Non-unique factorizations in rings of integer-valued polynomials

(Joint work with Sophie Frisch and Roswitha Rissner)

Sarah Nakato

Graz University of Technology

Happy 60th birthday Prof. Blas Torrecillas

Outline

- Preliminaries on $\operatorname{Int}(D)$ and factorizations
- What is known in $\operatorname{Int}(\mathbb{Z})$
- New results

Sarah Nakato, Graz University of Technology

$\operatorname{Int}(D)$

Definition 1

Let D be a domain with quotient field K. The ring of integer-valued polynomials on D

$$
\operatorname{lnt}(D)=\{f \in K[x] \mid \forall a \in D, f(a) \in D\} \subseteq K[x]
$$

Remark 1

(1) For all $f \in K[x], f=\frac{g}{b}$ where $g \in D[x]$ and $b \in D \backslash\{0\}$.
(2) $f=\frac{g}{b}$ is in $\operatorname{lnt}(D)$ if and only if $b \mid g(a)$ for all $a \in D$.

Examples

- $D[x] \subseteq \operatorname{lnt}(D)$
- $\frac{x(x-1)}{2} \in \operatorname{Int}(\mathbb{Z}), \quad\binom{x}{n}=\frac{x(x-1)(x-2) \cdots(x-n+1)}{n!} \in \operatorname{Int}(\mathbb{Z})$.

$\operatorname{Int}(D)$ cont'd

- $\operatorname{lnt}(\mathbb{Z})$ is non-Noetherian
- $\operatorname{lnt}(D)$ is in general not a unique factorization domain e.g., in $\operatorname{lnt}(\mathbb{Z})$

$$
\begin{aligned}
\frac{x(x-1)(x-4)}{2} & =\frac{x(x-1)}{2}(x-4) \\
& =x \frac{(x-1)(x-4)}{2}
\end{aligned}
$$

Factorization terms

Definition 2
Let $r \in R$ be a nonzero non-unit.
(1) r is said to be irreducible in R if whenever $r=a b$, then either a or b is a unit.
(2) If $r=r_{1} \cdots r_{n}$, the length of the factorization $r_{1} \cdots r_{n}$ is the number of irreducible factors n.
(3) Two factorizations of

$$
r=r_{1} \cdots r_{n}=s_{1} \cdots s_{m}
$$

are called essentially the same if $n=m$ and, after some possible reordering, $r_{j} \sim s_{j}$ for $1 \leq j \leq m$. Otherwise, the factorizations are called essentially different.

Factorization terms cont'd

- The set of lengths of r is

$$
L(r)=\left\{n \in \mathbb{N} \mid r=r_{1} \cdots r_{n}\right\}
$$

where r_{1}, \ldots, r_{n} are irreducibles. e.g., in $\operatorname{Int}(\mathbb{Z})$

$$
\begin{aligned}
\frac{x(x-2)\left(x^{2}+3\right)\left(x^{2}+4\right)}{4} & =\frac{x(x-2)\left(x^{2}+3\right)}{4}\left(x^{2}+4\right) \\
& =x(x-2) \frac{\left(x^{2}+3\right)\left(x^{2}+4\right)}{4}
\end{aligned}
$$

$$
L(r)=\{2,3\}
$$

What is known in $\operatorname{Int}(\mathbb{Z})$

Theorem 1 (Frisch, 2013)
Let $1<m_{1} \leq m_{2} \leq \cdots \leq m_{n} \in \mathbb{N}$. Then there exists a polynomial $H \in \operatorname{lnt}(\mathbb{Z})$ with n essentially different factorizations of lengths m_{1}, \ldots, m_{n}.

Corollary 1
Every finite subset of $\mathbb{N}_{>1}$ is a set of lengths of an element of $\operatorname{lnt}(\mathbb{Z})$.
(Kainrath, 1999) Corollary 1 for certain monoids.

What is known in $\operatorname{lnt}(\mathbb{Z})$

Proposition 1 (Frisch, 2013)
For every $n \geq 1$ there exist irreducible elements $H, G_{1}, \ldots, G_{n+1}$ in $\operatorname{Int}(\mathbb{Z})$ such that $x H(x)=G_{1}(x) \cdots G_{n+1}(x)$.
(Geroldinger \& Halter-Koch, 2006)
(1) If $\theta: H \longrightarrow M$ is a transfer homomorphism, then;
(i) $u \in H$ is irreducible in H if and only if $\theta(u)$ is irreducible in M.
(ii) For $u \in H, L(u)=L(\theta(u))$
(2) If u, v are irreducibles elements of a block monoid with u fixed, then $\max L(u v) \leq|u|$, where $|u| \in \mathbb{N}_{\geq 0}$.
(3) Any monoid which allows a transfer homomorphism to a block monoid must have the property in 2.

Monoids which allow transfer homomorphisms to block monoids are called transfer Krull monoids.

New results

Motivation question: Are there other domains D such that $\operatorname{lnt}(D)$ is not a transfer Krull monoid? YES

If D is a Dedekind domain such that;
(1) D has infinitely many maximal ideals,
(2) all these maximal ideals are of finite index.

Then $\operatorname{Int}(D)$ is not a transfer Krull monoid.

Examples of our Dedekind domains

(1) \mathbb{Z}
(2) \mathcal{O}_{K}, the ring of integers of a number field K

Theorem 2 (Frisch, Nakato, Rissner, 2019)
For every $n \geq 1$ there exist irreducible elements $H, G_{1}, \ldots, G_{n+1}$ in $\operatorname{lnt}(D)$ such that $x H(x)=G_{1}(x) \cdots G_{n+1}(x)$.

New results

Let D be a Dedekind domain such that;
(1) D has infinitely many maximal ideals,
(2) all these maximal ideals are of finite index.

Theorem 3 (Frisch, Nakato, Rissner, 2019)
Let $1<m_{1} \leq m_{2} \leq \cdots \leq m_{n} \in \mathbb{N}$. Then there exists a polynomial $H \in \operatorname{lnt}(D)$ with n essentially different factorizations of lengths m_{1}, \ldots, m_{n}.

References

(1) P.J. Cahen and J.L. Chabert, Integer-valued polynomials, volume 48 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
(2) A. Geroldinger and F. Halter-Koch, Non-unique factorizations, vol. 278 of Pure and Appl. Math., Chapman \& Hall/CRC, Boca Raton, FL, 2006.
(3) S. Frisch, A construction of integer-valued polynomials with prescribed sets of lengths of factorizations, Monatsh. Math. 171 (2013), 341 - 350.
(9) S. Frisch, S. Nakato and R. Rissner, Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields, J. Algebra, vol. 528, pp. 231-249, 2019

References

(1) S. Frisch, Integer-valued polynomials on algebras: a survey. Actes du CIRM, 27-32, 2010.
(2) S. Frisch, Integer-valued polynomials on algebras, J. Algebra, vol. 373, pp. 414-425, 2013.
(3) Nicholas J. Werner, Integer-valued polynomials on algebras: a survey of recent results and open questions. In Rings, polynomials, and modules, pages 353-375, Springer, Cham, 2017.

You are all invited to the Conference on Rings and Polynomials

When: $20^{\text {th }}-25^{\text {th }}$ July, 2020

Where: Graz University of Technology, Graz, Austria

Website: http://integer-valued.org/rings2020/

