Image coding fundamentals

Juan Francisco Rodríguez Herrera
Vicente González Ruiz

November 16, 2014

Contents

1 Motivation
2 Spatial redundancy
3 The RGB Y’CbCr color transform [5]
4 Chrominance subsampling
5 The PSNR (Peak Signal-to-Noise Ratio)
6 The DCT (Discrete Cosine (spatial) Transform)
7 Basis functions of the DCT
8 A progressive transmission using the DCT
9 The dyadic DWT (Discrete Wavelet Transform)
10 Computation of the DWT using a filter bank
11 Drawback of the filter bank implementation
12 The Lifting approach [8])
13 The T-levels 1D DWT
14 The N-levels 2D DWT
15 Subband importances (energy gain factors or L2-norms) [6]
16 The Haar filters (spline 2/2) [3]
17 1D basis functions of the Haar Transform
18 2D basis functions of the Haar Transform
19 A progressive transmission using the Haar DWT
20 The Lineal filters (Spline 5/3, LeGall and Tabatabai, 1988) [1, 8]
21 1D basis functions of the 5/3 Transform
22 2D basis functions of the 5/3 Transform
23 A progressive transmission using the 5/3 DWT
24 The Cubic filters (Spline 13/7) [2, 8]
25 Basis functions of the 13/7 Transform
26 2D basis functions of the 13/7 Transform
27 A progressive transmission using the 13/7 DWT
28 Bit-plane transmission
29 Code-stream ordering and scalabilities

1 Motivation

PIC PIC
Homer.ppm (1,467,663 bytes) Homer.j2c (12,101 bytes (122 times smaller))

2 Spatial redundancy

3 The RGB Y’CbCr color transform [5]

The RGB Y’CbCr color transform: example

PIC

R, H(R) = 7.51 bpp G, H(G) = 6.82 bpp B, H(B) = 7.04 bpp
PIC PIC PIC
Total = 21,37 bpp

Y’, H(Y’) = 7.42 bpp Cb, H(Cb) = 6.86 bpp Cr, H(Cr) = 4.51 bpp
PIC PIC PIC
Total = 18,79 bpp

4 Chrominance subsampling

5 The PSNR (Peak Signal-to-Noise Ratio)

Chrominance subsampling: example

PIC PIC
Original (4:4:4) Subsampled (4:2:0), PSNR = 22.07 dB
PIC PIC
Original (8:8:8) Subsampled (8:2:0), PSNR = 22.01 dB
PIC PIC
Original (16:16:16) Subsampled (16:2:0) PSNR = 21.96 dB

6 The DCT (Discrete Cosine (spatial) Transform)

7 Basis functions of the DCT

PIC

8 A progressive transmission using the DCT

  1. Transform the image.
  2. Remove a set of the smallest coefficients (in absolute value).
  3. Do the inverse transform.

Lena reconstructed with 1.000 DCT coefs

- - - PIC

Lena reconstructed with 2.000 DCT coefs

- - - PIC

Lena reconstructed with 3.000 DCT coefs

- - - PIC

Lena reconstructed with 4.000 DCT coefs.png

- - - PIC

Lena reconstructed with 5.000 DCT coefs

- - - PIC

9 The dyadic DWT (Discrete Wavelet Transform)

10 Computation of the DWT using a filter bank

PIC

Where

S = (2(L) s L) + (2(H) s H) (7)

and

L = 2(S aL) H = 2(S aH). (8)

11 Drawback of the filter bank implementation

12 The Lifting approach [8])

PIC

Hi = S2i+1 𝒫({S2i})i (PredictionStep)
Li = S2i + {𝒰(H)}i (UpdateStep)

13 The T-levels 1D DWT

PIC

14 The N-levels 2D DWT

15 Subband importances (energy gain factors or L2-norms) [6]

16 The Haar filters (spline 2/2) [3]

17 1D basis functions of the Haar Transform

PIC

18 2D basis functions of the Haar Transform

PIC

19 A progressive transmission using the Haar DWT

  1. Transform the image.
  2. Remove a set of the smallest coefficients (in absolute value).
  3. Do the inverse transform.

Lena reconstructed with 1.000 Haar coefs

- - - PIC

Lena reconstructed with 2.000 Haar coefs

- - - PIC

Lena reconstructed with 3.000 Haar coefs

- - - PIC

Lena reconstructed with 4.000 Haar coefs

- - - PIC

Lena reconstructed with 5.000 Haar coefs

- - - PIC

20 The Lineal filters (Spline 5/3, LeGall and Tabatabai, 1988) [18]

21 1D basis functions of the 5/3 Transform

PIC

22 2D basis functions of the 5/3 Transform

PIC

23 A progressive transmission using the 5/3 DWT

Lena reconstructed with 1.000 5/3 coefs

- - - PIC

Lena reconstructed with 2.000 5/3 coefs

- - - PIC

Lena reconstructed with 3.000 5/3 coefs

- - - PIC

Lena reconstructed with 4.000 5/3 coefs

- - - PIC

Lena reconstructed with 5.000 5/3 coefs

- - - PIC

24 The Cubic filters (Spline 13/7) [28]

25 Basis functions of the 13/7 Transform

PIC

26 2D basis functions of the 13/7 Transform

PIC

27 A progressive transmission using the 13/7 DWT

Lena reconstructed with 1.000 13/7 coefs

- - - PIC

Lena reconstructed with 2.000 13/7 coefs

- - - PIC

Lena reconstructed with 3.000 13/7 coefs

- - - PIC

Lena reconstructed with 4.000 13/7 coefs

- - - PIC

Lena reconstructed with 5.000 13/7 coefs

- - - PIC

28 Bit-plane transmission

PIC

29 Code-stream ordering and scalabilities

PIC

References

[1]   M. D. Adams and F. Kossentini. Reversible Integer-to-Integer Wavelet Transforms for Image Compression: Performance Evaluation and Analysis. IEEE Trans. Image Process., 9(6):1010–1024, 2000.

[2]   M.D. Adams. Reversible Wavelet Transform and their Application to Embedded Image Compression. PhD thesis, A,A,Sc, University of Waterloo, 1993.

[3]   A. Haar. Zur Theorie der orthogolanen Funktionen-Systeme. Mathematische Annalen, 69:331–371, 1910.

[4]   The Joint Photographic Experts Group (JPEG). Recommendation T.81: Digital Compression and Coding of Continuous-tone Still Images. International Telecommunication Union (ITU), September 1992.

[5]   A.M. Marcos. Compresión de imágenes. Norma JPEG. Editorial Ciencia 3, 1999.

[6]   Majid Rabban, Rajan L. Joshi, and Paul W. Jones. The JPEG 2000 Suite, chapter JPEG 2000 Core Coding System (Part 1). WILEY, 2009.

[7]   Ana Sovic and Damir Sersic. Signal decomposition methods for reducind drawbacks of the dwt. Engineering Review, 32(2):70–77, 2012.

[8]   W. Sweldens and P. Schröder. Building Your Own Wavelets at Home.