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Background

It has been investigating module theory over commutative domains
from the view-point of arithmetic ideal theory ( Ali (2006), El-Bast
and Smith (1988) , Naoum and Al-Alwan (1996), Saraç, Smith, Tiras
(2007)). They mainly focus on multiplication modules except for
Dedekind modules.

However if M is a projective R-module with the uniform dimension n,
where R is a Dedekind domain, then M is neither a multiplication
module nor a Dedekind module if n ≥ 2.

It turns out that M is a generalized Dedekind module.

We have started studying modules theory over commutative domains,
without the condition: M is a multiplication module
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Some notions

R is an integrally closed domain with its quotient field K .

M is a finitely generated torsion-free R-module with its quotient
module KM.

R[X ] is a polynomial ring over R in an indeterminate X

M[X ] is a polynomial R[X ]-module.

K (X ) is the quotient field of K [X ].
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Fractional R-submodules

Definition 1

An R-submodule N of KM is called a fractional R-submodule in KM if
there is a 0 6= r ∈ R such that rN ⊆ M and KN = KM. If M ⊇ N, then N
is a integral submodule of M.

Lemma 1

Let N be a fractional R-submodule. Then
n = (N : M) = {r ∈ R | rM ⊆ N} is a non-zero ideal.
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Fractional M-ideals

For any R-submodule a of K , we denote

a+ = {m ∈ KM | am ⊆ M}.

Definition 2

An R-submodule a of K is called a fractional M-ideal if there is a
0 6= m ∈ M such that am ⊆ M and Ka+ = KM. If R ⊇ a, then a is just a
non-zero ideal.

Lemma 2

1. Any fractional R-ideal in K is a fractional M-ideal.

2. Let N be an R-submodule of KM. Then KN = KM if and only if N
is an essential R-submodule of KM.
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v-submodules of KM

For a fractional R-submodule N in KM, we define

N− = {k ∈ K | kN ⊆ M}, a fractional M-ideal in K .

Nv = (N−)+ which is a fractional R-submodule in KM and Nv ⊇ N.

Definition 3

A fractional R-submodule N in KM is called a v-submodule in KM if
N = Nv .

Lemma 3

Let N be a fractional R-submodule in KM. Then

1. M = Mv .

2. (kN)v = kNv for any k ∈ K .

3. N− = (Nv )−.
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Definition

We recall that M is called a Dedekind modules if each submodule N of M
is invertible, that is, N−N = M.

Definition 4

A module M is called a generalized Dedekind module ( a G-Dedekind
module for short) if

a each v -submodule of M is invertible and

b M satisfies the ascending chain condition on v -submodules of
M.

Lemma 4

Let R be an integrally closed domain. Let a be an invertible fractional ideal
in K and let N be a fractional R-submodule of KM. Then (aN)v = aNv .
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Main Result

Theorem 1

Suppose R is a Dedekind domain and M is a finitely generated torsion-free
R-module. Then

1. Each v -submodule N of M is the form: N = nM for some ideal n of
R and n = (N : M).

2. M is a G-Dedekind module.

Sketch of Proof :
First we show that for any P a maximal v -submodule of M (submodules
maximal amongst the v -submodules of M), P is a prime submodule of M
such that p = (P : M) 6= (0) is a prime ideal of R.
Then we show that for any P a prime v -submodule of M, P = pM, where
p = (P : M).
Conversely, let P = pM, where p is a maximal ideal of R. Then we show
that P is a prime v -submodule of M.
Finally we prove that each v -submodule N of M is of the form N = nM
for some ideal n of R.
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Related to some previous results (10)

Recall Proposition 3.6 and Theorem 3.12 of paper of Alkan, Saraç, Tiras
(2005) and Theorem 3.1 of paper of El-Bast and Smith (1988).
We prove it from generalized Dedekind modules point of view.

Corollary 1

Let R be an integrally closed domain with its quotient field K and M a
finitely generated torsion-free R-module. If M is a Dedekind module, then
u − dim M = 1.
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Related to some previous results (2)

Proposition 1

Let M be a finitely generated torsion-free R-module and R be a Noetherian
integrally closed domain.Then M is a Dedekind module if and only if M is
a multiplication module with u-dim M = 1 and R is a Dedekind domain.

Proposition 2

Let M be a finitely generated torsion-free R-module, where R is an
integrally closed domain. Then M is a Noetherian valuation module if and
only if M is a multiplication module with u-dim M = 1 and and R is a
Noetherian valuation domain.
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Some properties (1)

Lemma 5

Let n be a fractional R-submodule with M ⊇ n and N = n[X ]. Then

1. N− = n−[X ].

2. Nv = nv [X ].

Lemma 6

Let P be a prime R[X ]- submodule of M[X ] with p = P ∩M 6= (0). Then

1. p is a prime submodule of M.

2. P1 = p[X ] is a prime submodule of M[X ].
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Some properties (2)

Lemma 7

Let P be a prime v -submodule of M[X ] such that p = P ∩M 6= (0). Then

(1) p is a prime v -submodule of M and p = p0M, where p0 is a maximal
ideal of R with p0 = (p : M).

(2) P = p[X ] = p0[X ]M[X ], and p0[X ] = (P : M[X ]) is a minimal prime
ideal of R[X ].

Proposition 3

Let N be a v -submodule of M[X ] with n = N ∩M 6= (0). Then

(1) n is a v -submodule of M and n = n0M for some ideal n0 of R.

(2) N = n0[X ]M[X ] and n0[X ] = (N : M[X ]).

May 15, 2019 14 / 26



Main Result 2

Theorem 2

Let R be a Dedekind domain and M be a finitely generated torsion-free
R-module. Then

(1) The R[X ]-module M[X ] is a generalized Dedekind module.

(2) Any v -submodule N of M[X ] is of the form: N = nM[X ], where
n = (N : M[X ]).

May 15, 2019 15 / 26



Sketch of Proof (1)

Let N be a v -submodule of M[X ].
If n = N ∩M 6= (0), then N = n0[X ]M[X ]. Hence N is an invertible
submodule of M[X ] since n0[X ] is an invertible ideal of R[X ].
In case N ∩M = (0), if N is a maximal v -submodule of M[X ], then
N = pM[X ] for some minimal prime ideal of R[X ], which is invertible.
Thus N is an invertible submodule of M[X ].
Suppose there is a v -submodule N of M[X ] with N ∩M = (0) and N is
not invertible. We may assume that N is maximal for this property. Then
there is a maximal v -submodule P = pM[X ] with P ⊃ N, where p is a
minimal prime ideal of R[X ] and M[X ] ⊇ p−1N ⊇ N. If p−1N = N, then
p−1 ⊆ R[X ] by the determinant argument, a contradiction.
If p−1N ∩M 6= (0), then p−1N = m0[X ]M[X ] for some invertible ideal
m0[X ] of R[X ] and so N = pm0[X ]M[X ], an invertible submodule of
M[X ], a contradiction.
If p−1N ∩M = (0), then by the choice of N, p−1N is invertible and so
M[X ] = (p−1N)−p−1N = pN−p−1N = N−N, a contradiction.
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Sketch of Proof (2)

We assume that there is a v -submodule N of M[X ] such that N 6= nM[X ],
where n = (N : M[X ]). We may assume that N is maximal for this
property. Then as in (1), p−1N = mM[X ], where m = (p−1N : M[X ]), an
invertible ideal of R[X ]. Thus N = pmM[X ], a contradiction. Hence
N = nM[X ] for all v -submodule N of R[X ], where n = (N : M[X ]).
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We denote by F (M) the set of all fractional R-submodules in KM.
Recall the definition of ∗-operation as follow:

Definition 5

A mapping N −→ N∗ of F (M) into F (M) is called a *-operation on M if
the following conditions hold for each k ∈ K and all N,N1 ∈ F (M):

(i) (kN)∗ = kN∗.

(ii) N ⊆ N∗ and if N ⊆ N1, then N∗ ⊆ N∗
1 .

(iii) (N∗)∗ = N∗.
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Lemma 8

The mapping v : F (M) −→ F (M) given by N −→ Nv is a *-operation on
M.

Lemma 9

(1) Let N be a fractional R-submodule in KM. Then Nv = ∩N⊆kMkM,
where k ∈ K .

(2) Let a be a fractional R- ideal . Then (aM)v = (avM)v .

(3) Let N be a fractional R-submodule in KM such that M ⊇ N and
N = Nv Then n = (N : M) = {r ∈ R | rm ⊆ N} is a v -ideal of R.
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We denote by

F (R) the set of all fractional v -submodules in KM,

Fv (M) the Abelian group of fractional ideals in K .

Proposition 4

The mapping : F (R) −→ Fv (M) given by n −→ nM is a bijection, where
n ∈ F (R).
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Let

Fv (M[X ]) = {N | N are fractional v -submodules in K (X )M[X ]},
Fv (R[X ]) = {n | n are fractional v -ideals in K (X )}.

Proposition 5

Let R be a commutative Dedekind domain and M be a finitely generated
torsion-free R-module. Then the mapping :

Fv (R[X ]) −→ Fv (M[X ])

given by n −→ nM[X ] is a bijection, where n ∈ Fv (R[X ]).
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Since R[X ] is a generalized Dedekind domain, Fv (R[X ]) is an Abelian
group under the usual ideal product.

We define a product”◦” in Fv (M[X ]) as follows:

N ◦ N1 = nn1M[X ]

for N = nM[X ] and N1 = n1M[X ], where n, n1 ∈ Fv (R[X ]).

Corollary 2

Fv (M[X ]) is isomorphic to Fv (R[X ]) as Abelian groups.
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