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Zk-linear codes

C is a Zk-linear code; that is, C is an additive subgroup of Zk.

The dual of a code C is C⊥ = {w ∈ Zk | w · v = 0, ∀ v ∈ C}.
The code is said to be self-dual if it is equal to its dual and
self-orthogonal if it is contained in its dual.
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Association Schemes

Let X be a finite set, |X| = v. Let Ri be a subset of X ×X,
∀i ∈ I = {0, . . . , d} , d > 0, < = {Ri}i∈I .

We say that (X,<) is a d-class association scheme if the
following properties are satisfied:

(i) R0 = {(x, x) : x ∈ X} is the identity relation.
(ii) ∀x, y ∈ X, ∃ i ∈ I such that (x, y) ∈ Ri for exactly one i.
(iii) ∀ i ∈ I, ∃ i′ ∈ I such that Rt

i = Ri′ , where
Rt

i = {(x, y) : (y, x) ∈ Ri}.
(iv) If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and

(z, y) ∈ Rj is a constant pkij .

A d-class association scheme with d ≤ 4 is always
commutative, [1], meaning that pkij = pkji, for all i, j, k ∈ I.

D. G. Higman.

Coherent Configurations.

Geom.Dedicata, vol. 4, pp. 1-32, (1975).
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The adjacency matrix Ai for the relation Ri, i ∈ I is:

(Ai)x,y =

{
1, if (x, y) ∈ Ri,
0, otherwise.

The conditions (i)-(iv) in the definition of (X,<) are
equivalent to:

(i) A0 = I (the identity matrix).
(ii)

∑
i∈I Ai = J (the all-ones matrix).

(iii) ∀ i ∈ I,∃ i′ ∈ I, such that Ai = At
i′ .

(iv) ∀ i, j ∈ I, AiAj =
∑
k∈I

pkijAk.

If the association scheme is symmetric, then Ai = Ati, for all
i ∈ I.

If the association scheme is commutative, then AiAj = AjAi,
for all i, j ∈ I.
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3-class association schemes and self-dual codes

Let (X,<) be a 3-class association scheme.

The adjacency matrix for R0 is I and the adjacency matrices
of R1, R2 and R3 are A1, A2 and J − I −A1 −A2,
respectively.

Lemma

If (X,<) is a 3-class association scheme then the following
equations hold:

(i) A1J = JA1 = p011J , A2J = JA2 = p022J .

(ii) A1A2 = A2A1 = p012I + p112A1 + p212A2 + p312 (J − I −A1 −A2).

Note that the number of ones per row (or column) in A1 is p011, A2

is p022 and A3 is p033.
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For arbitrary values of r, s, t, u ∈ Zk

Q (r, s, t, u) = rA0 + sA1 + tA2 + uA3

= (r − u) I + (s− u)A1 + (t− u)A2 + uJ.

The generator matrix for a code generated using pure
construction is

P(r, s, t, u) = (I | Q (r, s, t, u)).

The generator matrix for a code generated using bordered
construction is

B(r, s, t, u) =


1 0 . . . 0 a 1 . . . 1

0
...
0

I

c
...
c

Q (r, s, t, u)

 .

We write Q, P and B for Q (r, s, t, u), P (r, s, t, u) and
B (r, s, t, u).
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Rectangular association schemes

Definition

Consider two sets A and B with |A| = n ≥ 2 and |B| = m ≥ 2. Let
X = A×B and define the binary relations over X:

R0 =
{
((x, y) , (x, y)) ∈ X2

}
;

R1 =
{
((x, y) , (x, y′)) ∈ X2

∣∣ y 6= y′
}
;

R2 =
{
((x, y) , (x′, y)) ∈ X2

∣∣x 6= x′
}
;

R3 =
{
((x, y) , (x′, y′)) ∈ X2

∣∣x 6= x′ and y 6= y′
}
.

(X,<) is a symmetric 3-class association scheme with parameters:

v = nm, p011 = m− 1; p022 = n− 1; p033 = (m− 1) (n− 1) ;
p111 = m− 2; p123 = p132 = n− 1; p133 = (n− 1) (m− 2) ;
p213 = p231 = m− 1; p222 = n− 2; p233 = (n− 2) (m− 1) ;
p312 = p321 = 1; p331 = p313 = m− 2;
p223 = p232 = n− 2 = p333 = (n− 2) (m− 2) ;
and pkij = 0, for all other cases.
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Lemma

If (X,<) is a n×m symmetric rectangular association scheme,
then the following equations hold:

(i) A1J = JA1 = (m− 1) J , A2J = JA2 = (n− 1) J ,
J2 = n2m2J ;

(ii) A2
1 = (m− 1) I + (m− 2)A1; A2

2 = (n− 1) I + (n− 2)A2;

(iii) A1A2 = A2A1 = A3 = J − I −A1 −A2.
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Self-dual codes from rectangular association schemes

The case of binary self-dual codes from non-symmetric 3-class
association schemes was studied in [1].

For the symmetric case the number of conditions and
equations increase.

We limit ourselves to the rectangular association scheme
n×m (n,m ≥ 2).

M. Bilal, J. Borges, S. T. Dougherty, C. Fernández-Córdoba.

Binary Self-dual codes from 3-class association schemes.

III International Castle Meeting on Coding Theory and Applications,
UAB vol. 5 , pp: 59 - 64.UAB- (September 2011). ISBN:
978-84-490-2688-1.
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For a code generated by P to be self-dual we need

(I | Q)(I | Q)t = 0.

Namely, we need QQt = −I.
For the code generated by B to be self-dual we need the
following:

1 + a2 + vb2 = 0; (1)

ac+ b(r + sκ+ tκ+ u(v − 2κ− 1)) = 0; (2)

I + c2J +QQT = 0. (3)
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Let ρ = r − u, σ = s− u and τ = t− u. We can write Equation
QQt = Q2 as

Q2 =
[
ρ2 + σ2 (m− 1) + τ2 (n− 1)− 2στ

]
I

+
[
2ρσ + σ2 (m− 2)− 2στ

]
A1

+
[
2ρτ + τ2 (n− 2)− 2στ

]
A1

+
[
u
[
2ρ+ 2σ (m− 1) + 2τ (n− 1) + un2m2

]
+ 2στ

]
J.

(4)
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For the code generated by P to be self-orthogonal we need

ρ2 + σ2 (m− 1) + τ2 (n− 1)− 2στ = −1,
2ρσ + σ2 (m− 2)− 2στ = 0,

2ρτ + τ2 (n− 2)− 2στ = 0,

u
[
2ρ+ 2σ (m− 1) + 2τ (n− 1) + un2m2

]
+ 2στ = 0.

(5)
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For a code generated by B to be self-orthogonal, along with
Equations (1) and (2), we need

ρ2 + σ2 (m− 1) + τ2 (n− 1)− 2στ = −1;
2ρσ + σ2 (m− 2)− 2στ = 0;

2ρτ + τ2 (n− 2)− 2στ = 0;

u
[
2ρ+ 2σ (m− 1) + 2τ (n− 1) + un2m2

]
+ 2στ = −c2.

(6)
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Theorem

Let C be a code generated from a n×m rectangular association
scheme over Zk by using the pure or the bordered construction.
Let k = 2α0pα1

1 · · · pα
r

r be the prime factor decomposition of k. If
C is a self-dual code, then

α0 ≤ 1 and pi ≡ 1 (mod 4) ∀i = 1, . . . , r. (7)

Moreover, if (7) is satisfied, then there exist values of n and m
such that C is a self-dual code.

Example

There exists a self-dual code over Zk from 3-class rectangular
association scheme when k = 2, 5, 10, 13, 17, 25, 26, . . .
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Example

For n = 2 and m = 6. The adjacency matrices are:

A0 = I, A1 =



0 1 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 1 1 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 0



,



Introduction Rectangular association schemes Self-dual codes from rectangular association schemes Future Work Bibliography

Example

The code C generated by P, with Q = 2I + 4A1, is a self-dual
code over Z5.
We can generate two self-dual codes over Z5 with B, using
Q = 2I + 4A1 with a ≡ 2 (mod 5) or a ≡ 3 (mod 5) along with
b ≡ c ≡ 0 (mod 5).
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Future Work

We have generated binary self-dual codes from 3-class association
schemes, BDF11, and we have also generated self-dual codes over
Zk from 3-class association schemes.

We want to generate self-dual codes from Hamming and
Johnson 3-class association schemes over Zk.
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