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Int(D)

Definition 1
Let D be a domain with quotient field K . The ring of
integer-valued polynomials on D

Int(D) = {f ∈ K [x ] | ∀ a ∈ D, f (a) ∈ D} ⊆ K [x ]

Remark 1
1 For all f ∈ K [x ], f = g

b where g ∈ D[x ] and b ∈ D \ {0}.

2 f = g
b is in Int(D) if and only if b | g(a) for all a ∈ D.

Examples

D[x ] ⊆ Int(D)
x(x−1)

2 ∈ Int(Z),
(x

n
)

= x(x−1)(x−2)···(x−n+1)
n! ∈ Int(Z).



Int(D) cont’d

Int(Z) is non-Noetherian

Int(D) is in general not a unique factorization domain e.g., in

Int(Z)

x(x − 1)(x − 4)
2 = x(x − 1)

2 (x − 4)

= x (x − 1)(x − 4)
2



Factorization terms

Definition 2
Let r ∈ R be a nonzero non-unit.

1 r is said to be irreducible in R if whenever r = ab, then either
a or b is a unit.

2 If r = r1 · · · rn, the length of the factorization r1 · · · rn is the
number of irreducible factors n.

3 Two factorizations of

r = r1 · · · rn = s1 · · · sm

are called essentially the same if n = m and, after some
possible reordering, rj ∼ sj for 1 ≤ j ≤ m. Otherwise, the
factorizations are called essentially different.



Factorization terms cont’d

The set of lengths of r is

L(r) = {n ∈ N | r = r1 · · · rn}

where r1, . . . , rn are irreducibles. e.g., in Int(Z)

x(x − 2)(x2 + 3)(x2 + 4)
4 = x(x − 2)(x2 + 3)

4 (x2 + 4)

= x(x − 2) (x2 + 3)(x2 + 4)
4

L(r) = {2, 3}



What is known in Int(Z)

Theorem 1 (Frisch, 2013 )
Let 1 < m1 ≤ m2 ≤ · · · ≤ mn ∈ N. Then there exists a polynomial
H ∈ Int(Z) with n essentially different factorizations of lengths
m1, . . . ,mn.

Corollary 1
Every finite subset of N>1 is a set of lengths of an element of
Int(Z).

(Kainrath, 1999) Corollary 1 for certain monoids.



What is known in Int(Z)

Proposition 1 (Frisch, 2013)
For every n ≥ 1 there exist irreducible elements H,G1, . . . ,Gn+1 in
Int(Z) such that xH(x) = G1(x) · · ·Gn+1(x).

(Geroldinger & Halter-Koch, 2006)
1 If θ : H −→ M is a transfer homomorphism, then;

(i) u ∈ H is irreducible in H if and only if θ(u) is irreducible in M.

(ii) For u ∈ H, L(u) = L(θ(u))

2 If u, v are irreducibles elements of a block monoid with u
fixed, then maxL(uv) ≤ |u|, where |u| ∈ N≥0.

3 Any monoid which allows a transfer homomorphism to a block
monoid must have the property in 2.

Monoids which allow transfer homomorphisms to block monoids
are called transfer Krull monoids.

Corollary 2
(Int(Z) \ {0}, •) is not a transfer Krull monoid.



New results

Motivation question: Are there other domains D such that Int(D)
is not a transfer Krull monoid? YES

If D is a Dedekind domain such that;
1 D has infinitely many maximal ideals,
2 all these maximal ideals are of finite index.

Then Int(D) is not a transfer Krull monoid.

Examples of our Dedekind domains
1 Z

2 OK , the ring of integers of a number field K

Theorem 2 (Frisch, Nakato, Rissner, 2019)
For every n ≥ 1 there exist irreducible elements H,G1, . . . ,Gn+1 in
Int(D) such that xH(x) = G1(x) · · ·Gn+1(x).



New results

Let D be a Dedekind domain such that;
1 D has infinitely many maximal ideals,
2 all these maximal ideals are of finite index.

Theorem 3 (Frisch, Nakato, Rissner, 2019)
Let 1 < m1 ≤ m2 ≤ · · · ≤ mn ∈ N. Then there exists a polynomial
H ∈ Int(D) with n essentially different factorizations of lengths
m1, . . . ,mn.



References

1 P.J. Cahen and J.L. Chabert, Integer-valued polynomials,
volume 48 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 1997.

2 A. Geroldinger and F. Halter-Koch, Non-unique factorizations,
vol. 278 of Pure and Appl. Math., Chapman & Hall/CRC,
Boca Raton, FL, 2006.

3 S. Frisch, A construction of integer-valued polynomials with
prescribed sets of lengths of factorizations, Monatsh. Math.
171 (2013), 341 - 350.

4 S. Frisch, S. Nakato and R. Rissner, Sets of lengths of
factorizations of integer-valued polynomials on Dedekind
domains with finite residue fields, J. Algebra, vol. 528, pp.
231- 249, 2019



References

1 S. Frisch, Integer-valued polynomials on algebras: a survey.
Actes du CIRM, 27-32, 2010.

2 S. Frisch, Integer-valued polynomials on algebras, J. Algebra,
vol. 373, pp. 414- 425, 2013.

3 Nicholas J. Werner, Integer-valued polynomials on algebras: a
survey of recent results and open questions. In Rings,
polynomials, and modules, pages 353-375, Springer, Cham,
2017.



You are all invited to the Conference on Rings and Polynomials

When: 20th − 25th July, 2020

Where: Graz University of Technology, Graz, Austria

Website: http://integer-valued.org/rings2020/


	Preliminaries on `39`42`"613A``45`47`"603AInt(D) and factorizations
	What is known in `39`42`"613A``45`47`"603AInt(Z)
	New results

