_t\}$]
A general bound

\{\Pi_1, \Pi_2, \ldots, \Pi_{\gamma(G)}\}, a vertex partition of \(G \square H\), such that \(\Pi_i = A_i \times V_2\) for every \(i \in \{1, \ldots, \gamma(G)\}\)
A general bound

- \{\Pi_1, \Pi_2, \ldots, \Pi_{\gamma(G)}\}, a vertex partition of \(G \square H\), such that \(\Pi_i = A_i \times V_2\) for every \(i \in \{1, \ldots, \gamma(G)\}\)

- \(f = (B_0, B_1, B_2)\), a \(\gamma_R(G \square H)\)-function
A general bound

\[\{\Pi_1, \Pi_2, \ldots, \Pi_{\gamma(G)}\}, \text{ a vertex partition of } G \square H, \text{ such that } \]
\[\Pi_i = A_i \times V_2 \text{ for every } i \in \{1, \ldots, \gamma(G)\} \]

\[f = (B_0, B_1, B_2), \text{ a } \gamma_R(G \square H)\text{-function} \]

For every \(i \in \{1, \ldots, \gamma(G)\}, \) \(f_i : V_2 \rightarrow \{0, 1, 2\}, \) a function on \(H \) such that \(f_i(\nu) = \max\{f(u, \nu) : u \in A_i\}. \)
A general bound

\[f_i = (X_0^{(i)}, X_1^{(i)}, X_2^{(i)}) \], not a Roman dominating function for \(H \), there is a vertex \(v \in X_0^{(i)} \), \(N(v) \cap X_2^{(i)} = \emptyset \).
A general bound

\[f_i = (X_0^{(i)}, X_1^{(i)}, X_2^{(i)}) \], not a Roman dominating function for \(H \), there is a vertex \(v \in X_0^{(i)} \), \(N(v) \cap X_2^{(i)} = \emptyset \).
A general bound

- $f_i = (X_0^{(i)}, X_1^{(i)}, X_2^{(i)})$, not a Roman dominating function for H, there is a vertex $v \in X_0^{(i)}$, $N(v) \cap X_2^{(i)} = \emptyset$.

- For every $u \in A_i$, (u, v) is adjacent to some vertex not in Π_i.
For every $i \in \{1, \ldots, \gamma(G)\}$, we count the number of vertices of H satisfying that they are not adjacent to any vertex with label two (2).
A general bound

- For every $i \in \{1, ..., \gamma(G)\}$, we count the number of vertices of H satisfying that they are not adjacent to any vertex with label two (2).
- For every vertex v of H we count the G-cells satisfying that all their vertices are not adjacent to any vertex with label two (2) in the same “column”.
A general bound

- For every $i \in \{1, \ldots, \gamma(G)\}$, we count the number of vertices of H satisfying that they are not adjacent to any vertex with label two (2).
- For every vertex v of H we count the G-cells satisfying that all their vertices are not adjacent to any vertex with label two (2) in the same “column”.
- By doing a double sum we get that

$$\gamma_R(G \Box H) \geq \frac{2}{3} \gamma(G) \gamma_R(H)$$
The general bound

For any graphs G and H,

$$\gamma_R(G \square H) \geq \frac{2}{3} \gamma(G) \gamma_R(H).$$
The general bound

For any graphs G and H,

$$\gamma_R(G \square H) \geq \frac{2}{3} \gamma(G) \gamma_R(H).$$

If $\gamma_R(H) > \frac{3\gamma(H)}{2}$, then

$$\gamma(G \square H) \geq \frac{\gamma(G) \gamma(H)}{2} + \frac{\gamma(G)}{3}.$$
The general bound

For any graphs G and H,

$$\gamma_R(G \Box H) \geq \frac{2}{3} \gamma(G) \gamma_R(H).$$

If $\gamma_R(H) > \frac{3 \gamma(H)}{2}$, then

$$\gamma(G \Box H) \geq \frac{\gamma(G) \gamma(H)}{2} + \frac{\gamma(G)}{3}.$$
Index

1 Introduction

2 Cartesian product graphs

3 Strong product graphs

4 Rooted product graphs
Roman domination

- $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$-function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$-function.

Then,

$$\gamma_R(G \boxtimes H) \leq \gamma_R(G) + \gamma_R(H) - 2|A_2||B_2|.$$
Roman domination

$f_1 = (A_0, A_1, A_2), \gamma_R(G)$-function. $f_2 = (B_0, B_1, B_2), \gamma_R(H)$-function. Then,

$$\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.$$
Roman domination

- \(f_1 = (A_0, A_1, A_2), \gamma_R(G)\)-function. \(f_2 = (B_0, B_1, B_2), \gamma_R(H)\)-function.

Then,

\[
\gamma_R(G \boxtimes H) \leq \gamma_R(G) \gamma_R(H) - 2|A_2||B_2|.
\]

Idea of the proof

\(f \) on \(G \boxtimes H \) defined as

\[
f(u, v) = \begin{cases}
2, & (u, v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\
1, & (u, v) \in A_1 \times B_1, \\
0, & \text{otherwise}.
\end{cases}
\]
Roman domination

- \(f_1 = (A_0, A_1, A_2), \ \gamma_R(G)\)-function. \(f_2 = (B_0, B_1, B_2), \ \gamma_R(H)\)-function. Then,

\[
\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.
\]

Idea of the proof

- \(f \) on \(G \boxtimes H \) defined as

\[
f(u, v) = \begin{cases}
2, & (u, v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\
1, & (u, v) \in A_1 \times B_1, \\
0, & \text{otherwise}.
\end{cases}
\]

- \((A_0 \times B_0) \cup (A_0 \times B_2) \cup (A_2 \times B_0) \) is dominated by \(A_2 \times B_2 \),
Roman domination

- \(f_1 = (A_0, A_1, A_2) \), \(\gamma_R(G) \)-function. \(f_2 = (B_0, B_1, B_2) \), \(\gamma_R(H) \)-function. Then,

\[
\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.
\]

Idea of the proof

- \(f \) on \(G \boxtimes H \) defined as

\[
f(u, v) = \begin{cases}
2, & (u, v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\
1, & (u, v) \in A_1 \times B_1, \\
0, & \text{otherwise.}
\end{cases}
\]

- \((A_0 \times B_0) \cup (A_0 \times B_2) \cup (A_2 \times B_0)\) is dominated by \(A_2 \times B_2 \),
- \(A_1 \times B_0 \) is dominated by \(A_1 \times B_2 \) and
Roman domination

- $f_1 = (A_0, A_1, A_2)$, $\gamma_R(G)$-function. $f_2 = (B_0, B_1, B_2)$, $\gamma_R(H)$-function. Then,

\[\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|. \]

Idea of the proof

- f on $G \boxtimes H$ defined as

\[
f(u, v) = \begin{cases}
2, & (u, v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\
1, & (u, v) \in A_1 \times B_1, \\
0, & \text{otherwise.}
\end{cases}
\]

- $(A_0 \times B_0) \cup (A_0 \times B_2) \cup (A_2 \times B_0)$ is dominated by $A_2 \times B_2$,

- $A_1 \times B_0$ is dominated by $A_1 \times B_2$ and

- $A_0 \times B_1$ is dominated by $A_2 \times B_1$.
Roman domination

- \(f_1 = (A_0, A_1, A_2) \), \(\gamma_R(G) \)-function. \(f_2 = (B_0, B_1, B_2) \), \(\gamma_R(H) \)-function. Then,

\[
\gamma_R(G \boxtimes H) \leq \gamma_R(G)\gamma_R(H) - 2|A_2||B_2|.
\]

Idea of the proof

- \(f \) on \(G \boxtimes H \) defined as

\[
f(u, v) = \begin{cases}
2, & (u, v) \in (A_1 \times B_2) \cup (A_2 \times B_1) \cup (A_2 \times B_2), \\
1, & (u, v) \in A_1 \times B_1, \\
0, & \text{otherwise}.
\end{cases}
\]

- \((A_0 \times B_0) \cup (A_0 \times B_2) \cup (A_2 \times B_0) \) is dominated by \(A_2 \times B_2 \),
- \(A_1 \times B_0 \) is dominated by \(A_1 \times B_2 \) and
- \(A_0 \times B_1 \) is dominated by \(A_2 \times B_1 \).
- \(f \) is a Roman dominating function on \(G \boxtimes H \).
Index

1. Introduction
2. Cartesian product graphs
3. Strong product graphs
4. Rooted product graphs
Domination

- G, graph of order $n \geq 2$. H, graph with root v and at least two vertices. If v does not belong to any $\gamma(H)$-set or v belongs to every $\gamma(H)$-set, then

$$\gamma(G \circ H) = n\gamma(H).$$
Domination

- G, graph of order $n \geq 2$. H, graph with root v and at least two vertices. If v does not belong to any $\gamma(H)$-set or v belongs to every $\gamma(H)$-set, then
 \[\gamma(G \circ H) = n\gamma(H). \]

- G, graph of order $n \geq 2$. Then for any graph H with root v and at least two vertices,
 \[\gamma(G \circ H) \in \{n\gamma(H), n(\gamma(H) - 1) + \gamma(G)\}. \]
Roman domination

\[G, \text{ graph of order } n \geq 2. \text{ Then for any graph } H \text{ with root } v \text{ and at least two vertices,} \]

\[n(\gamma_R(H) - 1) + \gamma(G) \leq \gamma_R(G \circ H) \leq n\gamma_R(H). \]
Roman domination

- G, graph of order $n \geq 2$. Then for any graph H with root v and at least two vertices,

$$n(\gamma_R(H) - 1) + \gamma(G) \leq \gamma_R(G \circ H) \leq n\gamma_R(H).$$

Tightness of the bounds

- If for every $\gamma_R(H)$-function $f = (B_0, B_1, B_2)$ is satisfied that $f(v) = 0$, then

$$\gamma_R(G \circ H) = n\gamma_R(H).$$
Roman domination

- **G**, graph of order $n \geq 2$. Then for any graph H with root v and at least two vertices,

$$n(\gamma_R(H) - 1) + \gamma(G) \leq \gamma_R(G \circ H) \leq n\gamma_R(H).$$

Tightness of the bounds

- If for every $\gamma_R(H)$-function $f = (B_0, B_1, B_2)$ is satisfied that $f(v) = 0$, then

$$\gamma_R(G \circ H) = n\gamma_R(H).$$

- If there exist two $\gamma_R(H)$-functions $h = (B_0, B_1, B_2)$ and $h' = (B'_0, B'_1, B'_2)$ such that $h(v) = 1$ and $h'(v) = 2$, then

$$\gamma_R(G \circ H) = n(\gamma_R(H) - 1) + \gamma(G).$$
- G, graph of order $n \geq 2$ and H, graph with root v and at least two vertices.
Rooted product graphs

- G, graph of order $n \geq 2$ and H, graph with root v and at least two vertices.
- If for every $\gamma_R(H)$-function f is satisfied that $f(v) = 1$, then

$$
\gamma_R(G \circ H) = n(\gamma_R(H) - 1) + \gamma_R(G).
$$
THANKS!!!