ON CLEAN COMODULES AND CLEAN COALGEBRAS

Nikken Prima Puspita joint work with I.E Wijayanti and B. Surodjo **Universitas Gadjah Mada, Indonesia**

Congress of Rings Modules and Hopf Algebra, Almería, Spain

May 15, 2019

Nikken Prima Puspita joint work with I.E WijON CLEAN COMODULES AND CLEAN CO.

May 15, 2019 1 / 28

Clean Rings and Clean Modules

Let R be a ring with multiplicative identity.

Definition

(Nicholson, 1977)

A Ring R is called a clean ring if every element in ring R can be expressed as the sum of an idempotent element and a unit in R.

Definition

(Camillo, et.al., 2006) An *R*-module *M* is called a clean module if the ring of $End_R(M)$ is clean.

Comodule as Modules over Dual Algebra

Theorem

(Brzeziński and Wisbauer, 2003)

If (C, Δ, ε) is an *R*-coalgebra, then C^* is a dual *R*-algebra over a convolution product $f * g = \mu \circ (f \otimes g) \circ \Delta$, for any $f, g \in C^*$.

Theorem

(Brzeziński and Wisbauer, 2003) Every right C-comodule M is a left C*-module by

 $\rightharpoonup: C^* \otimes_R M \to M, f \otimes m \mapsto (I_M \otimes f) \circ \varrho^M(m) = \Sigma m_{\underline{0}} f(m_{\underline{1}}).$

Remark

Since any *R*-coalgebra *C* is a (C, C)-comodule, *C* is a left and right C^* -module.

Theorem

(Brzeziński and Wisbauer, 2003)

Any morphism $h: M \to N$ in \mathbf{M}^C is a left C^* -module morphism, that is $Hom^C(M, N) \subseteq_{C^*} Hom(M, N)$.

Remark

If C satisfies the α -condition, then $Hom^{C}(M, N) =_{C^{*}} Hom(M, N)$.

Clean Comodules and Clean Coalgebras

As the fact that a C-comodule M is a C*-module. we define the notions of clean comodules.

Definition

Let C be an R-coalgebra. A C-comodule M is called a clean comodule if M is clean as a C^* -module.

It means *C*-comodule *M* is a clean comodule if $_{C^*}End(M)$ is clean. Since every *R*-coalgebra *C* is a comodule over itself definition of clean coalgebra given as below

Definition

An *R*-coalgebra *C* is a clean coalgebra if *C* is a clean comodule over itself or the ring $_{C^*}End(C)$ is clean.

Trivial Clean Coalgebras and Clean Comodules

Every ring R with multiplicative identity is a (trivial) R-coalgebra with $\Delta_T(r) = r \otimes r$ and $\varepsilon_T(r) = 1$, for any $r \in R$. Hence, the dual algebra $R^* = Hom_R(R, R) \simeq R$.

Example

A ring R is a clean ring if and only if $(R, \Delta_T, \varepsilon_T)$ is a clean (trivial) *R*-coalgebra.

Example

An *R*-module *M* is a clean module if and only if *M* is a clean (trivial) *R*-comodule with $\varrho^M(m) = m \otimes 1$, for any $m \in M$.

Recall the theorem on clean modules

Theorem

- (Camillo et.al, 2006) Every continuous modules is clean.
- (Camillo et.al, 2006) If M is a quasi-injective R-module, then M is a clean module (every injective module is clean).
- (Nicholson, et.al, 2004) Let D be a division ring. Every vector space V over D is a clean ring

Direct Consequences From Module Theory

Proposition

Let (C, Δ, ε) be an *R*-coalgebra with the α -conditon.

- If C^* is a clean ring, then C is a clean R-coalgebra;
- 2) if C^* is a division ring, then C is a clean R-coalgebra.

Proof. Since C satisfies the α -condition, $_{C^*}End(C) \simeq C^*$ (see Brzeziński and Wisbauer (2003)). Then the proof is clear.

Proposition

If C is an R-coalgebra and finitely generated projective R-module, then every injective C-comodule is a clean comodule.

Proposition

Let R be a QF ring, M, C is a f.g R-module. If M is an injective C-comodule, then M is a clean C-comdules.

Clean R[G]-comodules

Theorem

(Brzeziński and Wisbauer, 2003) Let R be a commutative ring with multiplicative identity and G be a group. An R-module M is a G-graded module over R if and only if M is an R[G]-comodule.

Clean R[G]-comodules

Lemma

Given *R*-coalgebra R[G]. If *G* is finite group with order *n*, then dual algebra $R[G]^* \simeq R^n$ as a ring.

Proposition

Let G be a finite group with order n and R be a field. If M is a G-graded module over R, then M is a clean R[G]-comodule.

Proof

As $R[G]^* \simeq R^n$ and M is an $R[G]^*$ -module, then M is a module over a semi-simple ring R^n . Thus, M is a injective R^n -module. It implies M is a clean R[G]-module.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

Let G be a finite group with order n and R a simple ring. If M is a G-graded module over R, then M is a clean R[G]-comodule.

Since R^n is a semi-simple ring.

Clean R[G]-Comodules

Proposition

Let R be a Artinian principal ideal ring and G be a finite group. Every R[G]-comodule M is a clean comodule.

Since dual algebra $R[G]^* \simeq R^n$ is Artinian principal ideal ring and based on (Camillo, et.al, 2006), every module over Artinian principal ideal ring is clean.

Clean C-Comodules

Lemma

Let C be a free R-module with basis $\{x_i\}_{i=1}^n$. If C is an R-coalgebra with comultiplication

$$\Delta: C \to C \otimes_R C, x_i \mapsto x_i \otimes x_i,$$

then the dual algebra C^* is isomorphic to the ring R^n .

Clean C-Comodules

Proposition

Let *R* be a simple ring and *C* a free *R*-module with basis $\{x_i\}_{i=1}^n$. If *C* is an *R*-coalgebra with comultiplication $\Delta : C \to C \otimes_R C, x_i \mapsto x_i \otimes x_i$, then every *C*-comodule *M* is clean.

Proposition

Let *R* be an Artinian principal ideal ring and *C* is a finitely generated *R*-module with basis $\{x_i\}_{i=1}^n$. If *C* is an *R*-coalgebra with comultiplication $\Delta : C \to C \otimes_R C, x_i \mapsto x_i \otimes x_i$, then every *C*-comodule *M* is a clean comodule.

The Clean Coalgebra Opposite and Dual Algebra

Proposition

Let (C, Δ, ε) be an *R*-coalgebra. An *R*-coalgebra *C* is clean if and only if an *R*-coalgebra C^{op} is clean.

Proposition

Let A be a finitely generated and projective R-module. An R-algebra A is clean if and only if the R-coalgebra A^* is clean.

The Clean Coalgebra Coproduct and Coalgebra Corner

Proposition

Let a family $\{(C_{\lambda}, \Delta_{\lambda}, \varepsilon_{\lambda})\}_{\Lambda}$ of *R*-coalgebas (where C_{λ} satisfies the α -condition for all λ) and $C = \bigoplus_{\Lambda} C_{\lambda}$. The direct sum *R*-coalgebra *C* is clean if and only if an *R*-coalgebra C_{λ} is clean for all $\lambda \in \Lambda$.

Proposition

Let (C, Δ, ε) be an *R*-coalgebra. If *C* is cocommutative a clean *R*-coalgebra and *e* is an idempotent in *C*^{*}, then *R*-coalgebra $e \rightarrow C \rightarrow e$ is clean.

An *R*-coalgebra $M_n(R)$

In ring theory, if R is a clean ring, then the ring $M_n(R)$ is clean (Han and Nicholson, 2001). Now, consider $M_n(R)$ as an R-coalgebra (see (Brzeziński and Wisbauer, 2003)). How is the condition that will make it to be clean s an R-coalgebra?

Theorem

(Brzeziński and Wisbauer, 2003) Let P be a finitely generated projective R-module with dual basis $p_1, p_2, ..., p_n \in P$ and $\pi_1, \pi_2, ..., \pi_n \in P^*$. The R-module $P^* \otimes_R P$ is an R-coalgebra with the comultiplication and counit defined by

$$\Delta: P^* \otimes_R P \to (P^* \otimes_R P) \otimes_R (P^* \otimes_R P);$$

$$f \otimes p \mapsto \Sigma_i f \otimes p_i \otimes \pi_i \otimes p$$

and

$$\varepsilon: P^* \otimes_R P \to R, f \otimes p \mapsto f(p).$$

Nikken Prima Puspita joint work with I.E WijON CLEAN COMODULES AND CLEAN CO.

May 15, 2019 19 / 28

The Clean *R*-Coalgebra $P^* \otimes_R P$

Theorem

Let P be a finitely generated projective R-module with dual basis $p_1, p_2, ..., p_n \in P \ \pi_1, \pi_2, ..., \pi_n \in P^*$. If P is a clean R-module, then the R-coalgebra $P^* \otimes_R P$ is clean.

Let P be a finitely generated R-module and $P^* = Hom_R(P, R)$ is a an *R*-module. Suppose P is a clean R-module. Hence, $P^* = Hom_R(P, R)$ is a f.g projective R-module. The R-coalgebra $P^* \otimes_R P$ satisfies the α -condition. It implies

$$(P^*\otimes_R P)^*$$
End $(P^*\otimes_R P)\simeq (P^*\otimes_R P)^*$.

We need to prove that $(P^* \otimes_R P)^*$ is a clean ring. Since P is finitely generated, the dual algebra $P^* \otimes_R (P)$ is isomorphic to the ring $End_R(P)$ by

$$(P^* \otimes_R P)^* = Hom_R(P^* \otimes_R P, R)$$

$$\simeq Hom_R(P, Hom_R(P^*, R))$$

$$\simeq Hom_R(P, P^{**})$$

$$\simeq End_R(P).$$

Therefore, if *P* is a clean *R*-module, End_RP is a clean ring. It means $P^* \otimes_R P$ is a clean *R*-coalgebra.

Corollary

If R is a clean ring, then the R-coalgebra $M_n(R)$ is clean.

Proof

Based on theorem above when $P = R^n$, we have *R*-coalgebra $P^* \otimes_R P \cong M_n(R)$.

The Clean $P^* \otimes_R P$ -Comodules

Theorem

Let P be a finitely generated projective R-module with basis $p_1, p_2, ..., p_n \in P$ and dual basis $\pi_1, \pi_2, ..., \pi_n \in P^*$. If R is a clean ring, then P is a right clean $P^* \otimes_R P$ -comodule and P^* is a left clean $P^* \otimes_R P$ -comodule.

Consider *P* as a right $P^* \otimes_R P$ -comodule. We want to prove $(P^* \otimes_R P)^* End(P)$ is a clean ring. Since $P^* \otimes_R P$ is a f.g projective *R*-module, implies that the category of

$$\mathsf{M}^{P^*\otimes_R P} =_{(P^*\otimes_R P)^*} \mathsf{M}$$

On the other hand, as a ring $(P^* \otimes_R P)^* \simeq End_R(P)$. Therefore,

$$\mathbf{M}^{P^*\otimes_R P} =_{(P^*\otimes_R P)^*} \mathbf{M} \simeq_{\mathit{End}_R(P)} \mathbf{M}.$$

We going to prove that the ring $(P^* \otimes_R P)^* End(P) \in (P^* \otimes_R P)^*$ **M** is clean. Based on their categories and using the Morita Context (see (Lam, 1999)) since *P* is generator, $R \simeq End(_{End_R(P)}P)$ as a ring. Therefore, $(P^* \otimes_R P)^* End(P) \simeq End_{End_R(P)}(P)$ and $End_{End_R(P)}(P) \simeq R$ as a ring. Hence, $(P^* \otimes_R P)^* End(P) \simeq R$ as an *R*-module. However, *R* is a clean ring if and only if *R* is a clean *R*-module. Thus, $(P^* \otimes_R P)^* End(P) \simeq R$ is a clean ring. Consequently, *P* is a clean $P^* \otimes_R P$ -comodule.

Consider P^* as a right $P^* \otimes_R P$ -comodule. We want to prove that $End_{(P^* \otimes_R P)^*}(P^*)$ is a clean ring. Analogue with Proof (1) we have

$$\mathsf{P}^* \otimes_R \mathsf{P}^{\mathsf{M}} = \mathsf{M}_{(\mathsf{P}^* \otimes_R \mathsf{P})^*} \simeq \mathsf{M}_{\mathit{End}_R(\mathsf{P})}.$$

From their category we have $End_{(P^*\otimes_R P)^*}(P^*) \simeq End_{End_RP}(P^*)$. Furthermore, using Morita Theorem we have $R \simeq End_{End_R(P)}(P^*)$. Therefore,

$$End_{(P^*\otimes_R P)^*}(P^*)\simeq R$$

Consequently, if R is clean ring then $_{(P^*\otimes_R P)^*}End(P) \simeq R$ is a clean ring. In particular P^* is a left clean $P^*\otimes_R P$ -comodule. Terima Kasih-Thank You-Gracias

Nikken Prima Puspita joint work with I.E WijON CLEAN COMODULES AND CLEAN CO

■トイヨト ヨ つへへ May 15, 2019 28 / 28