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SUMMARY 

A method for the computation of phase velocities of surface waves from microtremor 

waveforms is shown. The technique starts from simultaneous three-component records 

obtained in a circular array without a central station. Then, Fourier spectra of vertical, 

radial and tangential components of motion are calculated for each station and considered 

as complex-valuated functions of the azimuthal coordinate. A couple of intermediate real 

physical quantities, B  and C , can be defined from the 0 and ± 1– order coefficients of 

the Fourier series expansion of such functions. Finally, phase velocities of Rayleigh and 

Love waves can be retrieved from B  and C  by solving respective one-unknown 

equations. The basic assumption is the possibility of expanding the wavefield as a sum of 

plane surface waves with Rayleigh and Love wavenumbers being univocal functions of 

the circular frequency. The method is tested in synthetic ambient noise wavefields 

confirming its reliability and robustness for passive seismic surveying. 
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1 INTRODUCTION 

Seismic surveying methods based on surface waves have been widely shown as powerful 

tools for the determination of ground structures, by themselves or together with other 

geophysical techniques (see for example Noguchi & Nishida 2002; Sakai & Morikawa 

2006). Since the earlier work of Aki (1957), methods based on study of propagation of 

ambient noise (microtremor), consisting of elastic waves generated by environmental 

sources, have been popularized. That paper has been considered the basis of a group of 

techniques named as SPatial AutoCorrelation methods (SPAC) for the calculation of 

dispersion curves of surface waves which represent an intermediate stage for estimation 

of ground structures in terms of its elastodynamic parameters.  

 The more widely used theoretical scheme of the SPAC method requires the 

acquisition of vertical motion records on a set of stations located along a circumference 

and at its centre for the calculation of Rayleigh wave dispersion curves. Although the 

fundamental equations were derived for infinitely dense circular arrays, the SPAC 

method can also be applied for real arrays with finite number of sensors for a wavelength 

range depending on the array size and wavefield characteristics (see Okada 2006). The 

precision and sufficiency of measurements of structure-dependent physical quantities 

represent a decisive influence on the accuracy of the inverted physical models of the earth 
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crust. Thus, seismologists are encouraged to obtain the higher performance from 

microtremor records, using them for the estimation of as many relevant characteristics of 

surface waves as possible. In this context, Rayleigh wave velocity and ellipticity, as well 

as Love wave dispersion curve are physical quantities of special interest and should be 

used together for the inversion of better constrained ground models considering their 

predominant sensitivities to different structural characteristics. Advanced inversion 

schemes taking advantage of this can be found in the literature (Métaxian & Lesage 1997; 

Parolai et al. 2005; Arai & Tokimatsu 2005; Wathelet 2005; Köhler et al. 2007; 

García-Jerez et al. 2008; among others). Many efforts are also devoted to the 

development and improvement of techniques for experimental calculation of surface 

wave characteristics. The three-component SPAC method (3c-SPAC, see Appendix A) is 

a variant of SPAC permitting calculation of both types of surface wave velocities from 

three-component microtremor records obtained in a circular array with a central station. 

This was also pointed out by Aki (1957). Further studies by Okada & Matsushima (1989) 

and Morikawa (2006) provided a detailed derivation in the general case of wavefields 

composed of both types of surface waves with arbitrary relative power. An extension of 

that technique by relaxing the hypothesis of perfect circular array has been developed and 

tested by Köhler et al. (2007). In recent works, Cho et al. (2006a) and García-Jerez et al. 
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(2006a and 2008) proposed similar methods for the calculation of both Rayleigh and Love 

wave dispersion curves by horizontal-component microtremor recorded in a double 

circular array. 

 The aim of this work is to present an alternative approach for the computation of 

Rayleigh and Love phase velocities from three-component microtremor records on a 

single circular array without a central station. This technique, named hereafter as SCAM 

(Single Circular Array Method), is based on the calculation of a couple of intermediate 

quantities which can be related to both surface wave velocities. The mathematical 

derivation is presented for a wavefield written as an arbitrary sum of plane surface waves. 

Finally, numerical simulations for both the SCAM and the 3c-SPAC method have been 

compared. 

 

2 METHOD 

2.1 REPRESENTATION OF THE WAVEFIELD 

Two basic suppositions about the composition of the incident wavefield will be assumed 

in the following calculations: 

i) The wavefield can be represented as a discrete sum of plane surface wavefronts. 

ii) Surface waves show a clearly predominant mode for each frequency and type of 
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wave (Rayleigh or Love). 

The plane wave hypothesis holds only when distances from the sources to the array 

centre are large enough in comparison with its radius, so that, the curvature of the 

wavefront and the subsequent drop of energy through the array due to the geometrical 

attenuation might be neglected. Hypothesis ii) implies that unambiguous frequency vs. 

phase velocity relations can be defined for both Rayleigh and Love surface waves since 

frequency bands for which several modes coexist are not considered. Thus, the 

Fourier-transformed wavefield at any position r  on the ground surface can be expressed 

as: 

 

[ ]∑
=

⋅−+⋅−=
N

1j
LLjRRj ))(ik(exp)())(ik(exp)(),(

jj
reAreArU ϕϕ ωωωωω , (1) 

 

where )ω(kR  and )ω(kL  represent the wavenumbers of the predominant modes of 

Rayleigh and Love waves respectively for the circular frequency ω . The unit radial 

vector ϕϕϕ sincos yx eee +=  points to the direction defined by the azimuthal angle ϕ  

Fig. 1 on the horizontal plane XY (flat ground surface, Fig. 1), and i  is the imaginary unit. 

The complex physical quantities )(Rj ωA  and )(Lj ωA  represent the amplitudes of the 

Rayleigh and Love plane waves spreading in direction jϕ  due to the j -th source. N  
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is the total number of distant sources generating the wavefield. The characteristics of the 

polarization of surface waves yield the following constraints: 

 

z
V
Rj

H
RjRj )(A)(A)(

j
eeA ωωω ϕ += ,   (2) 

 

jzLjLj )(A)( ϕωω eeA ×= ,   (3) 

 

 )(i)(A/)(A V
Rj

H
Rj ωχωω −=  with )(ωχ  a real number.  (4) 

 

Equation (2) takes into account that motion is constrained to a vertical plane 

containing the direction of wave propagation for Rayleigh waves, while Eq. (3) restricts 

motion to be horizontal and perpendicular to the propagation direction in the case of Love 

waves. Eq. (4) implies that difference in phases between the vertical and the horizontal 

components of Rayleigh waves is 2/π± . Symbol )(ωχ  represents the ellipticity of 

the predominant mode of Rayleigh waves for the frequency ω . The unit vector ze  is 

vertical and directed up, and subscripts H  and V  refer to horizontal and vertical 

projections respectively. 
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2.2 FOURIER SERIES EXPANSION OF THE VERTICAL, RADIAL AND 

TANGENTIAL COMPONENTS VS. THE AZIMUTHAL COORDINATE 

If three-component records of the wavefield were available at any point θeR  on a 

circumference with radius R , three azimuth-dependent functions may be defined from 

the Fourier-transformed records in a given time window. These are the vertical 

component of the wavefield ),R(),,R(W z ωωθ θeUe ⋅= , the radial component 

),R(),,R(U rad ωωθ θθ eUe ⋅=  and the tangential component 

),R()(),,R(U z
tg ωωθ θθ eUee ⋅×= . These functions are continuous and smooth for the 

incident wavefield given by Eq. (1). The Fourier-Series coefficients of the expansion of 

these functions on the azimuthal coordinate θ  may be empirically evaluated and 

theoretically connected to meaningful properties of the wavefield such as the phase 

velocity of Love and Rayleigh waves. An early application of the Fourier-Bessel analysis 

to stationary random processes can be found in the article by Henstridge (1979). The 

theoretical values for such coefficients can be obtained from Eqs. (1) and (2) to (4) as: 

 

),( ωRWm = θωθθ
π

π

d),,R(W)imexp(∫
−

− = )x(JA)i(2 Rm
m,V

R
m−π ,   (5) 

 



 9

),R(U rad
m ω = ( ))()()( 11
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where R)(k)(x RR ωω = , R)(k)(x LL ωω = , and the complex coefficients m,V
RA , m,H

RA  

and m
LA  have been defined as: 
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The integral representation )x(J)inexp()i(2d))(cosixinexp( n
n ϕπθϕθθ

π

π

−−=−−−∫
+

−

 

for the n - order Bessel function )x(Jn  has been used in the former derivation 

(Abramowitz & Stegun 1972). 
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2.3 COMPUTATION OF RAYLEIGH AND LOVE PHASE VELOCITIES 

Several suitable options can be found in order to retrieve phase velocities of Rayleigh and 

Love waves and Rayleigh wave ellipticity from Eqs. (5) to (7). The possibility of 

derivation of the signed ellipticity of Rayleigh waves has been pointed out in the 

preliminary work by García-Jerez et al. (2006b) based on Eqs. (5) and (6) for m = 0 

together with Eq. (4). Cho et al. (2006a) found a similar method under the hypothesis of 

random stationary wavefield. García-Jerez et al. (2006a) adapted the original theory for 

stationary random wavefields by Cho et al. (2006a) for the deterministic wavefield 

formulation and obtained Love velocities from simultaneous measurements along an 

array made up of two concentric rings. That method makes use of Eqs. (6) and (7) in the 

case of m = 0, that is, the calculation of the azimuthal average of radial or tangential 

spectra. The generalization of the SPAC method (Aki 1957) for derivation of Rayleigh 

and Love velocities from three-component records (i. e. Morikawa 2006) taking 

advantage of Eq. (5) for m = 0, and Eqs. (6) and (7) for m =± 1 has been summarized in 

Appendix A after adaptation to our deterministic and discrete representation of the 

wavefield. Nevertheless, a different scheme is immediately suggested by the equations 

(5) to (7), consisting of a joint resolution of them for a unique radius R . Therefore, the 

requirement of the central station is eliminated. A system of eleven equations involving 
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the unknowns Lx , Rx , χ , 1,V
RA − , 0,V

RA , 1,V
RA + , 1,H

RA − , 0,H
RA , 1,H

RA + , 1
LA−  and 1

LA+  

is generated considering Eqs. (5) and (6) for m = -1, 0, 1; and Eq. (7) for m = -1, +1 

together with Eq. (4) which provides three additional constraints for the ratios 

m,V
R

m,H
R A/A  for m = -1, 0, 1. Such a set of equations involves eight empirically 

computable coefficients: 1W− , 0W , 1W+ , rad
1U− , rad

0U , rad
1U+ , tg

1U−  and tg
1U+ , from 

which, the structure-dependent physical quantities Lx , Rx  and χ  can be worked out. 

In a first stage, the system can be simplified by elimination of all variables 

representing weighted amplitudes of plane waves. It yields (Appendix B): 

 

R0R0
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0

x
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where functions )x(fm  have been defined, for any m , as: 

 

)x(fm  = ( ) )x(J/)x(J)x(J
2
x

m1m1m +− − = m
)x(J
)x(Jx

m

1m −− .   (14) 
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Fig. 2 The behaviors of functions )x(f0  and )x(f1  have been shown in Fig. 2a for cases m  

= 0 and m  = 1. Elimination of Rx  and χ  from Eqs. (12) and (13) yields the 

Lx -dependent equation: 

 

),R(B)x(f L1 ω= ,     (15) 

 

with B  representing the quantity: 

 

),R(W),R(U),R(W),R(U
),R(W),R(U),R(W),R(U

i),R(B
1

rad
11

rad
1

1
tg
11

tg
1

ωωωω
ωωωω

ω
−++−

−++−

−
+

= . (16) 

 

 Noted that parameter B  can be evaluated for each ω  directly from the Fourier 

transformed records. This result is formally as simple as the standard SPAC for vertical 

records (Aki 1957) since only a finite number of calculations with the waveforms (apart 

from the ideally continuous azimuthal weighted averaging) are required in order to 

remove the effects of Rayleigh waves. In the case of infinite number of stations on the 

circular array, phases coming from the Fourier series coefficients cancel out during the 

computation of B  via Eq. (16), providing a real result. Function )x(f1  is the unity for 

x  = 0 and continuous and monotonically decreasing to x  = 3.83 where it takes an 
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infinite value as shown in Fig. 2a. That function is one-to-one inside the range [ )14.50 , 

showing a zero crossing at x  = 1.84. An explicit expression for 2
Lx  may be obtained, 

for example, for long Love wavelengths by means of a Taylor series expansion matching 

the form n

1n
n

2
L )1B(lx −=∑

∞

=

, where nl  are real numbers: 

 

...)1B(
540

1)1B(
18
1)1B(

3
2)1B(4x 4322

L +−+−−−−−−≈    ( B ≤ 1). (17) 

 

This series is not applicable for B  > 1 due to the discontinuity in )x(f1  at x  = 

3.83. 

Respectively, a suitable way for the determination of Rayleigh wave velocity can 

be obtained from the Eqs. (11) to (13) and definition (16): 

 

),R(C
1)x(f),R(B

)x(f
)B,x(g

R1

R0
R ω

ω
=

−
= ,   (18) 

 

where a second relevant quantity, C , has been defined as: 

 

),R(U),R(U),R(U),R(U
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Equation (18) shows that the wavefield characteristics m,V
RA , m,H

RA  (with m = 0, ± 1 ), 

m
LA  (with m = ± 1) and the ground property χ  cancel out in the calculation of C , so 

that, it depends on Rx  and Lx  (or B ) only, by means of the function )B,x(g R , which 

has been plotted in Fig. 2b. Function )B,x(g R  is continuous on the variable Rx  either 

up to 2.40 (first infinity in 0f ) when B  ≤  1, or up to the first root of B/1)x(J1 =  in 

any other case. The Rayleigh wave property Rx  can be worked out by using an 

appropriate series expansion in Eq. (18). For example, that with the 

form: n

1n
n

2
R C)B(rx ∑

∞

=

= , with nr  depending on B  being given, for C  > 0 and B  < 1, 

by: 

 

...C
96

)B93B625()B31(3)B1(C
2

)B1()B31(C)B1(2x 3
22

22
R +

+−+−
−+

−−
−−=   (20). 

 

3 COMPARISONS WITH THE 3C-SPAC METHOD 

The formulation of SCAM for calculation of Love wave velocities leads to a simpler 

mathematical expression in comparison with the 3c-SPAC (Okada & Matsushima 1989), 

since Lx  and Rx  could not be obtained in an independent manner from the latter 

method. As shown, B , C  and the target quantities Lx  and Rx  are related by 

)x(fB L1=  and )B,x(gC R= , thus, Lx  and Rx  can be determined by solving 
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one-unknown equations in terms of unambiguous measurable physical quantities. Since 

the former relations are not one-to-one, the final values of Lx  and Rx  should be 

eventually selected among a set of possible solutions. Equations (14) and (15) also permit 

to choose the optimum array size for Love wave prospecting independently of the 

Rayleigh wave velocities. On the other hand, 3c-SPAC leads to a couple of relationships 

(see Appendix A) with the form )x(JC R0V =  and )x,x,C(hC LRradtg =  corresponding 

with Eq. (A8) and with the result of elimination of )(ωℜ  from (A1) and (A2), 

respectively. The former one represents the standard vertical-SPAC method for the 

calculation of Rx . Since )x(J0  cannot be globally inverted, calculation of the Love 

wave property Lx  from the latter equation can not be summarized into a unique 

self-contained relationship, requiring an additional intermediate selection of root in the 

Fig. 3 calculation of Rx  from VC .This point has been illustrated in Fig. 3 by using a synthetic 

wavefield composed of a randomly selected set of 100 plane surface waves. For clarity, a 

hypothetical constant Rayleigh to Love wavelength ratio of 2 (non dispersive wavefield) 

and fixed Rayleigh wave ellipticities corresponding to χ  = 1 and χ  = 10 have been 

considered. Amplitudes of the Love waves and vertical components of the Rayleigh 

waves were chosen in a common range. Coefficients B , C, tgC  and VC  calculated 

from the synthetic records in a 8-sensor array (with a ninth central station for the 
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3c-SPAC) have been plotted vs. Lx  or Rx  (asterisks). These results have been 

compared with the theoretical relations for an infinite dense array derived from the 

parameters of the incident wavefield ),x,x( LR ℜ , shown with solid lines in Fig. 3. 

Functions )B,x(g R , and )x),C(J,C(h LV
1

0rad
−  with B , radC  and VC  obtained from 

the finite array records and )C(J V
1

0
−  chosen as the smaller value of Rx  satisfying Eq. 

(A8) have been shown in Figs 3b and 3c using circles. Differences between asterisks and 

circles represent, additive misfits in Eq. (18) or in )x,x,C(hC LRradtg = , respectively. In 

the former case (Fig. 3b), misfits are due to the use of an array with finite number of 

stations. On the other hand, the criterion for selection of roots leads to mistaken values of 

Lx  in the later case, when Rx  is around or larger than 3.83 (Fig. 3c). Errors depend on 

the power of Rayleigh waves in the horizontal component, controlled by χ  in Fig. 3c. 

 An interesting alternative approach for calculation of Rayleigh wave phase 

velocities from vertical records in a single Centerless Circular Array setup (CCA 

method) has been derived by Cho et al. (2004) and Cho et al. (2006b). They regard 

microtremor as a random field stationary in time and space and summarize the technique 

in equation (7) in the latter paper. A similar expression can be retrieved in our theoretical 

frame by using equation (5) for calculation of 2
10 ),R(W/),R(W ωω . Nevertheless, this 
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ratio equals )x(J)x(J R
2
1R

2
0  only if 1,V

R
0,V

R AA = , which is not valid for an arbitrary 

deterministic wavefield composed of plane Rayleigh wavefronts. 

 

4 NUMERICAL TESTS 

A systematic evaluation of the performance of the SCAM is a rather complicated issue 

due to the numerous array and wavefield parameters to be considered even if it is 

simplified by means of hypothesis as dominance of a single mode or absence of body 

wave effects. Hereafter, the main reasons leading to biased estimations of phase 

velocities are investigated by using some particular array and source distributions. 

 

4.1 EFFECTS OF THE DIRECTIONAL ALIASING 

The finite number of sensors in any real array setup represents a source of bias in the 

estimates of B  and C  and in the phase velocities derived from them. Provided that the 

circular array is made of Nstat evenly distributed sensors with one of them placed at the 

azimuthal coordinate θ  = 0 then, the optimum estimators of the Fourier-Series 

coefficients ),R(Wm ω , ),R(U rad
m ω  and ),R(U tg

m ω  are 

∑
=

∆∆−≡
statN

1j
statm ),j,R(X)ímjexp(

N
2),R(X̂ ωθθπω  where statN2πθ =∆  and X 
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represents W, U rad or U tg. Cho et al. (2006a) show that the bias in ),R(X̂ m ω  equals the 

sum of the m+jNstat –th order Fourier-Series coefficients ),,R(X m ωθ , where j = ±1, ±2, 

…, that is to say: ),R(X̂ m ω = ∑
+∞

−∞=
+

j
jNm ),R(X stat ω . Since  quantities ),R(X statjNm

ω
+

 

were calculated in equations (5) to (7), the estimators B̂  and Ĉ  can be formed 

substituting ),R(X̂ m ω  for their counterparts in equations (16) and (19). The results are 

functions of the wavefield characteristics 
statjNm,V

RA + , 
statjNm,H

RA + , 
statjNn

LA + , Rk  and Lk  

where m = 0, ±1; n = ±1; j = 0, ±1, ±2, … The analysis of such expressions of B̂  and 

Ĉ , in general cases, is out of the scope of this article. Nevertheless, a rough estimate for 

the range of the directional aliasing effects may be obtained by checking the method with 

a single plane wave coming from different source azimuths. Thus, several numerical tests 

were performed by varying the plane wave directions from ϕ  = 0 (that is, pointing to a 

virtual sensor) to ϕ  =π /Nstat. The wavefield was composed by both Rayleigh and Love 

components. Several Rayleigh to Love velocity ratios and amplitude ratios were checked. 

For example, tests corresponding with the fixed wavefield characteristics L
V
R AA = , 

Figs 4&5 1)( =ωχ  and 5.0c/c LR =  have been displayed in Figs. 4 and 5. Equivalence between 

the Nstat and the 2Nstat sensor arrays holds for the v-SPAC method provided that Nstat is an 

odd number (without taking into account the central station). Nevertheless, such property 

fails for a wavefield composed by an arbitrary sum of plane waves. It also fails for the 



 19

SCAM and for the Love wave analysis using the 3c-SPAC method, whatever the number 

of plane waves used.  

 

4.2 BIASES DUE TO THE PRESENCE OF NOISE 

The robustness of SCAM method in the presence of uncorrelated noise has been 

investigated by means of numerical tests. The methodology applied in SESAME (2005) 

has been adapted to the SCAM and to the 3c-SPAC method. Noise is simulated by means 

of random relative time shifts introduced into the synthesized records. A single 

monochromatic plane wave composed by both Rayleigh and Love components has been 

used as the three-component wavefield coming from a far source. Then, it was recorded 

in an 8 sensor virtual circular array. Independent time shifts were chosen for each virtual 

sensor, matching a zero-mean Gaussian distribution with standard deviation tσ . Since 

incoherent noise effects should be reduced by using of suitable mean estimators, a total 

of 500 complete dataset were constructed by using different sets of random time delays. 

After testing different ways to solve equations (15) and (18), the mean values of B  and 

C  were estimated as )cos(d/nB~ B
2

B
2

B Φ=  and 2
C

2
C d/nC~ =  

respectively. Quantities Bn , Cn , Bd , Cd  and BΦ  stand for the numerator, 

denominator and phase angle of B  and C  on the basis of equations (16) and (19). 
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Symbol ·  stands for the mean of the bracketed quantities along the 500 realizations. 

Finally, the estimators Rx~  and Lx~  were calculated from B~  and C~  by using a grid 

search algorithm in equations (15) and (18). Thus, the effects of incoherent noise can be 

quantified as | Rx~  - 0
Rx | / 0

Rx  and | Lx~  - 0
Lx | / 0

Lx  where subscript 0 stands for the zero 

noise case ( tσ  = 0). These ratios depend mainly on T/tσ  (related to the Signal to 

Fig. 6 Noise ratio N/S), Rx  and Lx , where T is the central period of the signal. Figure 6 shows 

the misfit due to Gaussian time shifts with standard deviations tσ  up to 20% of T in a 

particular case (see figure caption for further details on the wavefield characteristics). 

This test was also performed for the 3c-SPAC method by using a ninth central station. As 

shown, the more serious effects of random noise were found for low values of Rx  and 

Lx , that is, in the ranges with small radius-to-wavelength ratios. Robustness of the 

SCAM for Love waves was comparable to that of the 3c-SPAC method in spite of the 

smaller total number of sensors. The optimum performance in this case was found 

approximately for Lx  around the first zero-crossing of )x(f L1  at Lx  = 1.84 (Fig. 2c). 

It coincides also with a minimum in the expression )dx/)x(dfx/()x(f LL1LL1 , which 

roughly represents the magnification of the relative errors from B~  to Lx~ : 
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2

2

LL1L

L1
2
L

L

B~
)B~(iancevar

dx/)x(dfx
)x(f

x~
)x~(iancevar
≈ .  (21). 

 

Finally, we note that robustness of the SCAM for Rayleigh waves is worse than that for 

the 3c-SPAC method in some ranges of interest, for expample Rx  around 1 and tσ  

around 5 % of T. 

 

4.3 NUMERICAL TESTS IN A 1D LAYERED MEDIUM 

Finally, the SCAM has been studied and compared with the 3c- SPAC method in a more 

realistic synthetic microtremor wavefield, generated by a random distribution of point 

sources applied on the free surface of a layered 1D ground structure. Two different array 

setups made up of 9 virtual sensors were used in the tests (shapes in Fig. 7). If effects of 

the body waves are neglected, the time histories recorded at any station of the array due 

to a harmonic point force can be calculated (see Appendix C) from the elastodynamic 

parameters of the ground (S-wave velocity VSi, P-wave velocity VPi, mass density iρ ,  

Table 1 and thickness Hi, where i identifies the layer, see Fig 10). A simple soil structure 

(Table 1), consisting of a single 100 m thick soft layer overlying a stiffer halfspace, has 

been used for this test. Array radius was fixed to R = H. It can be considered a suitable 
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choice for the exploration of depths around the layer interface in case of the standard 

vertical-component SPAC although, in practice, the surveyed depth range is also limited 

by the source excitation spectrum and the high pass filtering effect of the upper soft 

layers (e. g. Scherbaum et al. 2003). A set of 1000 impulsive point sources randomly 

distributed with distances from the center of the array raging between 3R and 10R has 

Fig. 7   been used for the simulation of the microtremor wavefield (Fig. 7a). Records synthesized 

at the center of the array have been shown in Fig 7b. Origin times were randomly 

selected for each point source in an appropriate range permitting the signals spreading 

with the maximal and minimal group velocities to reach the array position from t = 0 sec 

to t = 550 sec. The maximum frequency considered in the former step was 4.1 Hz. Point 

forces were generated with arbitrary directions whereas their amplitudes were randomly 

chosen in a predetermined range following a uniform probability distribution. Signals 

were subsequently convolved in frequency domain with 10 Hanning windows centered 

from t = 50 sec to 500 sec with a 100 sec width and 50 % overlapping. 

Hereafter, the synthetic microtremor records are analyzed on the basis of 

equations (15) and (18). Several slightly different numerical schemes can be used for this 

task. Although this is maybe not the optimum choice in terms of robustness of the 

solutions, phase velocities were independently calculated for each time window. In this 
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way, the stability of the final velocity estimations can be checked. Quantities B and C in 

the aforementioned equations were replaced with the real parts of their values derived 

from the records by means of equations (16) and (19). 

The averaged B  and C  coefficients have been shown in Figs. 7c and 7d 

respectively. Phase velocities of Rayleigh and Love waves were bracketed by applying a 

grid-search method in the slowness-frequency domain to equations (15) and (18). A 

grayscaled image representing the number of solutions found inside each cell for the 

whole window set has been drawn (Figs 7e and 7f). As shown, effects of finite window 

length and near sources are enlarged by the flat shapes of functions )x(f L1  and 

)B,x(g R  in the low frequency range (see also Fig. 3c). As well, effects of spatial aliasing 

and/or non-uniqueness of solutions (inside the velocity range shown) become noticeable 

above 2.9 Hz for Love waves and 2.2 Hz for Rayleigh waves. Thus, the array size should 

be reduced or the number of sensors increased in order to improve the curves in that 

frequency band. Generally, the former option would be more suitable since shapes of 

)x(f L1  and )B,x(g R  are simpler as Lx  and Rx  are smaller. The application of the 

3c-SPAC method (Appendix A) for the synthetic dataset recorded with the 3c-SPAC array  

Fig. 8 setup (Fig. 7a) has been shown in Fig. 8. In this case, equations (15) and (18) are replaced 

with )x,x,C(hC LRradtg =  and )x(JC R0V =  as described in the previous section. 
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Details regarding time-window generation and search for solutions were the same as for 

the SCAM. First, all possible solutions for Rx  within the considered slowness range 

were calculated for each frequency by solving )x(JC R0V = . Then, these solutions were 

introduced into the former equation for the calculation of the corresponding set of roots 

for Lx . Figs. 7f and 8e show that accuracy on the determinations of Rayleigh wave 

velocities from Aki’s method, which takes full advantage of the cancellation of Love 

waves in the vertical component, is slightly better than for the proposed scheme, mainly 

in the low frequency band. On the other hand, the SCAM supplied very accurate results 

for the Love wave dispersion curve, with some improvement in the high frequency range 

due to the absence of nearby solutions for Eq. (15) and to the higher azimuthal sampling 

achieved by moving the central sensor to the circumference (Figs. 7e and 8d). 

  A second numerical experiment was carried out by relaxing the far-source 

constraint in such a manner that only the area enclosed by the array is maintained free of 

Fig. 9 sources (Figs. 7a and 9). Note that such scenarios were not considered in the formulation 

of this method, thus, biased results are to be expected a priori. The comparison of 

dispersion curves confirms that their quality gets increasingly worse, mainly in the lower 

frequency band if sources are permitted close to the array. Thus, general 

recommendations regarding minimization of near sources in microtremor array 
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techniques (i. e, SESAME 2005) are equivalently valid for the SCAM. 

 

5 CONCLUSIONS 

We have described in this paper the foundations of a new technique aimed at the 

determination of ground structures from three-component array analysis. The proposed 

Single Circular Array Method (SCAM) is useful for the calculation of Rayleigh and Love 

wave dispersion curves in wavefields generated by any number of sources. This is done 

by using an array setup consisting of a circular arrangement of sensors without a central 

device. Since Rayleigh and Love wave velocities show different sensitivities to the 

elastodynamic parameters that characterize the medium, the SCAM can be used to obtain 

better constrained ground models in comparison with methods only based on the vertical 

component. In comparison with the 3c-SPAC method, the SCAM provides a rather 

straightforward way for the calculation of Love wave phase velocities.  

Most of the spatial autocorrelation methods rest on the theoretical frame of 

stochastic processes, on the hypothesis of independence among Love and Rayleigh waves, 

and/or on the independence among waves coming from different directions. On the 

contrary, the SCAM follows a deterministic approach and remains valid even if plane 

waves are mutually correlated, in the sense of Cho et al. (2006a). 
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Horizontal and vertical component records need to be obtained simultaneously 

for the SCAM, while vertical components can be recorded in a separate experiment for 

the 3c-SPAC method. Irrelevance of the records at the centre of the circular array is a 

favorable feature of the new method in some geological contexts. 

Reliability of this method has been validated by numerical tests. Studies using a 

synthetic dataset of microtremor records show good performance for univocal retrieval of 

Love wave dispersion curves up to a larger radius to wavelength ratio, in comparison 

with other array methods. In order to check the robustness of the method, uncorrelated 

noise was added to a synthetic surface wavefield. The analysis of that dataset showed that 

robustness of the SCAM is similar to that of the 3c-SPAC method for Love wave analysis, 

and is optimized around Lx  = 1.84, approximately (for a Love wavelength to radius ratio 

around 3.4). In the case of Rayleigh waves, the 3c-SPAC method seems to be less 

sensitive to uncorrelated noise. Nevertheless, further studies are necessary in order to 

assess these conclusions in different conditions of the wavefield. 

A second synthetic dataset composed of cylindrical surface waves generated by 

a distribution of sources acting on the free surface of a realistic structure has been 

analyzed. Results seems to confirm that the maximum performance of the SCAM for 

Love waves occurs in a wide range around the first zero crossing of B ( Lx  = 1.84 ). The 
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absence of sources in the vicinity of the array leads to a significant improvement on 

dispersion curve estimates. 

Finally, we provide some issues that should be considered when using the SCAM in 

practice: 

i) Equations of the SCAM have been derived assuming that Rayleigh wavefield is 

dominated by single mode which is the same in both vertical and horizontal 

components. Dominance of a single Love mode was admitted too. 

ii) The relative power of body waves in the wavefield should be negligible in order 

to apply any of the aforementioned methods. Generally, this hypothesis holds in 

most of the frequency bands provided that the sources are far enough from the 

array (Tokimatsu 1997). The dominance of surface waves in microtremor has 

been also checked in experimental studies (i. e. Chavez-García & Luzón 2005). 

iii) The power of the microtremor wavefield should be large enough in the 

frequency band of interest to guarantee a suitable signal to noise ratio. Such 

power depends on the source excitation spectra and on the filter effects of the 

geological structure. In particular, suitable vertical component records are 

required to separate Love and Rayleigh waves in the horizontal components. 
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Thus, performances of both the SCAM and the 3c-SPAC fail if Rayleigh waves 

degenerates into pure horizontal motion. 

iv) The SCAM and the CCA method for Rayleigh wave analysis can be used 

together since the array setup is same. Note that the particular hypothesis of 

CCA method should be satisfied too. 
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FIGURE CAPTIONS 

Figure 1. Sketch of the array setup used in the proposed microtremor surveying method. 

Cylindrical coordinates defining station positions and surface plane wave directions. 

Figure 2. (a) Shapes of functions )x(f0  and )x(f1 . (b) Shape of the function 

)B,x(g R . (c) Shape of the functions dx/)x(df/1 1  and )dx/)x(dfx/()x(f 11 . 

Figure 3. B  vs. Lx  (panel a), C  vs. Rx  (panel b), tgC  vs. Lx  (panel c) and VC  

vs. Rx  (panel d) relations calculated for a randomly generated wavefield in a  8 – 

sensor circular array. Wavefield consists of 50 plane Rayleigh waves and 50 plane Love 

waves. A Rayleigh to Love wavelength ratio of 2 and ellipticities corresponding to χ  = 

1 and χ  = 10 have been fixed for clarity (see text). Asterisks show coefficients 

calculated from the synthetic records. Theoretical relations for a continuous array 

calculated from the wavefield characteristics ( Rk , Lk  and ℜ ) have been shown with 

solid lines. Functions )B,x(g R  and )x),C(J,C(h LV
1

0rad
−  evaluated by using B , radC  

and VC  obtained from the synthetic records have been drawn with circles in panels b 

and c (see text). Vertical dashed lines in panel c show the value of Lx  corresponding 

with Rx  = 3.83. Only real parts are shown for complex quantities. 

Figure 4. B̂  vs. Lx  and Ĉ  vs. Rx  calculated by using a circular array made of Nstat 

evenly distributed virtual sensors. Wavefield consists of a single plane wave traveling to 
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the azimuthal coordinates ϕ  = 0, π /(3 Nstat), 2π /(3 Nstat) or π / Nstat with Rx / Lx  = 

0.5, χ =1 and V
RA = LA = 1. 

Figure 5. Deviations in Lx  and Rx  calculated for an Nstat – sensor virtual array 

(asterisked) regarding to their actual values. The lines are computed from the cases 

shown in Fig. 4 and using the same type of lines. 

Figure 6. Misfits on Lx  (panels a and c) and Rx  (panels b and d) due to incoherent 

noise effects obtained by using the SCAM (a and b) and the 3c-SPAC method (c and d). 

Quantity tσ  represents the variance of the Gaussian time shifts used for the simulation 

of noise. Wavefield was composed by a single monochromatic plane wave with both 

Rayleigh and Love components traveling to the azimuthal coordinate ϕ  = π /32 with 

Rx / Lx  = 0.5, χ =1 and V
RA = LA =1. An 8-sensor virtual array with an additional central 

station for the 3c-SPAC method has been used. Symbol ∼ and subscript 0 refer to “noisy 

records” and “zero noise records”, respectively. 

Figure 7. (a) Distribution of random sources (dots) generating the simulated microtremor 

wavefield with distances up to 1km from the center of the nine-sensor array. Positions of 

stations have been shown with triangles. The array setup used for the 3c-SPAC method 

(Fig. 8) is shown in the top left corner. Sources inside the arrays were not considered in 

the wavefield calculations. The 3R distance has been indicated with a solid line. (b) 
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Synthetic microtremor records at the center of the array. (c) B coefficient (circles) 

calculated from synthetic array records. Solid line shows )x(f L1  computed from the 

theoretical Love wave velocities. (d) C coefficient computed from synthetic array records. 

(e) Solutions for Love wave phase dispersion curve calculated from )(B ω . Grayscale 

shows the stability of the solutions along the time-window set. Actual dispersion curve is 

shown with a dashed line. (f) Rayleigh wave phase dispersion curve (grayscaled zones) 

calculated from both )(B ω  and )(C ω  coefficients. Theoretical curve is drawn using 

a dashed line. The actual resolution in frequency is 0.01 Hz Nevertheless, quantities 

)(B ω  and )(C ω  have been shown for some frequencies only in sake of clarity. 

Figure 8. (a) Radial correlation coefficient radC  obtained from synthetic microtremor 

records. (b) Tangential correlation coefficient tgC . (c) Vertical-component correlation 

coefficient VC . That calculated from theoretical dispersion curve is shown with a solid 

line. (d) Love wave phase dispersion curve calculated from )(CV ω , )(Crad ω  and 

)(Ctg ω  by using 3c-SPAC (grayscale). Theoretical curve is shown with a dashed line. 

(e) Rayleigh wave phase dispersion curve calculated from )(CV ω  and theoretical curve. 

Correlation coefficients have been shown for some frequencies only in sake of clarity. 

Figure 9. Comparison among Love (left hand side plots) and Rayleigh (right hand side 

plots) wave dispersion curves, obtained by means of the 3c-SPAC (bottom) and the 
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SCAM (top), with and without near sources. Distribution of sources is shown in Fig. 7a. 

Results considering sources with distances from the array center larger than R  are 

shown with triangles. Those for distances larger than 3 R  are shown using dots. Solid 

lines show curves computed directly with the ground model. Correlation coefficients 

have been shown for some frequencies only in sake of clarity. 

Figure 10. Source and array coordinate systems and elastodynamic parameters defining a 

1D layered ground structure. VSi, VPi, iρ  and Hi stand for S-wave velocity, P-wave 

velocity, mass density and thickness of the i-th layer. 
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TABLES 

Table 1. One-dimensional ground model for microtremor wavefield simulation. 

 

N. Layer VS (m / sec) VP (m / sec) H (m) ρ (g/cm3) 

1 500 935 100 2.1 

2 1000 1870 ∞  2.1 
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Figure 3 
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Figure 5 
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Figure 6 

 

Figure 7 
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Figure 8 
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Figure 10 
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APPENDIX A: THE 3C-SPAC METHOD FOR A WAVEFIELD COMPOSED OF 

A SUPERPOSITION OF PLANE SURFACE WAVE ARRIVALS 

The 3-component SPAC method for derivation of Rayleigh and Love wave dispersion 

curves from microtremor measurements recorded on a circular array with central station 

was established by Aki (1957) and Okada & Matsushima (1989). A review with a 

detailed mathematical derivation has been recently published by Morikawa (2006). This 

method can be directly adapted to the hypothesis and representation of the wavefield 

presented in Eq. (1). Thus, the wavefield will no longer be considered as a stationary 

stochastic process. Independence among Rayleigh and Love waves will also be given up, 

contrary to the original derivation. Thus, Eqs. (24) and (25) in Morikawa’s article can be 

rewritten here as: 

 

( ) ( ) ))(1()x(J)x(J)()x(J)x(J)(C L2L0R2R0rad ωωω ℜ−++ℜ−= ,  (A1) 

 

( ) ( ) ))(1()x(J)x(J)()x(J)x(J)(C L2L0R2R0tg ωωω ℜ−−+ℜ+= ,  (A2) 

 

where )x(Jn  represents the n - order Bessel function and 

),0(S),R(SC radradrad ωω=  and ),0(S),R(SC tgtgtg ωω=  stand for the normalized 
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azimuthally averaged cross-correlations between radial and tangential records at the 

central station and those on the circumference. Thus, ),R(Srad ω  and ),R(Stg ω  

should be defined as: 

 

θωθωθω
π

π

d),,R(U),,0(U),R(S rad*rad
rad ∫

−

= ,   (A3) 

 

θωθωθω
π

π

d),,R(U),,0(U),R(S tg*tg
tg ∫

−

= ,   (A4) 

 

where asterisks denote complex conjugation. Quantities ),,0(U rad ωθ  and ),,0(U tg ωθ  

can be expressed in terms of combinations of the weighted amplitudes 1,H
RA ± , 1

LA±  

(defined in Eqs. (8-10)) and )iexp( θ±  factors: 

 

),,0(Urad ωθ = )iexp(
2

)iAA()iexp(
2

)iAA( 1
L

1,H
R

1
L

1,H
R θθ −

+
+

− −−++

, (A5) 

 

),,0(Utg ωθ = )iexp(
2

)AiA()iexp(
2

)AiA( 1
L

1,H
R

1
L

1,H
R θθ −

+−
+

+ −−++

 (A6) 

 

Thus, the integrals (A3) and (A4) can be directly connected with )R,(U rad
1 ω±  
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and )R,(U tg
1 ω±  by using their definitions, and finally, written in terms of Bessel 

functions on Rx  and Lx  and of 1,H
RA ± , 1

LA±  coefficients by means of Eqs. (6) and (7). 

The results are Eqs. (A1) and (A2), with ℜ  given by: 

 

)AAAAIm(2AAAA

)AAAA(iAA
*1

L
1,H

R
*1

L
1,H

R

21
L

21
L

21,H
R

21,H
R

*1
L

1,H
R

*1
L

1,H
R

21,H
R

21,H
R

−−++−+−+

−−++−+

−−+++

−++
=ℜ   (A7) 

 

 Function )(ωℜ  is named “power ratio of Rayleigh waves” since these waves 

represent the only contribution if ℜ= 1, while (A1) and (A2) depend only on the Love 

wave characteristics if ℜ = 0. Note that ℜ  is not a real quantity unless 

( ) )AARe(AARe *1
L

1,H
R

*1
L

1,H
R

−−++ = . Both Lx  and ℜ  can be derived from (A1) and (A2) if 

Rx  is supplied from the usual vertical SPAC method (Aki 1957): 

 

)x(J),0(S),R(SC R0VVV == ωω ,   (A8) 

 

where θωθωθω
π

π

d),,R(W),,0(W),R(S *
V ∫

−

= , which can be derived from Eq. (5) for 

m = 0. 
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APPENDIX B: DERIVATION OF EQUATIONS (11) TO (13)  

Equations (11), (12) and (13) can be derived if quantities depending on the plane wave 

amplitudes are eliminated among the equations (4), (5), (6) and (7). Among the infinite 

set of possibilities, that involving the smallest values of m (in absolute value) was chosen. 

The forms of equations (5) for m = 0 and m = 1±  are: 

 

),R(W0 ω = )x(JA2 R0
0,V

Rπ  and   (B1) 

 

),R(W 1 ω± = )x(JiA2 R1
1,V

R
±− π ,    (B2) 

 

respectively. In the same way, equation (6) yields  

 

),R(U rad
0 ω = )x(JiA2 R1

0,H
Rπ−  and    (B3) 

 

),R(U rad
1 ω± = ( ))x(J)x(JA R2R0

1,H
R −±π ( ))x(J)x(JAi L2L0

1
L +±πm .  (B4) 

 

On the other hand, equation (7) is required for m = 1±  only: 
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),R(U tg
1 ω± = ( ))x(J)x(JAi R2R0

1,H
R +± ±π + ( ))x(J)x(JA L2L0

1
L −±π   (B5) 

 

Dividing (B3) by (B1) and using equation (4) in the form )(i)(A/)(A 0,V
R

0,H
R ωχωω −=  

we obtain:  

 

),R(U rad
0 ω / ),R(W0 ω = )x(J R1χ− / )x(J R0 ,   (B6) 

 

which corresponds to equation (11) once definition (14) is introduced. 

For deviation of (12) and (13), quantities 1
LA±  must be eliminated from 

equations (B4) and (B5). After some algebra, it yields: 

 

),R(iU)x(f),R(U tg
1L1

rad
1 ωω ±± ± = [ ]1)x(f)x(f

x
)x(J2A L1R1

R

R11,H
R −±π , (B7) 

 

where the relation ( ))x(J)x(J 20 + = x/)x(J2 1  and the definition (14) have been used. 

Finally, if equation (B7) is divided by (B2), and the ratio )(A/)(A 1,V
R

1,H
R ωω ±±  is 

subsequently replaced with )(i ωχ−  (from equation 4) then, the expression 

 

[ ] R1L1R1

tg
1L1

rad
1

x
)(

),R(W1)x(f)x(f
),R(iU)x(f),R(U ωχ

ω
ωω
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±

±
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arises. It corresponds to both equation (12) (upper signs) and equation (13) (lower signs). 
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APPENDIX C: SURFACE WAVEFIELD DUE TO AN HARMONIC SHALLOW 

POINT SOURCE 

The surface wavefield generated by a harmonic point source with horizontal component 

HL  and vertical component VL  applied on the free surface of a layered 1D ground 

structure can be calculated as the sum of the contributions corresponding to the Rayleigh 

and Love normal modes: 

 

[ ]∑ +=
m

V
R

H
RS mm

www , [ ]∑ ++=
m

H
L

V
R

H
RS mmm

qqqq , [ ]∑ +=
m

H
L

H
RS mm

uuu ,   (C1) 

 

where Sw , Sq  and Su  represent the vertical, radial and tangential displacements at the  

Fig. 10 receiver coordinates, respectively (Fig. 10). The superscript (H or V) refers to the source 

component generating each term. The subscripts R and L correspond to Rayleigh and 

Love waves respectively while S stands for “surface waves”. The value of each 

contribution was computed by Harkrider (1963 and 1964) as: 

 

)dk(H)()(L)(w Rm
)2(
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RmV
V
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γωωω cos)dk(H)()(L)(w Rm
)2(

1
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RmH
H
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Γ= ,            (C4) 
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where Γ  symbols depend on the Rayleigh and Love medium responses and ellipticities 

of the surface wave modes ( )(m ωχ ), satisfying 

)(H,H
Rm ωΓ / )(V,H

Rm ωΓ = )(H,V
Rm ωΓ / )(V,V

Rm ωΓ = )(m ωχ−  (Haskell 1953; Harkrider 1964). 

Symbol )2(
nH  in the previous expressions represents the Hankel function of second kind 

and order n, and ( d , γ ) are the cylindrical coordinates of any station with regard to the 
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source, taking the direction of HL  as the origin of the azimuthal coordinate γ  (see Fig. 

10). 


