Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94			References
0000	00000	000	0	00	000	00000	

Lattices and cohomological Mackey functors for finite cyclic *p*-groups

> Thomas Weigel (joint work with Blas Torrecillas)

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Matematica e Applicazioni

Rings, modules and Hopf algebras on the occasion of Blas Torrecillas' 60th birthday *Almeria, Spain, 16.5.2019*

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94			References
0000	00000	000		00	000	00000	
Cohomologica	A. Dress	ckeyfuncto	ors, I				

Definition (A. Dress, 1972)

Let G be a finite group, and let **ab** be an abelian category. An object in the category

$$\mathfrak{cMF}_{G}(\mathsf{ab}) = \mathfrak{Add}^{-}(\mathsf{perm}_{\mathbb{Z}}(G), \mathsf{ab})$$

is called a **cohomological** *G*-Mackey functor with values in the category ab.

A. Dress

- $\operatorname{perm}_{\mathbb{Z}}(G) = \operatorname{additive category of left } \mathbb{Z}[G]$ -permutation modules.
- ADD⁻(C₁, C₂) = the category of contravariant additive functors from the additive category C₁ to the additive category C₂.
- G.Y. $\Longrightarrow \mathfrak{cMF}_G(\mathbf{ab})$ is an abelian category with enough projectives.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	References
0000						
Cohomologica	al Mac	ckeyfuncto	ors, II			

• **perm**_{\mathbb{Z}}(*G*) is additively generated by $\mathbb{Z}[G/U]$, $U \subseteq G$. Hence **X** $\in \mathfrak{cMF}_G(\mathbf{ab})$ is uniquely determined by the values

•
$$\mathbf{X}_U = \mathbf{X}(\mathbb{Z}[G/U]), U \subseteq G$$
; and

•
$$X(\phi), \phi \in \operatorname{Hom}_{G}(\mathbb{Z}[G/U), \mathbb{Z}[G/V]), \qquad U, V \subseteq G.$$

Theorem (A. Dress, 1972)

As a category $perm(\mathbb{Z}[G])$ is generated by the morphisms

- $c_{g,U}$: $\mathbb{Z}[G/U] \to \mathbb{Z}[G/^g U]$, $g \in G$, $U \subseteq G$, $c_{g,U}(xU) = xg^{-1g}U$;
- $\mathfrak{i}_{V,U}$: $\mathbb{Z}[G/V] \to \mathbb{Z}[G/U]$, $U, V \subseteq G$, $V \subseteq U$, $\mathfrak{i}_{V,U}(xV) = xU$;
- $t_{V,U}: \mathbb{Z}[G/U] \to \mathbb{Z}[G/V], U, V \subseteq G, V \subseteq U,$ $t_{U,V}(xU) = \sum_{r \in \mathscr{R}} xrV;$ where $\mathscr{R} \subseteq U$ is a set of representatives for U/V.

In particular, a cohomological G-Mackeyfunctor \mathbf{X} is uniquely determined by the values

•
$$c_{g,U}^{\mathbf{X}} = \mathbf{X}(c_{g,U}) \colon \mathbf{X}_{\varepsilon U} \to \mathbf{X}_{U}, g \in G, U \subseteq G;$$

• $i_{U,V}^{\mathbf{X}} = \mathbf{X}(i_{V,U}) \colon \mathbf{X}_{U} \to \mathbf{X}_{V}, V \subseteq U;$
• $t_{V,U}^{\mathbf{X}} = \mathbf{X}(t_{U,V}) \colon \mathbf{X}_{V} \to \mathbf{X}_{U}, V \subseteq U$

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94			References
0000	00000	000		00	000	00000	
Cohomologica	al Mac	ckeyfuncto	ors, III				

Theorem (continued)

which satisfy the following relations:

(cMF₁)
$$i_{U,U}^{\mathbf{X}} = t_{U,U}^{\mathbf{X}} = c_{u,U}^{\mathbf{X}} = \operatorname{id}_{\mathbf{X}_{U}}$$
 for all $U \subseteq G$ and all $u \in U$;
(cMF₂) $i_{V,W}^{\mathbf{X}} \circ i_{U,V}^{\mathbf{X}} = i_{U,W}^{\mathbf{X}}$ and $t_{V,U}^{\mathbf{X}} \circ t_{W,V}^{\mathbf{X}} = t_{W,U}^{\mathbf{X}}$ for all $U, V, W \subseteq G$ and
 $W \subseteq V \subseteq U$;
(cMF₃) $c_{h,\varepsilon_{U}}^{\mathbf{X}} \circ c_{g,U}^{\mathbf{X}} = c_{hg,U}^{\mathbf{X}}$ for all $U \subseteq G$ and $g, h \in G$;
(cMF₄) $i_{\varepsilon_{U},\varepsilon_{V}}^{\mathbf{X}} \circ c_{g,U}^{\mathbf{X}} = c_{g,V}^{\mathbf{X}} \circ i_{U,V}^{\mathbf{X}}$ for all $U, V \subseteq G$ and $g \in G$;
(cMF₅) $t_{\varepsilon_{V,\varepsilon_{U}}}^{\mathbf{X}} \circ c_{g,V}^{\mathbf{X}} = c_{g,U}^{\mathbf{X}} \circ t_{V,U}^{\mathbf{X}}$ for all $U, V \subseteq G$ and $g \in G$;
(cMF₆) $i_{U,W}^{\mathbf{X}} \circ t_{V,U}^{\mathbf{X}} = \sum_{g \in W \setminus U/V} t_{\varepsilon_{V} \cap W,W}^{\mathbf{X}} \circ c_{g,V \cap W^{\varepsilon}}^{\mathbf{X}} \circ i_{V,V \cap W^{\varepsilon}}^{\mathbf{X}}$, where
 $W^{g} = g^{-1}Wg$ for all $U, V, W \subseteq G$ and $V, W \subseteq U$;
(cMF₇) $t_{V,U}^{\mathbf{X}} = i_{U,V}^{\mathbf{X}} \vee I$, if all subgroups $U, V \subset G, V \subset U$.

イロト イ団ト イヨト イヨト 二日

Let G be a finite group, let R be a commutative ring, and let M be a left R[G]-module.

- For $U \in G^{\sharp}$ put $\mathbf{h}^{0}(M)_{U} = M^{U}$.
- For $V \subseteq U$ let $i_{U,V}^{\mathbf{h}^0(M)} \colon M^U \to M^V$ denote the canonical map,
- and for $g \in G$ let $c_{g,U}^{\mathbf{h}^{0}(M)} \colon M^{\varepsilon_{U}} \to M^{U}$ be given by multiplication with $g^{-1} \in G$.
- For $V \subseteq U$ let $\mathscr{R} \subseteq U$ be a set of representatives of U/V, and let $t_{V,U}^{\mathbf{h}^{0}(M)} \colon M^{V} \to M^{U}$ be given by $t_{V,U}^{\mathbf{h}^{0}(M)}(m) = \sum_{r \in \mathscr{R}} r \cdot m$ for $m \in M^{V}$.

Then $\mathbf{h}^{0}(M)$ together with the maps $i_{U,V}^{\mathbf{h}^{0}(M)}$, $t_{V,U}^{\mathbf{h}^{0}(M)}$ and $c_{g,U}^{\mathbf{h}^{0}(M)}$ is a cohomological *G*-Mackey functor - the **fixed point functor of** *M*. Thus $\mathbf{h}^{0}: {}_{R[G]}\mathbf{mod} \longrightarrow \mathfrak{cMF}_{G}(R\mathbf{mod})$ is a covariant additive left exact functor. On the contrary, $-{}_{\{1\}}: \mathfrak{cMF}_{G}(R\mathbf{mod}) \longrightarrow {}_{R[G]}\mathbf{mod}$ is an exact functor.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	References
	00000					
Lattices some classical repr	esentation	1 theory				

Definition

Let G be a finite group, let R be an integral domain, and let R[G] denote the R-group algebra of G. A left R[G]-module L which is - considered as R-module - finitely generated and projective is called a left R[G]-lattice.

Theorem (B. Torrecillas & T.W. (2013))

Let R be an unramified (0, p) discrete valuation domain, i.e., R is a d.v.d. of characteristic 0 with maximal ideal pR, let G be a finite cyclic p-group, and let L be an R[G]-lattice. Then the following are equivalent:

- (1) L is an R[G]-permutation module;
- (2) $\mathbf{h}^0(L) \in \mathfrak{cMF}_G(_R \mathbf{mod})$ is projective;
- (3) $H^1(L, U) = 0$ for all $U \subseteq G$ (Hilbert 90 property).

Remark

The equivalence (1) \Leftrightarrow (2) has been shown already by P. Webb and J. Thévenaz.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	Blocks	References
0000	○●○○○	000	O	00	000	00000	
Lattices II What we were not aw	are off:						

Remark

In 1975 S. Endô and T. Miyata proved already that for a finite group G with cyclic *p*-Sylow subgroups, a $\mathbb{Z}[G]$ -lattice L is a direct summand of a $\mathbb{Z}[G]$ -permutation lattices, if and only if, $H^1(U, L) = 0$ for all $U \subseteq G$.

Cohomological Mackeyfunctors	Lattices		Hilbert 90	Hilbert 94			References
0000	00000	000		00	000	00000	
The Krull-Sch	nmidt	theorem					

Theorem (Krull-Schmidt)

Let G be a finite group, and let R be a complete (0,p)-d.v.d. Then, for every left R[G]-lattice L the summands L_j of a direct decomposition

$$L = \bigoplus_{1 \le j \le r} L_j$$

into directly indecomposable R[G]-lattices L_j are uniquely determined by L.

Theorem (Diederichsen, 1940)

Let G be a cyclic group of order p, let R be an unramified complete d.v.d, and let L be an indecomposable R[G]-lattice. Then

 $[L] \in \{ [R], [R[G]], [\omega_{R[G]}] \},\$

where $\omega_{R[G]} = \ker(\varepsilon: R[G] \to R)$ is the augmentation ideal of R[G], and [_] denotes the isomorphism type.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	Blocks	References
0000	○○○●○	000	O	00	000	00000	
Representatio	n type	2S Dieterich (1980))				

 $C_n = \mathbb{Z}/p\mathbb{Z}$ 0: fields of characteristic 0 1: unramified (0,p)-complete d.v.d's $\infty : R = \mathbb{F}[[T]],$ char(\mathbb{F}) = p.

= so far unknown representation type (but see section 4)

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier		References
0000	00000	000		00	000	00000	

Some implications of our theorem

Wild representation type versus finite presentability by permutation modules

Theorem (B. Torrecillas & T.W., 2013)

Let G be a finite cyclic p-group, and let R be an unramified (0, p)-d.v.d. Then

 $\operatorname{gl.dim}(\mathfrak{cMF}_G(_R\mathbf{mod})) \leq 3.$

Theorem (B. Torrecillas & T.W., 2013)

Let G be a finite cyclic p-group, and let R be an unramified (0, p)-d.v.d. Then for every left R[G]-lattice L, there exist left G-sets Ω and Υ and a short exact sequence of left R[G]-modules

$$0 \longrightarrow R[\Upsilon] \longrightarrow R[\Omega] \longrightarrow L \longrightarrow 0$$

Comment (A. Zalesskii (2013))

Although this theorem is not in contradiction to anything, it is difficult to accept it. It is in contrast to our intuition.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier		References
0000	00000	000		00	000	00000	
Section cohor or "Hilbert 90 propert	molog	y D. Hilbert (1862-	1943))				

Definition

Let G be a finite group and $\mathbf{X} \in \mathrm{ob}(\mathfrak{cMF}_G(\mathbb{Z}\mathbf{mod}))$.

- **X** is called *i*-injective if for all $U, V \in G^{\sharp}$, $V \subseteq U, i_{U,V}^{X} : \mathbf{X}_{U} \to \mathbf{X}_{V}$ is injective.
- **X** is said to be **of type** H^0 (or of Galois descent) if it is *i*-injective, and for all $U, V \in G^{\sharp}, V \triangleleft U$, the induced map $\tilde{i}_{U,V}^{\mathbf{X}} : \mathbf{X}_U \longrightarrow (\mathbf{X}_V)^U$ is an isomorphism.
- X is said to have the Hilbert' 90 property, if it is of type H⁰ and for all U, V ⊆ G, V ⊲ U, one has H¹(U/V, X_V) = 0.

Remark

$$\mathbf{X}$$
 of type H^0
 \Longleftrightarrow
 $\mathbf{X} \simeq \mathbf{h}^0(\mathbf{X}_{\{1\}}).$

Theorem (D. Hilbert, E. Noether)

Let L/K be a finite Galois extension. Then $(L^{\bullet})^{\times} = \mathbf{h}^{0}(L^{\times})$ is a cohomological $\operatorname{Gal}(L/K)$ -Mackey functor with the Hilbert 90 property.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94			References
0000	00000	000		00	000	00000	
Section cohor	nolog	y, part II					

Definition

Let G be a finite group, $U, V \subseteq G, V \triangleleft U$, and let $X \in ob(\mathfrak{cMF}_{G}(\mathbb{Z}mod))$. Then

$$\begin{split} \mathbf{k}^0(U/V,\mathbf{X}) &= \ker(i_{U,V}^{\mathbf{X}}), \qquad \mathbf{c}_0(U/V,\mathbf{X}) = \operatorname{coker}(t_{V,U}^{\mathbf{X}}), \\ \mathbf{k}^1(U/V,\mathbf{X}) &= \mathbf{X}_V^U/\operatorname{im}(i_{U,V}^{\mathbf{X}}), \quad \mathbf{c}_1(U/V,\mathbf{X}) = \ker(t_{V,U}^{\mathbf{X}})/\omega_{U/V} \cdot \mathbf{X}_V, \end{split}$$

where $\omega_{U/V} = \ker(\mathbb{Z}[U/V] \to \mathbb{Z})$ is the augmentation ideal, are called the section cohomology groups of **X** for the normal section (U, V).

Remark

If (U/V) is a cyclic normal section, i.e., U/V is cyclic, then there exists a cohomological U/V-Mackey functor **B** such that

$$\begin{split} & \mathbf{k}^0(U/V,\mathbf{X}) = \mathrm{Ext}^3(\mathbf{B}, \mathrm{res}_{U/V}(\mathbf{X})), \quad \mathbf{c}_0(U/V,\mathbf{X}) = \mathrm{Ext}^0(\mathbf{B}, \mathrm{res}_{U/V}(\mathbf{X})), \\ & \mathbf{k}^1(U/V,\mathbf{X}) = \mathrm{Ext}^2(\mathbf{B}, \mathrm{res}_{U/V}(\mathbf{X})), \quad \mathbf{c}_1(U/V,\mathbf{X}) = \mathrm{Ext}^1(\mathbf{B}, \mathrm{res}_{U/V}(\mathbf{X})). \end{split}$$

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94			References
0000	00000	000		00	000	00000	
Section cohor	nology	y, part III					

Theorem (T.W. (2006))

Let G be a finite group, $U, V \in G^{\sharp}$, $V \triangleleft U$, and let $\mathbf{X} \in ob(\mathfrak{cMF}_{G}(\mathbb{Z}\mathbf{mod}))$. Then one has a 6-term exact sequence

Remark

If U/V is cyclic and if \mathbf{X}_W are finitely generated abelian groups for all $W \subseteq U$, $V \subseteq W$, then

$$\chi_{U/V}(\mathbf{X}) = \frac{|\mathbf{k}^0(U/V, \mathbf{X})| \cdot |\mathbf{c}_1(U/V, \mathbf{X})|}{|\mathbf{k}^1(U/V, \mathbf{X})| \cdot |\mathbf{c}_0(U/V, \mathbf{X})|} = h(U/V, \mathbf{X}_V)^{-1}$$

coincides with the inverse of the **Herbrand quotient** of X_V .

A Hilbert theorem 90 in a group theoretical context joint work with Claudio Quadrelli...

Hilbert 90

Let G be a group and let $N \triangleleft G$ be a subgroup of finite index. For $U \subseteq G/N$, let

$$\widehat{U} = \{ g \in G \mid gN \in U \}$$

and denote by $\widehat{U}^{ab} = \widehat{U}/[\widehat{U}, \widehat{U}]$ its maximal abelian quotient. Then **X** given by $\mathbf{X}_U = \widehat{U}^{ab}$, where $t_{V,U}^{\mathbf{X}}$ is the canonical map, and $i_{U,V}^{\mathbf{X}}$ is given by the transfer, is a cohomological G/N-Mackey functor (with coefficients in $\mathbb{Z}\mathbf{mod}$), we will denote from now on by $\mathbf{h}_1(G/N, \mathbb{Z})$.

Blocks

C.Quadrelli

Theorem (C.Quadrelli, T.W. (2015))

Let G be a group, and let N be a co-cyclic normal subgroup of finite index, i.e., G/N is a cyclic group. Then

 $\mathbf{c}_1(G/N,\mathbf{h}_1(G/N,\mathbb{Z}))=0.$

References

Cohomological Mackeyfunctors Lattices Section cohomology Hilbert 90 Hilbert 94 Schreier Blocks O000 Coord O0000 Hilbert 94 O00 Coord O0000 Coord O000 Coord O0000 Coord O000 Coord O0000 C

Theorem (C.Quadrelli, T.W. (2015))

Let G be a finitely generated pro-p group, and let N be an open normal co-cyclic subgroup of G, such that U^{ab} is torsion free for every open subgroup U containing N. Then N^{ab} is a $\mathbb{Z}_p[G/N]$ -permutation module.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	Blocks	References
0000	00000	000		00	000	00000	
Hilbert's theorem in the classical form	rem 9 [,]	4					

Theorem (D. Hilbert, 1897)

Let L/K be a finite Galois extension of number fields, such that

- (i) $G = \operatorname{Gal}(L/K)$ is cyclic,
- (ii) L/K is unramified.
- Then |G| divides $|\ker(\operatorname{Cl}(\mathcal{O}_{K}) \longrightarrow \operatorname{Cl}(\mathcal{O}_{L}))|$.

Remark

Hilbert's theorem 94 was the motivation for D. Hilbert to formulate his "principal ideal conjecture" which was proved more than 30 years later by Ph. Furtwängler.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	References
				00		
Hilbert's theo	rem 9	4 in a stro	onger f	orm		

a kind of "vintage result"

Theorem (C.Quadrelli & T.W. (2015))

Let L/K be a finite Galois extension of number fields, such that

- (i) $G = \operatorname{Gal}(L/K)$ is cyclic,
- (ii) L/K is unramified.

Then

 $|\ker(\operatorname{Cl}(\mathcal{O}_{\mathcal{K}}) \longrightarrow \operatorname{Cl}(\mathcal{O}_{\mathcal{L}}))| = |\mathcal{G}| \cdot |\operatorname{coker}(\operatorname{Cl}(\mathcal{O}_{\mathcal{K}}) \longrightarrow \operatorname{Cl}(\mathcal{O}_{\mathcal{L}})^{\mathcal{G}})|.$

The Schreier	index	formula					
Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	Blocks	References

Theorem (O. Schreier)

Let F be a free group of rank $d < \infty$, and let $U \subseteq F$ be a subgroup of finite index. Then U is free of rank

$$\operatorname{rk}(U) = |F:U| \cdot (d-1) + 1$$

O.Schreier (1901-1929)

Cohomological Mackeyfunctors	Lattices 00000	Section cohomology 000	Hilbert 90 O	Hilbert 94 00	Schreier ○●○	Blocks 00000	References
The transfer i	ratio						

Definition

For a finitely generated pro-p group G the non-negative integer

$$\operatorname{rk}_{\mathbb{Q}_p}(G) = \dim_{\mathbb{Q}_p}(G^{\operatorname{ab}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$$

is called the torsion free rank of G.

- Let G be a finitely generated pro-p group, and let U ⊆ G be a subgroup of index p. Then U is normal in G, and open.
- Moreover, the transfer map

$$\mathrm{tr}_{G,U}\colon G^{\mathrm{ab}}\longrightarrow U^{\mathrm{ab}}$$

has finite kernel, and $\operatorname{im}(\operatorname{tr}_{G,U}) \subseteq (U^{\operatorname{ab}})^{G/U}$ is of finite index.

• Define the transfer ratio $\rho(G, U)$ by

$$\rho(G, U) = \frac{|\operatorname{ker}(\operatorname{tr}_{G, U})|}{|(U^{\operatorname{ab}})^{G/U}/\operatorname{im}(\operatorname{tr}_{G, U})|}.$$

Cohomological Mackeyfunctors	Lattices 00000	Section cohomology 000	Hilbert 90 O	Hilbert 94 00	Schreier ○○●	Blocks 00000	References
A generalized for the torsion free	Schre rank in te	erms of the transf	a er ratio				

Theorem (C. Quadrelli& T.W., 2015)

Let G be a finitely generated pro-p group, and let $U \subseteq G$ be a (closed) subgroup of index p. Then

$$\mathrm{tf}(U) = p \cdot \mathrm{tf}(G) + (1-p)(1-\log_p(\rho(G,U))),$$

where $\log_p(_)$ denotes the logarithm to the base p.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	Blocks	References
						00000	
Blocks joint work with B. Lan	icellotti &	: S. Koshitani					

Let $(\mathcal{O}, \mathbb{F}, \mathbb{K})$ be a quasi-split *p*-modular system for *G*, i.e.,

- \mathcal{O} is an unramified (0,p)-complete d.v.d. with residue field \mathbb{F} and quotient field \mathbb{K} ;
- every Wedderburn component of $\mathbb{F}[G]/rad(\mathbb{F}[G])$ is an \mathbb{F} -matrix algebra;
- every Wedderburn component of K[G] is an L-matrix algebra, where L is a finite extension field of K (totally ramified in the place associated to O).

Definition

Let $(\mathcal{O}, \mathbb{F}, \mathbb{K})$ be a quasi split *p*-modular system for the finite group *G*. An indecomposable summand *B* of the $\mathcal{O}[G]$ -bimodule $\mathcal{O}[G]$ is called an $\mathcal{O}[G]$ -block, i.e., there exists a central primitive idempotent e_B in *B* such that $B = \mathcal{O}[G] \cdot e_B$.

Cohomological Mackeyfunctors	Lattices 00000	Section cohomology	Hilbert 90 O	Hilbert 94 00	Schreier 000	Blocks ○●○○○	References
Green corresp	onden	ice					

Remark

Let *M* be an indecomposable $\mathcal{O}[G]$ -lattice. A *p*-subgroup *U* for which there exists an $\mathcal{O}[U]$ -module *S* such that *M* is a direct summand of $\operatorname{ind}_U^G(S)$, but not a direct summand of $\operatorname{ind}_V^G(T)$ for any proper subgroup *V* of *U*, is called a **vertex** of *M*, i.e., ${}^GU = \operatorname{vt}(M)$. The $\mathcal{O}[U]$ -module *S* is called a source of *M*.

Remark

Let B be an $\mathcal{O}[G]$ -block. There exists a p-group D unique up to G-conjugacy such that

$$\Delta(D) = \{ (g,g) \in G \times G \mid g \in D \} = \operatorname{vt}_{G \times G}(B).$$

The group D is called the **defect group** of G.

-

・ロット (雪) () () () ()

Cohomological Mackeyfunctors	Lattices 00000	Section cohomology 000	Hilbert 90 O	Hilbert 94 00	Schreier 000	Blocks ○○●○○	References
Alperin's weig	ght co	njecture					

- A left $\mathcal{O}[G]$ -module (or $\mathbb{F}[G]$ -module or $\mathbb{K}[G]$ -module) M is said to be contained in the $\mathcal{O}[G]$ -block $B = e_B \cdot \mathbb{K}[G]$, if $e_B \cdot M = M$.
- $\operatorname{IBr}(B) = \{ [S] \mid S \text{ simple } \mathbb{F}[G] \text{-module in } B \}.$

 $\begin{aligned} \operatorname{Alp}(G) = & \{ (P, [S]) \mid P \subseteq G \text{ a } p \text{-subgroup}, \\ & \text{S projective and irreducible } \mathbb{F}[N_G(P)/P] \text{-module.} \\ \end{aligned}$

- Elements in Alp(G) are called weights.
- By Green correspondence, every weight (P, [S]) determines an indecomposable trivial source O[G]-lattice T(P, [S]).
- $Alp(B) = \{ (P, [S]) \in Alp(G) \mid T(P, [S]) \in B \}.$

Conjecture (Alperin's weight conjecture, 1990)

For every Block B of a finite group G one has

 $|\mathrm{IBr}(B)| = |\mathrm{Alp}(B)|.$

Cohomological Mackeyfunctors 0000	Lattices 00000	Section cohomology 000	Hilbert 90 O	Hilbert 94 00	Schreier 000	Blocks	References
Blocks with by Brauer, Thom	cyclic (pson, Dade	defect a, et al.					

- Using the Brauer tree one sees easily that for every [S] ∈ IBr(B) there exist B-lattices L[±]([S]).
- There exist trivial source lattices $P_0([S])$ and $P_1([S])$ such that

$$0 \longrightarrow \mathbf{h}^{0}(P_{1}([S])) \longrightarrow \mathbf{h}^{0}(P_{0}([S])) \longrightarrow \mathbf{h}^{0}(L^{+}([S])) \longrightarrow 0$$

is exact. Put $\mathfrak{p}([S]) = [P_0([S])] - [P_1([S])] \in \mathbf{Ts}(B)$, where $\mathbf{Ts}(B)$ denotes the Grothendieck group of trivial source $\mathcal{O}[G]$ -modules in B.

- Put \mathfrak{p} : IBr $(B) \longrightarrow \mathbf{Ts}(B)$, $\mathfrak{p}([S]) = [P_0([S])] [P_1([S])]$.
- Then $\mathfrak{p}([S]) = \sum_{T \in ITs(B)} a_T \cdot [T]$. Put

$$\begin{aligned} \operatorname{supp}([S]) &= \{ [T] \in \operatorname{ITs}(B) \mid a_T \neq 0 \} \\ \operatorname{supp}^{\operatorname{mx}}([S]) &= \{ [T] \in \operatorname{ITs}^{mx}(B) \mid a_T \neq 0 \} \end{aligned}$$

where $\operatorname{ITs}^{\operatorname{mx}}(B) = \{[T] \in \operatorname{ITs}(B) \mid \operatorname{vt}(T) = \operatorname{df}(B) \}.$

Alperin's weig	ht cor	nieture for	Blocks	with	cvclic	defect	_
Cohomological Mackeyfunctors	Lattices 00000	Section cohomology 000	Hilbert 90 O	Hilbert 94 00	Schreier 000	Blocks ○○○○●	References

Remark

By the general theory of Blocks with cyclic defect, it is well known that Alperin's weight conjecture is true for Blocks with cyclic defect.

Theorem (B. Lancellotti, S. Koshitani, T.W., (2018))

Let B be a $\mathcal{O}[G]$ -block of cyclic defect. Then for all $S \in IBr(B)$, $|supp^{mx}([S])| = 1$.

Conjecture (B. Lancellotti, S. Koshitani, T.W.)

(a)The map α : IBr(B) \longrightarrow ITs(B) given by supp^{mx}([S]) = { [α ([S])] } is a bijection. In particular, there exists a canonical bijection

$$\alpha \colon \mathrm{IBr}(B) \longrightarrow \mathrm{Alp}(B).$$

(b) For $T \in \operatorname{supp}^{m_X}([S])$, $a_T \in \{\pm 1\}$.

(日)、

Cohomological Mackeyfunctors	Lattices 00000	Section cohomology	Hilbert 90 O	Hilbert 94 00	Schreier 000	Blocks 00000	References
References I							

- E. Dieterich, *Representation types of group rings over complete discrete valuation rings. II*, in: Orders and their Applications (Oberwolfach, 1984), in: Lecture Notes in Math., vol. **1142**, Springer, Berlin, 1985, pp. 112125.
- F.-E. Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Hansischen Univ. 13 (1940), 35412.
- D. Hilbert, *Zahlbericht*, 1897. (see "The theory of algebraic number fields" (Springer, Berlin, 1998))
- S. Endo, T. Miyata, On a classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1975), no. 3, 85-104.
- B. Torrecillas, Th. Weigel, *Lattices and cohomological Mackey functors for finite cyclic p groups*, Adv. Math. **244** (2013), 533-569.

C. Quadrelli, Th. Weigel, *Hilbert's theorem 90 in a group theoretical context*, Bulletin London Math. Soc. **47**, (2015), 704-714.

Cohomological Mackeyfunctors	Lattices	Section cohomology	Hilbert 90	Hilbert 94	Schreier	Blocks	References
References II							

Cohomological Mackeyfunctors 0000	Lattices 00000	Section cohomology	Hilbert 90 O	Hilbert 94 00	Schreier 000	Blocks 00000	References
Happy Birthday Blas!							

