Mixed perverse sheaves on flag varieties of Coxeter groups

Cristian Vay UNC-CONICET Argentina

joint work with P. Achar and S. Riche

Almería 2019 On the occasion of Blas 60th birthday

- Motivation
- 2 Elias-Williamson diagrammatic categories
- Biequivariant Categories
- Perverse sheaves

Coxeter system

A finite set S and $\{m_{st}\}_{s,t\in S}\in\mathbb{N}\cup\{\infty\}$ such that $m_{ss}=1$ and $m_{st}=m_{ts}$ if $s\neq t$.

Coxeter group

$$W = \langle s \in S \mid (st)^{m_{st}} = 1 \quad \forall s, t \in S \rangle$$

Examples

- The symmetric group \mathbb{S}_n with $S = \{(i \ i+1) \mid 1 \le i < n\}$
- Weyl group of a finite-dimension semisimple Lie algebra
- Weyl group of an affine Lie algebra

Hecke algebra

 $\mathcal{H} = \mathbb{Z}[v^{\pm 1}]\langle H_s, s \in S \mid \text{ with the following relations } \rangle$

$$H_s^2 = (v^{-1} - v)H_s + 1 \quad \text{and} \quad \underbrace{H_s H_t H_s \cdots}_{m_{st}} \quad = \underbrace{H_t H_s H_t \cdots}_{m_{ts}}$$

 $\forall s, t \in S \text{ with } s \neq t.$

• Let $\{H_w\}_{w\in W}$ be the standard basis of \mathcal{H} ,

$$H_w = H_{s_1} \cdots H_{s_n}$$

for any reduced expression of $w = s_1 \cdots s_n \in W$.

• Let $\overline{()}: \mathcal{H} \to \mathcal{H}$, be the \mathbb{Z} -algebra involution induced by

$$v \mapsto v^{-1}$$
 and $H_s \mapsto H_s^{-1}$

4□ > 4□ > 4 = > 4 = > = 90

Almeria

Kazhdan, Lusztig. Representations of Coxeter groups and Hecke algebras, Invent. Math. (1979).

Theorem

There exists a unique basis $\{\underline{H}_w\}_{w\in W}$ of $\mathcal H$ such taht

$$\underline{\overline{H}_w} = \underline{H}_w \quad \text{and} \quad \underline{H}_w = H_w + \sum_{x < w} h_{x,w} H_x,$$

with $h_{x,w} \in v\mathbb{Z}[v]$.

Conjectures (actually theorems)

- The coefficients of $h_{x,w}$ are positives [Kazhdan-Lusztig for Weyl finite and afines groups].
- $\operatorname{ch} L_w = \sum_{x \leq w} (-1)^{\ell(x) + \ell(w)} h_{x,w}(1) \operatorname{ch} M_x$, for a semisimple complex Lie algebra [Beilinson-Bernstein and Brylinsky-Kashiwara].

200

\mathcal{P} : the category of perverse sheaves

${\mathcal P}$ is the heart of a t-structura on ${\mathcal D}^{\mathrm{b}}(G/B,{\mathbb C})$

the bounded derived category of B-equivariant complexes (with complex coefficients) on the flag variety G/B of a Kac-Moody

The simple objects are \mathbf{IC}_w , w in the Weyl group of G,

the intersection cohomology complexes on the Schubert variety $\overline{BwB/B}$.

Categorification of the Hecke algebra

$$[\mathcal{P}] \xrightarrow{\sim} \mathcal{H}$$

$$[\mathbf{IC}_w] \longmapsto \underline{H}_w$$

Almeria vay

- $R = S(\mathfrak{h}^*)$ with \mathfrak{h} the Lie algebra of the maximal torus of G.
- R^s = the s-invariant subalgebra of R.

SBim: Soergel Bimodules

is the essential image of the hypercohomology

$$\mathbb{H}^{\bullet}: \mathcal{P} \longrightarrow R$$
-Bim,

which is a fully faithful monoidal functor.

Example

$$\mathbb{H}^{\bullet}(\mathbf{IC}_e) \simeq R$$
 y $\mathbb{H}^{\bullet}(\mathbf{IC}_s) \simeq R \otimes_{R^s} R(1) =: B_s$.

• Let $\mathbb{S}Bim$ be the idempotent completion of the monoidal subcategory generated by B_s , $s \in S$.

Algebraic categorification of the Hecke algebra

$$[\mathbb{S}Bim] \xrightarrow{\sim} \mathcal{H}$$

$$[B_s] \longmapsto \underline{H}_s$$

ullet The indecomposable objects of $\mathbb{S}\mathrm{Bim}$ are parametrized by W.

Soergel Conjeture (actually theorem [Elias-Williamson])

Let B_w be the indecomposable object attached to $w \in W$, then

$$[B_w] = \underline{H}_w$$

[Soergel for Weyl and dihedral groups; Fiebig-Libedinsky universal Coxeter groups]

Almeria

- Motivation
- 2 Elias-Williamson diagrammatic categories
- Biequivariant Categories
- Perverse sheaves

Let \mathfrak{h} be a realization of (W, S) and $R = S(\mathfrak{h}^*)$ with $\operatorname{gr} \mathfrak{h}^* = 2$.

Elias-Williamson diagrammatic categories $\mathscr{D}_{BS}(\mathfrak{h},W)$

- Objects: B_w , for any word \underline{w} in S.
- Morphisms: k-graded modules generated by

for any $f \in R$ and $s, t \in S$, subject to certain relations

• Tensor product: $B_{\underline{v}} \star B_{\underline{w}} = B_{\underline{v}\underline{w}}$.

 \Bbbk is a Noetherian integral domain of finite global dimension s. t. finitely generated proyective modules are free (for instance, $\Bbbk = \mathbb{Z}$).

Almeria

Example of a relation

Also, it holds that $B_s \star B_s \cong B_s(1) \oplus B_s(-1)$.

Definition

- $\mathbb D$ denotes the autoequivalence in $\mathscr D_{\mathrm{BS}}(\mathfrak h,W)$ given by flipping diagrams upside-down.
- (1) denotes the shift of grading.

Theorem [EW]

Assume that \mathbb{k} is a field or a complete local ring and let $\mathcal{D}(\mathfrak{h}, W)$ be the idempotent completion of $\mathcal{D}_{BS}(\mathfrak{h},W)$. Then

- The indescomposable objects are parametrized by W.
- 2 The assignment $[B_s] \mapsto \underline{H}_s$ induces an isomorphism $[\mathscr{D}(\mathfrak{h},W)] \to \mathcal{H}$ of $\mathbb{Z}[v^{\pm 1}]$ -algebras.
- **3** The Soergel conjecture $[B_w] = \underline{H}_w$ holds for $\mathbb{k} = \mathbb{R}$.

- Motivation
- 2 Elias-Williamson diagrammatic categories
- Biequivariant Categories
- Perverse sheaves

Biequivariant Categories 000000000

• $I \subset W$ closed by the Bruhat order,

$$\leadsto \mathscr{D}_{\mathrm{BS},I}^{\oplus}(\mathfrak{h},W) = \langle B_{\underline{w}} \mid \ \underline{w} \in I \ \mathrm{reduced \ word} \rangle.$$

• $I = I_0 \setminus I_1$ locally closed, i.e. I_0 and I_1 closed,

$$\rightsquigarrow \mathscr{D}_{\mathrm{BS},I}(\mathfrak{h},W) = \mathscr{D}_{\mathrm{BS},I_0}^{\oplus}(\mathfrak{h},W)//\mathscr{D}_{\mathrm{BS},I_1}^{\oplus}(\mathfrak{h},W)$$

Example

 $\mathscr{D}_{\mathrm{BS},\{w\}}(\mathfrak{h},W) \cong \mathrm{Free}^{\mathrm{fg},\mathbb{Z}}(R)$ but $\mathscr{D}_{\mathrm{BS},W}(\mathfrak{h},W) \ncong \mathscr{D}_{\mathrm{BS}}(\mathfrak{h},W)$

 \bullet $I \subset W$ locally closed subset

Definition

$$\mathsf{BE}_I(\mathfrak{h},W) = K^{\mathrm{b}}\mathscr{D}_{\mathrm{BS},I}^{\oplus}(\mathfrak{h},W)$$

Example

$$\mathsf{BE}_{\{w\}}(\mathfrak{h},W)\cong D^{\mathrm{b}}\mathrm{Mod}^{\mathrm{fg},\mathbb{Z}}(R)$$
 and $\mathsf{BE}_W(\mathfrak{h},W)\cong K^{\mathrm{b}}\mathscr{D}_{\mathrm{BS}}^{\oplus}(\mathfrak{h},W)$

Recollement or Gluing

Theorem

J closed finite $\subset I$ locally closed. Then there exists a recollement diagram

$$\mathsf{BE}_J(\mathfrak{h},W) \underbrace{ (i_J^I)^* }_{(i_J^I)_*} \longrightarrow \mathsf{BE}_I(\mathfrak{h},W) \underbrace{ (i_{I \smallsetminus J}^I)_! }_{(i_{I \smallsetminus J}^I)_*} \longrightarrow \mathsf{BE}_{I \smallsetminus J}(\mathfrak{h},W).$$

and \mathbb{D} interchanges * and !.

Among other things, $\forall \mathscr{F} \in \mathsf{BE}_I(\mathfrak{h},W)$ there exist distinguished triangles

$$\begin{split} (i_{I \smallsetminus J}^I)_!(i_{I \smallsetminus J}^I)^*\mathscr{F} &\longrightarrow \mathscr{F} \longrightarrow (i_J^I)_*(i_J^I)^*\mathscr{F} \overset{+1}{\longrightarrow} \\ (i_J^I)_*(i_J^I)^!\mathscr{F} &\longrightarrow \mathscr{F} \longrightarrow (i_{I \smallsetminus J}^I)_*(i_{I \smallsetminus J}^I)^*\mathscr{F} \overset{+1}{\longrightarrow} \end{split}$$

Beilinson, Bernstein, Deligne. Faisceaux pervers, Astérisque (1982)

Almeria vay

Example: the singleton case

Let $w \in I$ minimal, i.e. $\{w\}$ is closed in I, and $x \in I \setminus \{w\}$.

$$\mathsf{BE}_I(\mathfrak{h},W) \underbrace{\mathsf{BE}_{I \smallsetminus \{w\}}(\mathfrak{h},W)}_{(i_{I \smallsetminus \{w\}}^I)_*}$$

$$(i_{I \setminus \{w\}}^{I})_{*}B_{\underline{x}} = \cdots \to 0 \to B_{\underline{w}} \underline{\otimes}_{R} \operatorname{Hom}_{\mathscr{D}_{\mathrm{BS},I}^{\oplus}(\mathfrak{h},W)}^{\bullet}(B_{\underline{w}},B_{\underline{x}}) \xrightarrow{f} B_{\underline{x}} \to 0 \to \cdots,$$

This is the cone of f and we have a distinguished triangle

$$B_{\underline{x}} \to (i_{I \smallsetminus \{w\}}^I)_* B_{\underline{x}} \to B_{\underline{w}} \, \underline{\otimes}_R \, \mathrm{Hom}_{\mathscr{D}_{\mathrm{BS},I}^{\oplus}(\mathfrak{h},W)}^{\bullet}(B_{\underline{w}},B_{\underline{x}})[1] \xrightarrow{[1]}$$

Example: the singleton case

Let $w \in W$ and $s \in S$ such that ws > w. Then

$$\operatorname{Hom}_{\mathscr{D}_{\mathrm{BS},\{w,ws\}}^{\oplus}(\mathfrak{h},W)}^{\bullet}(B_{\underline{w}},B_{\underline{w}s}) = R \left\langle \operatorname{id}_{B_{\underline{w}}} \star \stackrel{s}{\blacktriangleright} \right\rangle$$

and therefore

$$B_{\underline{w}s} \to \left(i_{\{ws\}}^{\{w,ws\}}\right)_* B_{\underline{w}s} \to B_{\underline{w}}\langle 1\rangle \xrightarrow{[1]}$$

$$B_{\underline{w}}\langle -1\rangle \to \left(i_{\{ws\}}^{\{w,ws\}}\right)_! B_{\underline{w}s} \to B_{\underline{w}s} \xrightarrow{[1]}$$

are distinguished triangles in $BE_{\{w,ws\}}(\mathfrak{h},W)$.

t-structure

Definition

The perverse t-structure in $BE_I(\mathfrak{h}, W)$ is defined by

$${}^p\mathrm{BE}_I(\mathfrak{h},W)^{\leq 0} = \{\mathscr{F} \mid \forall w \in I, \ (i_w^I)^*(\mathscr{F}) \in {}^p\mathrm{BE}_{\{w\}}(\mathfrak{h},W)^{\leq 0}\},$$

$${}^p\mathrm{BE}_I(\mathfrak{h},W)^{\geq 0}= \{\mathscr{F}\mid \forall w\in I,\ (i_w^I)^!(\mathscr{F})\in {}^p\mathrm{BE}_{\{w\}}(\mathfrak{h},W)^{\geq 0}\}.$$

Definition

The category of perverse objects is

$$\mathsf{P}_I^{\mathsf{BE}}(\mathfrak{h},W) = {}^p \mathsf{BE}_I(\mathfrak{h},W)^{\leq 0} \cap {}^p \mathsf{BE}_I(\mathfrak{h},W)^{\geq 0},$$

the heart of the *t*-structure.

Standard and costandard objects

• b_w is the canonical object in $\mathscr{D}^{\oplus}_{\mathrm{BS},\{w\}}(\mathfrak{h},W)\cong\mathrm{Free}^{\mathrm{fg},\mathbb{Z}}(R).$

Definition

$$\Delta_w^I = (i_w^I)_! b_w$$
 and $\nabla_w^I = (i_w^I)_* b_w$.

Main results

If $w = s_1 \cdots s_r$ is a reduced expression, then

$$\Delta_w \cong \Delta_{s_1} \underline{\star} \Delta_{s_2} \underline{\star} \cdots \underline{\star} \Delta_{s_r}, \qquad \nabla_w \cong \nabla_{s_1} \underline{\star} \nabla_{s_2} \underline{\star} \cdots \underline{\star} \nabla_{s_r}$$

$$\Delta_{w} \star \nabla_{w^{-1}} \cong \nabla_{w^{-1}} \star \Delta_{w} \cong B_{\varnothing}$$

 Δ_w^I and ∇_w^I are perverse.

The assignment $[B_\varnothing(1)]\mapsto v$ and $[\Delta_w]\mapsto H_w$, $w\in W$, induces an $\mathbb{Z}[v^{\pm 1}]$ -algebra isomorphism

$$[\mathsf{BE}_W(\mathfrak{h},W)] \xrightarrow{\sim} \mathcal{H}.$$

Consequence: $[\mathscr{D}_{\mathrm{BS}}^{\oplus}(\mathfrak{h},W)] \simeq [\mathsf{BE}_W(\mathfrak{h},W)] \simeq \mathcal{H}.$

Main results

$$\operatorname{Hom}_{\mathsf{BE}_I(\mathfrak{h},W)}(\Delta_x^I, \nabla_y^I \langle n \rangle [m]) \cong \begin{cases} R^m & \text{if } x = y, \ m = -n \in 2\mathbb{Z}_{\geq 0} \\ 0 & \text{otherwise} \end{cases}$$

Remark

If \Bbbk is a field, the simple perverse objects are given by the recollement. More precisely, let

$$\mathscr{L}_w^I := \operatorname{im}(\Delta_w^I \to \nabla_w^I).$$

Then

- \bullet $\mathsf{P}_I^{\mathsf{BE}}(\mathfrak{h},W)$ is a Jordan-Holder category.
- The simple objects are $\mathscr{L}^I_w\langle n \rangle$ for all $w \in I$ and $n \in \mathbb{Z}$.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ かへで

Main results

The socle of Δ_w is $\mathscr{L}_e\langle -\ell(w)\rangle$ and the cokernel of $\mathscr{L}_e\langle -\ell(w)\rangle\hookrightarrow \Delta_w$ has no composition factors of the form $\mathscr{L}_e\langle n\rangle$.

The head of ∇_w is $\mathscr{L}_e\langle \ell(w)\rangle$ and the kernel of $\nabla_w \twoheadrightarrow \mathscr{L}_e\langle \ell(w)\rangle$ has no composition factors of the form $\mathscr{L}_e\langle n\rangle$.

For all $w, y \in W$, it holds that

$$\dim \operatorname{Hom}_{\mathsf{BE}(\mathfrak{h},W)}(\Delta_w,\Delta_y\langle n\rangle) = \begin{cases} 1 & \text{if } w \leq y, \ n = \ell(y) - \ell(w) \\ 0 & \text{otherwise} \end{cases}$$

If $w \leq y$, the morphism $\Delta_w \to \Delta_y \langle \ell(y) - \ell(w) \rangle$ is invective.

- Motivation
- 2 Elias-Williamson diagrammatic categories
- Biequivariant Categories
- Perverse sheaves

Right-equivariant categories

Definition

$$\mathsf{RE}_I(\mathfrak{h},W) = K^{\mathrm{b}} \overline{\mathscr{D}}_{\mathrm{BS}}^{\oplus}(\mathfrak{h},W)$$

where $\overline{\mathscr{D}}_{\mathrm{BS}}(\mathfrak{h},W)$ is the category with the same objects that $\mathscr{D}_{\mathrm{BS}}(\mathfrak{h},W)$ but Hom-spaces $\mathbb{k}\otimes_R\mathrm{Hom}_{\mathscr{D}_{\mathrm{BS}}(\mathfrak{h},W)}^{\bullet}$.

Example

$$\mathsf{RE}_{\{w\}}(\mathfrak{h},W) \cong D^{\mathrm{b}}\mathrm{Mod}^{\mathrm{fg},\mathbb{Z}}(\Bbbk) \text{ and } \mathsf{RE}_W(\mathfrak{h},W) \cong K^{\mathrm{b}}\mathscr{D}_{\mathrm{BS}}^{\oplus}(\mathfrak{h},W)$$

 $\overline{\mathscr{D}}_{\mathrm{BS}}^{\oplus}(\mathfrak{h},W)$ and $\mathsf{RE}(\mathfrak{h},W)$ are right modules categories over $\mathscr{D}_{\mathrm{BS}}^{\oplus}(\mathfrak{h},W)$ and $\mathsf{BE}(\mathfrak{h},W)$, respectively.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ めぬ@

Definition

The heart of $\mathsf{P}^{\mathsf{RE}}(\mathfrak{h},W)$ of the *t*-structure of $\mathsf{RE}(\mathfrak{h},W)$ is the category of perverse sheaves on (\mathfrak{h},W) .

Lemma

The forgetful functor

$$\mathsf{For}_{\mathsf{RE}}^{\mathsf{BE}} : \mathsf{BE}_I(\mathfrak{h}, W) \to \mathsf{RE}_I(\mathfrak{h}, W)$$

is t-exact.

Standard and costandard objects

Definition

$$\overline{\Delta}_w^I := \mathsf{For}_{\mathsf{RE}}^{\mathsf{BE}}(\Delta_w^I) \quad \mathsf{and} \quad \overline{\nabla}_w^I := \mathsf{For}_{\mathsf{RE}}^{\mathsf{BE}}(\nabla_w^I).$$

Therefore $\overline{\Delta}_w^I$ and $\overline{\nabla}_w^I$ are perverse and it holds that

$$\operatorname{Hom}_{\mathsf{RE}_I(\mathfrak{h},W)}(\overline{\Delta}_x^I,\overline{\nabla}_y^I\langle n\rangle[m])\cong \begin{cases} \mathbb{k} & \text{if } x=y \text{ and } m=n=0\\ 0 & \text{otherwise} \end{cases}$$

Properties

- Assume that k is a field.
- $\bullet \ \overline{\mathscr{L}}_w^I := \operatorname{im}(\overline{\Delta}_w^I \to \overline{\nabla}_w^I).$

Theorem

 $\mathsf{P}_I^{\mathsf{RE}}(\mathfrak{h},W) \text{ is a graded highest-weight with standard and costandard objects } \overline{\Delta}_w^I \text{ and } \overline{\nabla}_w^I \text{ for all } w \in I.$

The simples objects are $\overline{\mathscr{L}}_w^I$ for all $w \in I$.

Definition

 $\mathsf{Tilt}^{\mathsf{RE}}_I(\mathfrak{h},W)$ is the subcategory of tilting objects (those admiting an standard and a costandard filtration).

The followings hold in any highest weight category, see for instance

Achar, Riche. Modular perverse sheaves on flag varieties II: Koszul duality and formality. Duke Math. J. (2016),

The tilting objects are parametrized by I and the tilting \mathscr{T}_w^I , $w\in I$, is characterized by

$$(\mathscr{T}^I_w:\overline{\Delta}^I_w)=1\quad\text{and}\quad (\mathscr{T}^I_w:\overline{\Delta}^I_x\langle n\rangle)\neq 0\Rightarrow x\leq w.$$

There exist equivalences of trinagulated categories

$$K^{\mathrm{b}}\mathsf{Tilt}_{I}^{\mathsf{RE}}(\mathfrak{h},W) \to D^{\mathrm{b}}\mathsf{P}_{I}^{\mathsf{RE}}(\mathfrak{h},W) \to \mathsf{RE}_{I}(\mathfrak{h},W)$$

Ringel duality

- Assume that W is finite and k is a field.
- $w_0 \in W$ is the longest element.

 $(-)\underline{\star}\Delta_{w_0}: \mathsf{RE}(\mathfrak{h},W) \to \mathsf{RE}(\mathfrak{h},W)$ is an equivalence of triangulated categories. Moreover,

$$\overline{\nabla}_{x}\underline{\star}\Delta_{w_0}\simeq\overline{\Delta}_{xw_0}$$

$$\mathscr{T}_{x} \underline{\star} \Delta_{w_0} \cong \mathscr{P}_{xw_0}, \qquad \mathscr{I}_{x} \underline{\star} \Delta_{w_0} \cong \mathscr{T}_{xw_0}.$$

$$\mathscr{T}_{w_0} \cong \mathscr{P}_e \langle \ell(w_0) \rangle \cong \mathscr{I}_e \langle -\ell(w_0) \rangle.$$

$$\left(\mathscr{T}_{w_0}: \overline{\nabla}_x \langle -n \rangle\right) = \left(\mathscr{T}_{w_0}: \overline{\Delta}_x \langle n \rangle\right) = \begin{cases} 1 & \text{if } n = \ell(xw_0); \\ 0 & \text{otherwise} \end{cases}$$

Almeria vay

Gracias!

Theorem [EW]

 $\operatorname{Hom}_{\mathscr{D}_{\mathrm{BS}}(\mathfrak{h},W)}^{\bullet}(B_{\underline{v}},B_{\underline{w}}) \text{ is a free R-module of finite rank } \forall \, \underline{v}, \, \underline{w}.$

• The double leaves basis is parametrized by

$$\bigcup_{x \in W} M(\underline{w}, x) \times M(\underline{v}, x)$$

and the elements satisfy

Example

•

forms a basis of $\operatorname{Hom}_{\mathscr{D}_{\mathrm{BS}}(\mathfrak{h},W)}^{\bullet}(B_s,B_{\varnothing}).$

◆ロト ◆団ト ◆ きト ◆ き り へ で

Almeria