Rings, modules, and Hopf algebras
A conference on the occasion of
Blas Torrecillas' 60th birthday
Almería, May 13-17, 2019

Claudia Menini
 Heavily separable functors

Joint work with
Alessandro Ardizzoni

THANKS TO THE ORGANIZERS!!!

BUON COMPLEANNO

BUON COMPLEANNO BLAS!!!

DEFINITIONS

DEFINITIONS
 For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

DEFINITIONS

For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y): f \mapsto F f
$$

DEFINITIONS

For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y): f \mapsto F f
$$

Recall that F is called separable (see [NVV])

DEFINITIONS

For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y): f \mapsto F f
$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

DEFINITIONS

For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y): f \mapsto F f
$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$
P_{-,-}:=P_{-,-}^{F}: \operatorname{Hom}_{\mathscr{A}}(F-, F-) \rightarrow \operatorname{Hom}_{\mathscr{B}}(-,-)
$$

DEFINITIONS

For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y): f \mapsto F f
$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$
P_{-,-}:=P_{-,-}^{F}: \operatorname{Hom}_{\mathscr{A}}(F-, F-) \rightarrow \operatorname{Hom}_{\mathscr{B}}(-,-)
$$

such that

DEFINITIONS

For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y): f \mapsto F f
$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$
P_{-,-}:=P_{-,-}^{F}: \operatorname{Hom}_{\mathscr{A}}(F-, F-) \rightarrow \operatorname{Hom}_{\mathscr{B}}(-,-)
$$

such that

$$
P_{X, Y} \circ F_{X, Y}=\text { Id for every } X, Y \in \mathscr{B} .
$$

DEFINITIONS

For every functor $F: \mathscr{B} \rightarrow \mathscr{A}$ we set

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y): f \mapsto F f
$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$
P_{-,-}:=P_{-,-}^{F}: \operatorname{Hom}_{\mathscr{A}}(F-, F-) \rightarrow \operatorname{Hom}_{\mathscr{B}}(-,-)
$$

such that

$$
P_{X, Y} \circ F_{X, Y}=\text { Id for every } X, Y \in \mathscr{B} .
$$

圊 [NVV] C. Năstăsescu, M. Van den Bergh, F. Van Oystaeyen, Separable functors applied to graded rings. J. Algebra 123 (1989), no. 2, 397-413.

We say that F is an heavily separable functor (h-separable for short)

We say that F is an heavily separable functor (h-separable for short) if it is separable and the $P_{X, Y}$'s make commutative the following diagram for every $X, Y, Z \in \mathscr{B}$.

We say that F is an heavily separable functor (h-separable for short) if it is separable and the $P_{X, Y}$'s make commutative the following diagram for every $X, Y, Z \in \mathscr{B}$.
$\operatorname{Hom}_{\mathscr{A}}(F X, F Y) \times \operatorname{Hom}_{\mathscr{A}}(F Y, F Z) \xrightarrow{P_{X, Y} \times P_{Y, Z}} \operatorname{Hom}_{\mathscr{B}}(X, Y) \times \operatorname{Hom}_{\mathscr{B}}(Y, Z)$

We say that F is an heavily separable functor (h-separable for short) if it is separable and the $P_{X, Y}$'s make commutative the following diagram for every $X, Y, Z \in \mathscr{B}$.
$\operatorname{Hom}_{\mathscr{A}}(F X, F Y) \times \operatorname{Hom}_{\mathscr{A}}(F Y, F Z) \xrightarrow{P_{X, Y} \times P_{Y, Z}} \operatorname{Hom}_{\mathscr{B}}(X, Y) \times \operatorname{Hom}_{\mathscr{B}}(Y, Z)$

where the vertical arrows are the obvious compositions. On elements the above diagram means that

$$
P_{X, Z}(f \circ g)=P_{Y, Z}(f) \circ P_{X, Y}(g)
$$

We say that F is an heavily separable functor (h-separable for short) if it is separable and the $P_{X, Y}$'s make commutative the following diagram for every $X, Y, Z \in \mathscr{B}$.
$\operatorname{Hom}_{\mathscr{A}}(F X, F Y) \times \operatorname{Hom}_{\mathscr{A}}(F Y, F Z) \xrightarrow{P_{X, Y} \times P_{Y, Z}} \operatorname{Hom}_{\mathscr{B}}(X, Y) \times \operatorname{Hom}_{\mathscr{B}}(Y, Z)$

where the vertical arrows are the obvious compositions. On elements the above diagram means that

$$
P_{X, Z}(f \circ g)=P_{Y, Z}(f) \circ P_{X, Y}(g) .
$$

REMARK

We were tempted to use the word "strongly" at first, instead of "heavily", but a notion of "strongly separable functor" already appeared in the literature in connection with graded rings in [CGN, Definition 3.1].
囯 F. Castaño Iglesias, J. Gómez Torrecillas, C. Năstăsescu, Separable functors in graded rings. J. Pure Appl. Algebra 127 (1998), no. 3,

Why h-separable functors?

Why h-separable functors?

to be explained at the end of the talk!

EXAMPLE

EXAMPLE

A full and faithful functor is h-separable.

EXAMPLE

A full and faithful functor is h-separable.
In fact, if $F: \mathscr{B} \rightarrow \mathscr{A}$ is full and faithful, we have that the canonical map

EXAMPLE

A full and faithful functor is h-separable.
In fact, if $F: \mathscr{B} \rightarrow \mathscr{A}$ is full and faithful, we have that the canonical map

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y)
$$

EXAMPLE

A full and faithful functor is h-separable.
In fact, if $F: \mathscr{B} \rightarrow \mathscr{A}$ is full and faithful, we have that the canonical map

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y)
$$

is invertible so that we can take

$$
P_{X, Y}:=F_{X, Y}^{-1}: \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}(X, Y)
$$

EXAMPLE

A full and faithful functor is h-separable.
In fact, if $F: \mathscr{B} \rightarrow \mathscr{A}$ is full and faithful, we have that the canonical map

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y)
$$

is invertible so that we can take

$$
P_{X, Y}:=F_{X, Y}^{-1}: \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}(X, Y)
$$

Since F is a functor, the following diagram commutes

EXAMPLE

A full and faithful functor is h-separable.
In fact, if $F: \mathscr{B} \rightarrow \mathscr{A}$ is full and faithful, we have that the canonical map

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y)
$$

is invertible so that we can take

$$
P_{X, Y}:=F_{X, Y}^{-1}: \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}(X, Y)
$$

Since F is a functor, the following diagram commutes
$\operatorname{Hom}_{\mathscr{B}}(X, Y) \times \operatorname{Hom}_{\mathscr{B}}(Y, Z) \xrightarrow{F_{X, Y \times F_{Y, Z}}} \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \times \operatorname{Hom}_{\mathscr{A}}(F Y, F Z)$

EXAMPLE

A full and faithful functor is h-separable.
In fact, if $F: \mathscr{B} \rightarrow \mathscr{A}$ is full and faithful, we have that the canonical map

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y)
$$

is invertible so that we can take

$$
P_{X, Y}:=F_{X, Y}^{-1}: \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}(X, Y)
$$

Since F is a functor, the following diagram commutes
$\operatorname{Hom}_{\mathscr{B}}(X, Y) \times \operatorname{Hom}_{\mathscr{B}}(Y, Z) \xrightarrow{F_{X, Y} \times F_{Y, Z}} \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \times \operatorname{Hom}_{\mathscr{A}}(F Y, F Z)$

Reversing the horizontal arrows we obtain that F h-separable.

EXAMPLE

A full and faithful functor is h-separable.
In fact, if $F: \mathscr{B} \rightarrow \mathscr{A}$ is full and faithful, we have that the canonical map

$$
F_{X, Y}: \operatorname{Hom}_{\mathscr{B}}(X, Y) \rightarrow \operatorname{Hom}_{\mathscr{A}}(F X, F Y)
$$

is invertible so that we can take

$$
P_{X, Y}:=F_{X, Y}^{-1}: \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \rightarrow \operatorname{Hom}_{\mathscr{B}}(X, Y)
$$

Since F is a functor, the following diagram commutes
$\operatorname{Hom}_{\mathscr{B}}(X, Y) \times \operatorname{Hom}_{\mathscr{B}}(Y, Z) \xrightarrow{F_{X, Y \times F_{Y, Z}}} \operatorname{Hom}_{\mathscr{A}}(F X, F Y) \times \operatorname{Hom}_{\mathscr{A}}(F Y, F Z)$

Reversing the horizontal arrows we obtain that F h-separable.
We now recall the well-known:

RAFAEL THEOREM [Ra, Theorem 1.2].

RAFAEL THEOREM [Ra, Theorem 1.2].

Let $(L, R, \eta, \varepsilon)$ be an adjunction where $L: \mathscr{B} \rightarrow \mathscr{A}$.

RAFAEL THEOREM [Ra, Theorem 1.2].

Let $(L, R, \eta, \varepsilon)$ be an adjunction where $L: \mathscr{B} \rightarrow \mathscr{A}$.

1) L is separable if and only η is a split mono, i.e. if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that $\gamma \circ \eta=\mathrm{Id}$.

RAFAEL THEOREM [Ra, Theorem 1.2].
Let $(L, R, \eta, \varepsilon)$ be an adjunction where $L: \mathscr{B} \rightarrow \mathscr{A}$.

1) L is separable if and only η is a split mono, i.e. if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that $\gamma \circ \eta=\mathrm{Id}$.
2) R is separable if and only if ε is a split epi, i.e. if there is a natural transformation $\delta: \operatorname{Id}_{\mathscr{A}} \rightarrow L R$ such that $\varepsilon \circ \delta=\mathrm{Id}$.

RAFAEL THEOREM [Ra, Theorem 1.2].
Let $(L, R, \eta, \varepsilon)$ be an adjunction where $L: \mathscr{B} \rightarrow \mathscr{A}$.

1) L is separable if and only η is a split mono, i.e. if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that $\gamma \circ \eta=\mathrm{Id}$.
2) R is separable if and only if ε is a split epi, i.e. if there is a natural transformation $\delta: \operatorname{Id}_{\mathscr{A}} \rightarrow L R$ such that $\varepsilon \circ \delta=\mathrm{Id}$.

RAFAEL THEOREM [Ra, Theorem 1.2].

Let $(L, R, \eta, \varepsilon)$ be an adjunction where $L: \mathscr{B} \rightarrow \mathscr{A}$.

1) L is separable if and only η is a split mono, i.e. if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that $\gamma \circ \eta=\mathrm{Id}$.
2) R is separable if and only if ε is a split epi, i.e. if there is a natural transformation $\delta: \mathrm{Id}_{\mathscr{A}} \rightarrow L R$ such that $\varepsilon \circ \delta=\mathrm{Id}$.

國 M. D. Rafael, Separable Functors Revisited, Comm. Algebra 18 (1990), 1445-1459.

RAFAEL THEOREM [Ra, Theorem 1.2].
Let $(L, R, \eta, \varepsilon)$ be an adjunction where $L: \mathscr{B} \rightarrow \mathscr{A}$.

1) L is separable if and only η is a split mono, i.e. if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that $\gamma \circ \eta=\mathrm{Id}$.
2) R is separable if and only if ε is a split epi, i.e. if there is a natural transformation $\delta: \operatorname{Id}_{\mathscr{A}} \rightarrow L R$ such that $\varepsilon \circ \delta=\mathrm{Id}$.
M. D. Rafael, Separable Functors Revisited, Comm. Algebra 18 (1990), 1445-1459.
"Created during the algebra seminar of F. Van Oystaeyen at Cortona (Italy), Summer 1988 and it is based upon contributions from the following members of M. D. Rafael :

- M. Saorin (Univ. de Murcia, Spain)
- D. Herbera (Univ. Autonoma de Barcelona, Spain)
- R. Colpi (Univ. di Padova, Italy)
- A. Del Rio Mateos (Univ. de Murcia, Spain)
- F. Van Oystaeyen (UIA, University of Antwerp, Belgium)
- A. Giaquinta (Univ. of Pennsylvania, USA)
- E. Gregorio (Univ. di Padova, Italy)
- - Bionda (Univ di Padova Italv)"

h-version of RAFAEL THEOREM

h-version of RAFAEL THEOREM
Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

such that

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id}
$$

and

$$
\gamma \circ R L \gamma=\gamma \circ R \varepsilon L .
$$

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id}
$$

and

$$
\gamma \circ R L \gamma=\gamma \circ R \varepsilon L .
$$

b) R is h-separable \Leftrightarrow there is a natural transformation

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id}
$$

and

$$
\gamma \circ R L \gamma=\gamma \circ R \varepsilon L .
$$

b) R is h-separable \Leftrightarrow there is a natural transformation

$$
\delta: \operatorname{Id}_{\mathscr{A}} \rightarrow L R
$$

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id}
$$

and

$$
\gamma \circ R L \gamma=\gamma \circ R \varepsilon L .
$$

b) R is h-separable \Leftrightarrow there is a natural transformation

$$
\delta: \operatorname{Id}_{\mathscr{A}} \rightarrow L R
$$

such that

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id}
$$

and

$$
\gamma \circ R L \gamma=\gamma \circ R \varepsilon L .
$$

b) R is h-separable \Leftrightarrow there is a natural transformation

$$
\delta: \operatorname{Id}_{\mathscr{A}} \rightarrow L R
$$

such that

$$
\varepsilon \circ \delta=\mathrm{Id}
$$

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow there is a natural transformation

$$
\gamma: R L \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id}
$$

and

$$
\gamma \circ R L \gamma=\gamma \circ R \varepsilon L .
$$

b) R is h-separable \Leftrightarrow there is a natural transformation

$$
\delta: \operatorname{Id}_{\mathscr{A}} \rightarrow L R
$$

such that

$$
\varepsilon \circ \delta=\mathrm{Id}
$$

and

$$
L R \delta \circ \delta=L \eta R \circ \delta
$$

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

An algebra over a monad $\mathbb{Q}=(Q, m, u)$ (or simply a \mathbb{Q}-algebra) is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

An algebra over a monad $\mathbb{Q}=(Q, m, u)$ (or simply a \mathbb{Q}-algebra) is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

An algebra over a monad $\mathbb{Q}=(Q, m, u)$ (or simply a \mathbb{Q}-algebra) is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

\mathbb{Q}-algebras and their morphisms form the so-called Eilenberg-Moore category $\mathbb{Q} \mathscr{C}$ of the monad \mathbb{Q}.

Recall that a monad on a category \mathscr{C} is a triple $\mathbb{Q}:=(Q, m, u)$, where

- $Q: \mathscr{C} \rightarrow \mathscr{C}$ is a functor,
- $m: Q Q \rightarrow Q$ and $u: \operatorname{Id}_{\mathscr{C}} \rightarrow Q$ are functorial morphisms s.t.

An algebra over a monad $\mathbb{Q}=(Q, m, u)$ (or simply a \mathbb{Q}-algebra) is a pair (X, μ) where $X \in \mathscr{C}$ and $\mu: Q X \rightarrow X$ is a morphism in \mathscr{C} s.t.

\mathbb{Q}-algebras and their morphisms form the so-called Eilenberg-Moore category $\mathbb{Q} \mathscr{C}$ of the monad \mathbb{Q}.

Associated to any adjoint pair of functors

$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

$$
(Q, m, u):=(R L, R \varepsilon L, \eta)
$$

where

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

$$
(Q, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

$$
(Q, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Associated to any adjoint pair of functors
$(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

$$
(Q, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of algebras over this monad.

Associated to any adjoint pair of functors $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

$$
(Q, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of algebras over this monad. We have a commutative diagram

Associated to any adjoint pair of functors $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

$$
(Q, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of algebras over this monad. We have a commutative diagram

where

Associated to any adjoint pair of functors $(L: \mathscr{B} \rightarrow \mathscr{A}, R: \mathscr{A} \rightarrow \mathscr{B})$ we have a canonical monad namely

$$
(Q, m, u):=(R L, R \varepsilon L, \eta)
$$

where

- $\eta: \mathrm{Id}_{\mathscr{B}} \rightarrow R L$ is the unit of the adjunction
- $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathscr{A}}$ is the counit of the adjunction.

Denote by ${ }_{R L} \mathscr{B}$ the category of algebras over this monad. We have a commutative diagram

where

- ${ }_{R L} U$ is the forgetful functor: ${ }_{R L} U(A, \mu):=A$ and ${ }_{R L} U f:=f$.
- K is comparison functor: $K A:=(R A, R \varepsilon A)$ and $K f:=R f$.

PROPOSITION

PROPOSITION

Let (L, R) be an adjunction.

PROPOSITION

Let (L, R) be an adjunction.
1)
L is h-separable $\Leftrightarrow U:{ }_{R L} \mathscr{B} \rightarrow \mathscr{B}$ is a split natural epimorphism

PROPOSITION

Let (L, R) be an adjunction.
1)
L is h-separable $\Leftrightarrow U:{ }_{R L} \mathscr{B} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

PROPOSITION

Let (L, R) be an adjunction.
1)
L is h-separable $\Leftrightarrow U: R_{R L} \mathscr{B} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

$$
\Gamma: \mathscr{B} \rightarrow_{R L} \mathscr{B} \text { such that } U \circ \Gamma=\operatorname{Id}_{\mathscr{B}} .
$$

PROPOSITION

Let (L, R) be an adjunction.
1)
L is h-separable $\Leftrightarrow U:{ }_{R L} \mathscr{B} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

$$
\Gamma: \mathscr{B} \rightarrow{ }_{R L} \mathscr{B} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

2)

R is h-separable $\Leftrightarrow U: \mathscr{B}^{L R} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

PROPOSITION

Let (L, R) be an adjunction.
1)
L is h-separable $\Leftrightarrow U:{ }_{R L} \mathscr{B} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

$$
\Gamma: \mathscr{B} \rightarrow{ }_{R L} \mathscr{B} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

2)

R is h-separable $\Leftrightarrow U: \mathscr{B}^{L R} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}^{L R} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

PROPOSITION

Let (L, R) be an adjunction.
1)
L is h-separable $\Leftrightarrow U:{ }_{R L} \mathscr{B} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

$$
\Gamma: \mathscr{B} \rightarrow R L \mathscr{B} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

2)

R is h-separable $\Leftrightarrow U: \mathscr{B}^{L R} \rightarrow \mathscr{B}$ is a split natural epimorphism
i.e. there is

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}^{L R} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Here $\mathscr{B}^{L R}$ denotes the Eilenberg-Moore category of the comonad $(L R, L \eta R, \varepsilon)$.

Proof

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

$$
f \circ \gamma B=\gamma C \circ R L f
$$

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

$$
f \circ \gamma B=\gamma C \circ R L f
$$

by naturality of γ. This means that f induces a morphism

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

$$
f \circ \gamma B=\gamma C \circ R L f
$$

by naturality of γ. This means that f induces a morphism

$$
\Gamma f: \Gamma B \rightarrow \Gamma C
$$

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

$$
f \circ \gamma B=\gamma C \circ R L f
$$

by naturality of γ. This means that f induces a morphism

$$
\Gamma f: \Gamma B \rightarrow \Gamma C
$$

such that

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

$$
f \circ \gamma B=\gamma C \circ R L f
$$

by naturality of γ. This means that f induces a morphism

$$
\Gamma f: \Gamma B \rightarrow \Gamma C
$$

such that

$$
U\lceil f=f
$$

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

$$
f \circ \gamma B=\gamma C \circ R L f
$$

by naturality of γ. This means that f induces a morphism

$$
\Gamma f: \Gamma B \rightarrow \Gamma C
$$

such that

$$
U\lceil f=f
$$

We have so defined a functor

Proof

We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: R L \rightarrow \mathrm{Id}_{\mathscr{B}}$ such that

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L
$$

holds. This means that, for every $B \in \mathscr{B}$, we have

$$
\Gamma B:=(B, \gamma B) \in R L \mathscr{B} .
$$

Moreover any morphism $f: B \rightarrow C$ fulfills

$$
f \circ \gamma B=\gamma C \circ R L f
$$

by naturality of γ. This means that f induces a morphism

$$
\Gamma f: \Gamma B \rightarrow \Gamma C
$$

such that

$$
U\lceil f=f .
$$

We have so defined a functor

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Conversely, let Γ be a functor such that

Conversely, let Γ be a functor such that
$\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L}$ such that $U \circ \Gamma=\mathrm{Id}_{\mathscr{B}}$.

Conversely, let Γ be a functor such that
$\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L}$ such that $U \circ \Gamma=\mathrm{Id}_{\mathscr{B}}$.
Then, for every $B \in \mathscr{B}$, we have that

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that
$\Gamma B=(B, \gamma B)$ for some morphism $\gamma B: R L B \rightarrow B$.

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} \text {. }
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\Gamma B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\Gamma B \in \mathscr{B}_{R L}$ we must have that

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\Gamma B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\Gamma B \in \mathscr{B}_{R L}$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\Gamma B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\Gamma B \in \mathscr{B}_{R L}$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Given a morphism $f: B \rightarrow C$, we have that

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\Gamma B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\left\lceil B \in \mathscr{B}_{R L}\right.$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Given a morphism $f: B \rightarrow C$, we have that $\Gamma f: \Gamma B \rightarrow \Gamma C$ is a morphism in $R L \mathscr{B}$,

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\Gamma B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\Gamma B \in \mathscr{B}_{R L}$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Given a morphism $f: B \rightarrow C$, we have that $\Gamma f: \Gamma B \rightarrow \Gamma C$ is a morphism in ${ }_{R L} \mathscr{B}$, which means that

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\ulcorner B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\left\lceil B \in \mathscr{B}_{R L}\right.$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Given a morphism $f: B \rightarrow C$, we have that $\Gamma f: \Gamma B \rightarrow \Gamma C$ is a morphism in ${ }_{R L} \mathscr{B}$, which means that

$$
f \circ \gamma B=\gamma C \circ R L f
$$

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\ulcorner B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\Gamma B \in \mathscr{B}_{R L}$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Given a morphism $f: B \rightarrow C$, we have that $\Gamma f: \Gamma B \rightarrow \Gamma C$ is a morphism in ${ }_{R L} \mathscr{B}$, which means that

$$
f \circ \gamma B=\gamma C \circ R L f
$$

i.e.

$$
\gamma:=(\gamma B)_{B \in \mathscr{B}} \text { is a natural transformation. }
$$

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\Gamma B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\left\lceil B \in \mathscr{B}_{R L}\right.$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Given a morphism $f: B \rightarrow C$, we have that $\Gamma f: \Gamma B \rightarrow \Gamma C$ is a morphism in ${ }_{R L} \mathscr{B}$, which means that

$$
f \circ \gamma B=\gamma C \circ R L f
$$

i.e.

$$
\gamma:=(\gamma B)_{B \in \mathscr{B}} \text { is a natural transformation. }
$$

By the foregoing

Conversely, let Γ be a functor such that

$$
\Gamma: \mathscr{B} \rightarrow \mathscr{B}_{R L} \text { such that } U \circ \Gamma=\mathrm{Id}_{\mathscr{B}} .
$$

Then, for every $B \in \mathscr{B}$, we have that

$$
\Gamma B=(B, \gamma B) \text { for some morphism } \gamma B: R L B \rightarrow B
$$

Since $\left\lceil B \in \mathscr{B}_{R L}\right.$ we must have that

$$
\gamma B \circ \eta B=B \text { and } \gamma B \circ R L \gamma B=\gamma B \circ R \varepsilon L B .
$$

Given a morphism $f: B \rightarrow C$, we have that $\Gamma f: \Gamma B \rightarrow \Gamma C$ is a morphism in ${ }_{R L} \mathscr{B}$, which means that

$$
f \circ \gamma B=\gamma C \circ R L f
$$

i.e.

$$
\gamma:=(\gamma B)_{B \in \mathscr{B}} \text { is a natural transformation. }
$$

By the foregoing

$$
\gamma \circ \eta=\operatorname{Id} \text { and } \gamma \circ R L \gamma=\gamma \circ R \varepsilon L .
$$

COROLLARY

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then
L is h-separable $\Leftrightarrow R$ is a split natural epimorphism.

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then
L is h-separable $\Leftrightarrow R$ is a split natural epimorphism.
2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{c o}: \mathscr{B} \rightarrow \mathscr{A}^{L R}$ is an isomorphism of categories).

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then
L is h-separable $\Leftrightarrow R$ is a split natural epimorphism.
2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{c o}: \mathscr{B} \rightarrow \mathscr{A}^{L R}$ is an isomorphism of categories). Then

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then
L is h-separable $\Leftrightarrow R$ is a split natural epimorphism.
2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{c o}: \mathscr{B} \rightarrow \mathscr{A}^{L R}$ is an isomorphism of categories). Then
R is h-separable $\Leftrightarrow L$ is a split natural epimorphism.

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then
L is h-separable $\Leftrightarrow R$ is a split natural epimorphism.
2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{c o}: \mathscr{B} \rightarrow \mathscr{A}^{L R}$ is an isomorphism of categories). Then
R is h-separable $\Leftrightarrow L$ is a split natural epimorphism.

REMARK

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then
L is h-separable $\Leftrightarrow R$ is a split natural epimorphism.
2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{c o}: \mathscr{B} \rightarrow \mathscr{A}^{L R}$ is an isomorphism of categories). Then
R is h-separable $\Leftrightarrow L$ is a split natural epimorphism.

REMARK

Later we will use 1) of this Corollary to obtain that the tensor algebra functor

$$
T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})
$$

COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: \mathscr{A} \rightarrow{ }_{R L} \mathscr{B}$ is an isomorphism of categories). Then
L is h-separable $\Leftrightarrow R$ is a split natural epimorphism.
2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{c o}: \mathscr{B} \rightarrow \mathscr{A}^{L R}$ is an isomorphism of categories). Then

$$
R \text { is h-separable } \Leftrightarrow L \text { is a split natural epimorphism. }
$$

REMARK

Later we will use 1) of this Corollary to obtain that the tensor algebra functor

$$
T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})
$$

is separable but not h-separable.

Proof

Proof

We just prove 1), the proof of 2) being similar.

Proof

We just prove 1), the proof of 2) being similar. Since the comparison functor

Proof

We just prove 1), the proof of 2) being similar. Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

Proof

We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

is an isomorphism of categories and

Proof

We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

is an isomorphism of categories and

$$
U \circ K=R
$$

Proof

We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

is an isomorphism of categories and

$$
U \circ K=R
$$

we get that

Proof

We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

is an isomorphism of categories and

$$
U \circ K=R
$$

we get that
R is a split natural epimorphism $\Leftrightarrow U=R \circ K^{-1}$ is a split natural epimorphism

Proof

We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

is an isomorphism of categories and

$$
U \circ K=R
$$

we get that
R is a split natural epimorphism $\Leftrightarrow U=R \circ K^{-1}$ is a split natural epimorphism
By previous Proposition,

Proof

We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

is an isomorphism of categories and

$$
U \circ K=R
$$

we get that
R is a split natural epimorphism $\Leftrightarrow U=R \circ K^{-1}$ is a split natural epimorphism
By previous Proposition,
U is a split natural epimorphism $\Leftrightarrow L$ is h-separable.

Proof

We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$
K: \mathscr{A} \rightarrow \mathscr{B}_{R L}
$$

is an isomorphism of categories and

$$
U \circ K=R
$$

we get that
R is a split natural epimorphism $\Leftrightarrow U=R \circ K^{-1}$ is a split natural epimorphism
By previous Proposition,
U is a split natural epimorphism $\Leftrightarrow L$ is h-separable.

Following [LMW, Section 4] we say that an augmentation for a monad $(M, m: M M \rightarrow M, \eta: \operatorname{Id} \rightarrow M)$ is a natural transformation

$$
\gamma: M \rightarrow \mathrm{Id}
$$

Following [LMW, Section 4] we say that an augmentation for a monad $(M, m: M M \rightarrow M, \eta: \operatorname{Id} \rightarrow M)$ is a natural transformation

$$
\gamma: M \rightarrow \mathrm{Id}
$$

such that

Following [LMW, Section 4] we say that an augmentation for a monad $(M, m: M M \rightarrow M, \eta: \operatorname{Id} \rightarrow M)$ is a natural transformation

$$
\gamma: M \rightarrow \mathrm{Id}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id} \text { and } \gamma \gamma=\gamma \circ \mathrm{m} .
$$

Following [LMW, Section 4] we say that an augmentation for a monad $(M, m: M M \rightarrow M, \eta: \operatorname{Id} \rightarrow M)$ is a natural transformation

$$
\gamma: M \rightarrow \mathrm{Id}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id} \text { and } \gamma \gamma=\gamma \circ \mathrm{m} .
$$

Dually a grouplike morphism for a comonad ($C, \Delta: C \rightarrow C C, \varepsilon: C \rightarrow \mathrm{Id})$ is a natural transformation

$$
\delta: \operatorname{Id} \rightarrow C
$$

Following [LMW, Section 4] we say that an augmentation for a monad $(M, m: M M \rightarrow M, \eta: \operatorname{Id} \rightarrow M)$ is a natural transformation

$$
\gamma: M \rightarrow \mathrm{Id}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id} \text { and } \gamma \gamma=\gamma \circ \mathrm{m} .
$$

Dually a grouplike morphism for a comonad ($C, \Delta: C \rightarrow C C, \varepsilon: C \rightarrow \mathrm{Id})$ is a natural transformation

$$
\delta: \operatorname{Id} \rightarrow C
$$

such that

Following [LMW, Section 4] we say that an augmentation for a monad $(M, m: M M \rightarrow M, \eta: \operatorname{Id} \rightarrow M)$ is a natural transformation

$$
\gamma: M \rightarrow \mathrm{Id}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id} \text { and } \gamma \gamma=\gamma \circ \mathrm{m} .
$$

Dually a grouplike morphism for a comonad ($C, \Delta: C \rightarrow C C, \varepsilon: C \rightarrow \mathrm{Id})$ is a natural transformation

$$
\delta: \mathrm{Id} \rightarrow C
$$

such that

$$
\varepsilon \circ \delta=\operatorname{Id} \text { and } \delta \delta=\Delta \circ \delta
$$

Following [LMW, Section 4] we say that an augmentation for a monad $(M, m: M M \rightarrow M, \eta: \operatorname{Id} \rightarrow M)$ is a natural transformation

$$
\gamma: M \rightarrow \mathrm{Id}
$$

such that

$$
\gamma \circ \eta=\mathrm{Id} \text { and } \gamma \gamma=\gamma \circ \mathrm{m} .
$$

Dually a grouplike morphism for a comonad ($C, \Delta: C \rightarrow C C, \varepsilon: C \rightarrow \mathrm{Id})$ is a natural transformation

$$
\delta: \mathrm{Id} \rightarrow C
$$

such that

$$
\varepsilon \circ \delta=\operatorname{Id} \text { and } \delta \delta=\Delta \circ \delta
$$

目 [LMW] M. Livernet, B. Mesablishvili, R. Wisbauer, Generalised bialgebras and entwined monads and comonads. J. Pure Appl. Algebra 219 (2015), no. 8, 3263-3278.

Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.

Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.
h-version of RAFAEL THEOREM

Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.

Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow the monad $(R L, R \varepsilon L, \eta)$ has an augmentation.

Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.

h-version of RAFAEL THEOREM

Let $(L, R, \eta, \varepsilon)$ be an adjunction with $L: \mathscr{B} \rightarrow \mathscr{A}$.
a) L is h-separable \Leftrightarrow the monad $(R L, R \varepsilon L, \eta)$ has an augmentation.
b) R is h-separable \Leftrightarrow the comonad $(L R, L \eta R, \varepsilon)$ has a grouplike morphism.

Consider an S-coring \mathscr{C}

Consider an S-coring \mathscr{C} and its set of invariant elements

Consider an S-coring \mathscr{C} and its set of invariant elements

$$
\mathscr{C}^{S}=\{c \in \mathscr{C} \mid s c=c s, \text { for every } s \in S\}
$$

Consider an S-coring \mathscr{C} and its set of invariant elements

$$
\mathscr{C}^{S}=\{c \in \mathscr{C} \mid s c=c s, \text { for every } s \in S\}
$$

Let ${ }^{\mathscr{C}} \mathscr{M}$ be the category of left \mathscr{C}-comodules.

Consider an S-coring \mathscr{C} and its set of invariant elements

$$
\mathscr{C}^{S}=\{c \in \mathscr{C} \mid s c=c s, \text { for every } s \in S\}
$$

Let ${ }^{\mathscr{C}} \mathscr{M}$ be the category of left \mathscr{C}-comodules.
In [Br, Theorem 3.3], Brzeziński proved that

Consider an S-coring \mathscr{C} and its set of invariant elements

$$
\mathscr{C}^{S}=\{c \in \mathscr{C} \mid s c=c s, \text { for every } s \in S\}
$$

Let ${ }^{\mathscr{C}} \mathscr{M}$ be the category of left \mathscr{C}-comodules.
In [Br, Theorem 3.3], Brzeziński proved that
the induction functor $R:=\mathscr{C} \otimes_{S}(-): S-\operatorname{Mod} \rightarrow^{\mathscr{C}} \mathscr{M}$ is separable \Leftrightarrow \Leftrightarrow there is an invariant element $e \in \mathscr{C}^{S}$ such that $\varepsilon_{\mathscr{C}}(e)=1$.

Consider an S-coring \mathscr{C} and its set of invariant elements

$$
\mathscr{C}^{S}=\{c \in \mathscr{C} \mid s c=c s, \text { for every } s \in S\}
$$

Let ${ }^{\mathscr{C}} \mathscr{M}$ be the category of left \mathscr{C}-comodules.
In [Br, Theorem 3.3], Brzeziński proved that
the induction functor $R:=\mathscr{C} \otimes_{S}(-): S-\operatorname{Mod} \rightarrow^{\mathscr{C}} \mathscr{M}$ is separable \Leftrightarrow \Leftrightarrow there is an invariant element $e \in \mathscr{C}^{S}$ such that $\varepsilon_{\mathscr{C}}(e)=1$.

We prove that

Consider an S-coring \mathscr{C} and its set of invariant elements

$$
\mathscr{C}^{S}=\{c \in \mathscr{C} \mid s c=c s, \text { for every } s \in S\}
$$

Let ${ }^{\mathscr{C}} \mathscr{M}$ be the category of left \mathscr{C}-comodules.
In [Br, Theorem 3.3], Brzeziński proved that
the induction functor $R:=\mathscr{C} \otimes_{S}(-): S-\operatorname{Mod} \rightarrow^{\mathscr{C}} \mathscr{M}$ is separable \Leftrightarrow \Leftrightarrow there is an invariant element $e \in \mathscr{C}^{S}$ such that $\varepsilon_{\mathscr{C}}(e)=1$.

We prove that the induction functor $R:=\mathscr{C} \otimes_{S}(-): S$ - $\operatorname{Mod} \rightarrow{ }^{\mathscr{C}} \mathscr{M}$ is h-separable \Leftrightarrow $\Leftrightarrow \mathscr{C}$ has an invariant group-like element.

Consider an S-coring \mathscr{C} and its set of invariant elements

$$
\mathscr{C}^{S}=\{c \in \mathscr{C} \mid s c=c s, \text { for every } s \in S\}
$$

Let ${ }^{\mathscr{C}} \mathscr{M}$ be the category of left \mathscr{C}-comodules.
In [Br, Theorem 3.3], Brzeziński proved that
the induction functor $R:=\mathscr{C} \otimes_{S}(-): S-\operatorname{Mod} \rightarrow^{\mathscr{C}} \mathscr{M}$ is separable \Leftrightarrow \Leftrightarrow there is an invariant element $e \in \mathscr{C}^{S}$ such that $\varepsilon_{\mathscr{C}}(e)=1$.

We prove that the induction functor $R:=\mathscr{C} \otimes_{S}(-): S$ - $\operatorname{Mod} \rightarrow^{\mathscr{C}} \mathscr{M}$ is h-separable \Leftrightarrow $\Leftrightarrow \mathscr{C}$ has an invariant group-like element.
[Br] T. Brzeziński, The structure of corings: induction functors, Maschke-type theorem, and Frobenius and Galois-type properties. Algebr. Represent. Theory 5 (2002), no. 4, 389-410.

REMARK

REMARK

Let \mathscr{C} be an an S-coring.

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by $[\mathrm{Br}$, Lemma 5.1], if S is a left \mathscr{C}-comodule via

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by $[\mathrm{Br}$, Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by [Br , Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

then

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by [Br, Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

then

$$
g=\rho_{S}\left(1_{S}\right) \text { is a group-like element of } \mathscr{C} \text {. }
$$

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by [Br, Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

then

$$
g=\rho_{S}\left(1_{S}\right) \text { is a group-like element of } \mathscr{C} .
$$

Conversely if g is a group-like element of \mathscr{C},

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by [Br , Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

then

$$
g=\rho_{S}\left(1_{S}\right) \text { is a group-like element of } \mathscr{C} .
$$

Conversely if g is a group-like element of \mathscr{C}, then S is a left \mathscr{C}-comodule via

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by [Br, Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

then

$$
g=\rho_{S}\left(1_{S}\right) \text { is a group-like element of } \mathscr{C} .
$$

Conversely if g is a group-like element of \mathscr{C}, then S is a left \mathscr{C}-comodule via

$$
\begin{aligned}
\rho_{S}: & S
\end{aligned} \rightarrow \mathscr{C} \otimes_{s} S .
$$

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by [Br , Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

then

$$
g=\rho_{S}\left(1_{S}\right) \text { is a group-like element of } \mathscr{C} .
$$

Conversely if g is a group-like element of \mathscr{C}, then S is a left \mathscr{C}-comodule via

Moreover, if g is a group-like element of \mathscr{C}, then by [Br , page 404],

REMARK

Let \mathscr{C} be an an S-coring.
We recall that, by [Br , Lemma 5.1], if S is a left \mathscr{C}-comodule via

$$
\rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S
$$

then

$$
g=\rho_{S}\left(1_{S}\right) \text { is a group-like element of } \mathscr{C} .
$$

Conversely if g is a group-like element of \mathscr{C}, then S is a left \mathscr{C}-comodule via

$$
\begin{aligned}
& \rho_{S}: S \rightarrow \mathscr{C} \otimes_{S} S \\
& s \mapsto(s \cdot g) \otimes_{s} 1_{S} .
\end{aligned}
$$

Moreover, if g is a group-like element of \mathscr{C}, then by [Br , page 404],

$$
g \text { is an invariant element of } \mathscr{C} \Leftrightarrow S=S^{c \circ \mathscr{C}}=:\{s \in S \mid s g=g s\} .
$$

PROPOSITION

PROPOSITION

Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the induction functor

PROPOSITION

Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the induction functor

$$
\varphi^{*}:=S \otimes_{R}(-): R-\operatorname{Mod} \rightarrow S-\operatorname{Mod}
$$

PROPOSITION

Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the induction functor

$$
\varphi^{*}:=S \otimes_{R}(-): R-\operatorname{Mod} \rightarrow S-\operatorname{Mod}
$$

is h -separable if and only if there is a ring homomorphism

PROPOSITION

Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the induction functor

$$
\varphi^{*}:=S \otimes_{R}(-): R-\operatorname{Mod} \rightarrow S-\operatorname{Mod}
$$

is h -separable if and only if there is a ring homomorphism
$E: S \rightarrow R$ such that $E \circ \varphi=$ Id.

PROPOSITION

Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the induction functor

$$
\varphi^{*}:=S \otimes_{R}(-): R-\operatorname{Mod} \rightarrow S-\operatorname{Mod}
$$

is h -separable if and only if there is a ring homomorphism
$E: S \rightarrow R$ such that $E \circ \varphi=$ Id.

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S$-Mod $\rightarrow R$-Mod be the restriction of scalar functor.

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S$ - Mod $\rightarrow R$-Mod be the restriction of scalar functor.
Then it is well-known that

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S$ - Mod $\rightarrow R$-Mod be the restriction of scalar functor.
Then it is well-known that
$\varphi_{*}: S$-Mod $\rightarrow R$-Mod is separable $\stackrel{\text { (see }[\mathrm{NVV}, \text { Proposition } 1.3])}{\Leftrightarrow} S / R$ is separable

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S$ - $\operatorname{Mod} \rightarrow R$-Mod be the restriction of scalar functor.
Then it is well-known that
$\varphi_{*}: S$-Mod $\rightarrow R$-Mod is separable $\stackrel{\text { (see }[\mathrm{NVV}, \text { Proposition } 1.3])}{\Leftrightarrow} S / R$ is separable and

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S$ - $\operatorname{Mod} \rightarrow R$-Mod be the restriction of scalar functor.
Then it is well-known that
$\varphi_{*}: S$-Mod $\rightarrow R$-Mod is separable $\stackrel{\text { (see }[\mathrm{NVV}, \text { Proposition } 1.3])}{\Leftrightarrow} S / R$ is separable and
S / R is separable $\Leftrightarrow S / R$ has a separability idempotent

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S$ - $\operatorname{Mod} \rightarrow R$-Mod be the restriction of scalar functor.
Then it is well-known that
$\varphi_{*}: S$-Mod $\rightarrow R$-Mod is separable $\stackrel{\text { (see }[\mathrm{NVV}, \text { Proposition } 1.3])}{\Leftrightarrow} S / R$ is separable and
S / R is separable $\Leftrightarrow S / R$ has a separability idempotent
where an element $\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S$ is a separability idempotent if

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S-\operatorname{Mod} \rightarrow R-\operatorname{Mod}$ be the restriction of scalar functor.
Then it is well-known that
$\varphi_{*}: S$-Mod $\rightarrow R$-Mod is separable $\stackrel{\text { (see }[\mathrm{NVV}, \text { Proposition } 1.3])}{\Leftrightarrow} S / R$ is separable and
S / R is separable $\Leftrightarrow S / R$ has a separability idempotent
where an element $\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S$ is a separability idempotent if

$$
\sum_{i} a_{i} b_{i}=1, \quad \sum_{i} s a_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s \quad \text { for every } s \in S .
$$

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Recall that S / R is said to be separable if the multiplication map

$$
\begin{array}{lllc}
\mu: & S \otimes_{R} S & \rightarrow & S \\
& s \otimes_{R} s^{\prime} & \mapsto & s s^{\prime}
\end{array}
$$

is a split S-bimodule surjective homomorphism. Let
$\varphi_{*}: S$ - $\operatorname{Mod} \rightarrow R$-Mod be the restriction of scalar functor.
Then it is well-known that
$\varphi_{*}: S$-Mod $\rightarrow R$-Mod is separable $\stackrel{\text { (see }[\mathrm{NVV}, \text { Proposition } 1.3] \text {) }}{\Leftrightarrow} S / R$ is separable and

$$
S / R \text { is separable } \Leftrightarrow S / R \text { has a separability idempotent }
$$

where an element $\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S$ is a separability idempotent if

$$
\sum_{i} a_{i} b_{i}=1, \quad \sum_{i} s a_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s \quad \text { for every } s \in S .
$$

圊 [NVV] C. Năstăsescu, M. Van den Bergh, F. Van Oystaeyen, Separable functors applied to graded rings. J. Algebra 123 (1989), no. 2, 397-4.13

We are so lead to the following definitions

We are so lead to the following definitions DEFINITIONS

We are so lead to the following definitions DEFINITIONS
Let $\varphi: R \rightarrow S$ be a ring homomorphism.

We are so lead to the following definitions

DEFINITIONS

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

1) S / R is h -separable if the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable.

We are so lead to the following definitions

DEFINITIONS

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

1) S / R is h -separable if the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable.
2) A heavy separability idempotent (h-separability idempotent for short) of S / R is an element

We are so lead to the following definitions

DEFINITIONS

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

1) S / R is \mathbf{h}-separable if the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable.
2) A heavy separability idempotent (h-separability idempotent for short) of S / R is an element

$$
\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

We are so lead to the following definitions

DEFINITIONS

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

1) S / R is \mathbf{h}-separable if the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable.
2) A heavy separability idempotent (h-separability idempotent for short) of S / R is an element

$$
\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

such that $\sum_{i} a_{i} \otimes_{R} b_{i}$ is a separability idempotent, i.e.

We are so lead to the following definitions

DEFINITIONS

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

1) S / R is \mathbf{h}-separable if the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable.
2) A heavy separability idempotent (h-separability idempotent for short) of S / R is an element

$$
\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

such that $\sum_{i} a_{i} \otimes_{R} b_{i}$ is a separability idempotent, i.e.

$$
\sum_{i} a_{i} b_{i}=1, \quad \sum_{i} s a_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s \quad \text { for every } s \in S
$$

We are so lead to the following definitions

DEFINITIONS

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

1) S / R is h -separable if the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable.
2) A heavy separability idempotent (h-separability idempotent for short) of S / R is an element

$$
\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

such that $\sum_{i} a_{i} \otimes_{R} b_{i}$ is a separability idempotent, i.e.

$$
\sum_{i} a_{i} b_{i}=1, \quad \sum_{i} s a_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s \quad \text { for every } s \in S,
$$

which moreover fulfills

We are so lead to the following definitions

DEFINITIONS

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

1) S / R is \mathbf{h}-separable if the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable.
2) A heavy separability idempotent (h-separability idempotent for short) of S / R is an element

$$
\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

such that $\sum_{i} a_{i} \otimes_{R} b_{i}$ is a separability idempotent, i.e.

$$
\sum_{i} a_{i} b_{i}=1, \quad \sum_{i} s a_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s \quad \text { for every } s \in S
$$

which moreover fulfills

$$
\sum_{i, j} a_{i} \otimes_{R} b_{i} a_{j} \otimes_{R} b_{j}=\sum_{i} a_{i} \otimes_{R} 1_{S} \otimes_{R} b_{i}
$$

We prove

We prove PROPOSITION

We prove
PROPOSITION
S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.

We prove
 PROPOSITION
 S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

We prove
 PROPOSITION
 S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Then $\mathscr{C}:=S \otimes_{R} S$ is an S-coring, called the Sweedler coring, where the coproduct is

We prove

PROPOSITION

S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.
Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Then $\mathscr{C}:=S \otimes_{R} S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$
\begin{aligned}
\Delta_{\mathscr{C}}: S \otimes_{R} S & \rightarrow S \otimes_{R} S \otimes_{S} S \otimes_{R} S \\
x \otimes_{R} y & \mapsto x \otimes_{R} 1_{S} \otimes_{S} 1_{S} \otimes_{R} y
\end{aligned}
$$

We prove

PROPOSITION

S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.
Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Then $\mathscr{C}:=S \otimes_{R} S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$
\begin{aligned}
\Delta_{\mathscr{C}}: S \otimes_{R} S & \rightarrow S \otimes_{R} S \otimes_{S} S \otimes_{R} S \\
x \otimes_{R} y & \mapsto x \otimes_{R} 1_{S} \otimes_{S} 1_{S} \otimes_{R} y
\end{aligned}
$$

and the counit is

We prove

PROPOSITION

S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.
Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Then $\mathscr{C}:=S \otimes_{R} S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$
\begin{aligned}
\Delta_{\mathscr{C}}: S \otimes_{R} S & \rightarrow S \otimes_{R} S \otimes_{S} S \otimes_{R} S \\
x \otimes_{R} y & \mapsto x \otimes_{R} 1_{S} \otimes_{S} 1_{S} \otimes_{R} y
\end{aligned}
$$

and the counit is

$$
\varepsilon_{\mathscr{C}}: \begin{aligned}
S \otimes_{R} S & \rightarrow S \\
& x \otimes_{R} y
\end{aligned} \quad \mapsto x y .
$$

We prove

PROPOSITION

S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.
Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Then $\mathscr{C}:=S \otimes_{R} S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$
\begin{aligned}
\Delta_{\mathscr{C}}: & S \otimes_{R} S
\end{aligned} \rightarrow S \otimes_{R} S \otimes_{S} S \otimes_{R} S
$$

and the counit is

$$
\varepsilon_{\mathscr{C}}: \begin{array}{lll}
S \otimes_{R} S & \rightarrow & S \\
& x \otimes_{R} y & \mapsto x y
\end{array} .
$$

Note that for an element

$$
e:=\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

We prove

PROPOSITION

S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.
Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Then $\mathscr{C}:=S \otimes_{R} S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$
\begin{aligned}
\Delta_{\mathscr{C}}: S \otimes_{R} S & \rightarrow S \otimes_{R} S \otimes_{S} S \otimes_{R} S \\
x \otimes_{R} y & \mapsto x \otimes_{R} 1_{S} \otimes_{S} 1_{S} \otimes_{R} y
\end{aligned}
$$

and the counit is

$$
\varepsilon_{\mathscr{C}}: \begin{aligned}
S \otimes_{R} S & \rightarrow S \\
& x \otimes_{R} y
\end{aligned} \mapsto x y .
$$

Note that for an element

$$
e:=\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

we have

We prove
 PROPOSITION

S / R is h-separable $\Leftrightarrow S / R$ has a h-separability idempotent.
Let $\varphi: R \rightarrow S$ be a ring homomorphism.
Then $\mathscr{C}:=S \otimes_{R} S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$
\begin{aligned}
\Delta_{\mathscr{C}}: & S \otimes_{R} S
\end{aligned} \rightarrow S \otimes_{R} S \otimes_{S} S \otimes_{R} S
$$

and the counit is

$$
\varepsilon_{\mathscr{C}}: \begin{array}{lll}
S \otimes_{R} S & \rightarrow & S \\
& x \otimes_{R} y & \mapsto x y
\end{array} .
$$

Note that for an element

$$
e:=\sum_{i} a_{i} \otimes_{R} b_{i} \in S \otimes_{R} S
$$

we have
e is a h-separability idempotent $\Leftrightarrow e$ is a group-like element in the Sweedler's coring $\mathscr{C}:=S \otimes_{R} S$ such that se $=$ es for every $s \in S$

Note that $1_{S} \otimes_{R} 1_{S}$ is always a grouplike element in \mathscr{C} but it is not invariant in general.

Note that $1_{S} \otimes_{R} 1_{S}$ is always a grouplike element in \mathscr{C} but it is not invariant in general.

Before we obtained for any S-coring \mathscr{C}

Note that $1_{S} \otimes_{R} 1_{S}$ is always a grouplike element in \mathscr{C} but it is not invariant in general.

Before we obtained for any S-coring \mathscr{C}
the induction functor $R:=\mathscr{C} \otimes_{S}(-): S-\operatorname{Mod} \rightarrow{ }^{\mathscr{C}} \mathscr{M}$ is h-separable \Leftrightarrow
$\Leftrightarrow \mathscr{C}$ has an invariant group-like element.

Note that $1_{S} \otimes_{R} 1_{S}$ is always a grouplike element in \mathscr{C} but it is not invariant in general.

Before we obtained for any S-coring \mathscr{C}
the induction functor $R:=\mathscr{C} \otimes_{S}(-): S-\operatorname{Mod} \rightarrow^{\mathscr{C}} \mathscr{M}$ is h-separable \Leftrightarrow
$\Leftrightarrow \mathscr{C}$ has an invariant group-like element.

Thus we obtain

Note that $1_{S} \otimes_{R} 1_{S}$ is always a grouplike element in \mathscr{C} but it is not invariant in general.

Before we obtained for any S-coring \mathscr{C}
the induction functor $R:=\mathscr{C} \otimes_{S}(-): S$ - $\operatorname{Mod} \rightarrow{ }^{\mathscr{C}} \mathscr{M}$ is h-separable \Leftrightarrow $\Leftrightarrow \mathscr{C}$ has an invariant group-like element.

Thus we obtain
S / R is h-separable i.e. the functor $\varphi_{*}: S$-Mod $\rightarrow R$-Mod is h-separable \Leftrightarrow \Leftrightarrow the Sweedler's coring $\mathscr{C}:=S \otimes_{R} S$ has an invariant group like element \Leftrightarrow \Leftrightarrow the induction functor $R:=\mathscr{C} \otimes_{S}(-): S-\operatorname{Mod} \rightarrow{ }^{\mathscr{C}} \mathscr{M}$ is h-separable

Proposition

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism. The following are equivalent.

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism. The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism. The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(9) $s \otimes_{R} 1_{S}=1_{S} \otimes_{R} s$ for every $s \in S$;

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(9) $s \otimes_{R} 1_{S}=1_{S} \otimes_{R} s$ for every $s \in S$;
(5) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R.

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The $\operatorname{map} \varphi$ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $s \otimes_{R} 1_{S}=1_{S} \otimes_{R} s$ for every $s \in S$;
(3) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R.

If these equivalent conditions hold true then S / R is h-separable.

Proof

Proof

$(1) \Leftrightarrow(2)$ follows by [St, Proposition XI.1.2 page 225].

Proof

$(1) \Leftrightarrow(2)$ follows by [St, Proposition XI.1.2 page 225].
$(1) \Leftrightarrow(3)$ follows by [St, Proposition XI.1.1 page 226].

Proof

$(1) \Leftrightarrow(2)$ follows by [St, Proposition XI.1.2 page 225].
$(1) \Leftrightarrow(3)$ follows by [St, Proposition XI.1.1 page 226].
图 [St] B. Stenström, Rings of quotients Die Grundlehren der Mathematischen Wissenschaften, Band 217. An introduction to methods of ring theory. Springer-Verlag, New York-Heidelberg, 1975.
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

and the injectivity of m we deduce (4).
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

and the injectivity of m we deduce (4).
(4) \Rightarrow (2) Let

$$
\begin{aligned}
h: \quad & \rightarrow S \otimes_{R} S \\
s & \mapsto s \otimes_{R} 1_{S} .
\end{aligned}
$$

$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

and the injectivity of m we deduce (4).
(4) \Rightarrow (2) Let

$$
\begin{aligned}
h: \quad & \rightarrow S \otimes_{R} S \\
S & \mapsto s \otimes_{R} 1_{S} .
\end{aligned}
$$

Then

$$
m \circ h=\mathrm{Id}
$$

and
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

and the injectivity of m we deduce (4).
(4) \Rightarrow (2) Let

$$
\begin{aligned}
h: \quad & \rightarrow S \otimes_{R} S \\
S & \mapsto s \otimes_{R} 1_{S} .
\end{aligned}
$$

Then

$$
m \circ h=\mathrm{Id}
$$

and

$$
\begin{gathered}
(h \circ m)\left(s^{\prime} \otimes_{R} s\right)=s^{\prime} s \otimes_{R} 1_{S}= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} s \otimes_{R} 1_{S}\right)= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} 1_{S} \otimes_{R} s\right)=s^{\prime} \otimes_{R} s
\end{gathered}
$$

and hence $h \circ m=\mathrm{Id}$. Hence m is invertible. By a previous Proposition, (5) implies that S / R is h-separable.
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

and the injectivity of m we deduce (4).
(4) \Rightarrow (2) Let

$$
\begin{aligned}
& h: S \rightarrow S \otimes_{R} S \\
& S \mapsto \\
& S \otimes_{R} 1_{S} .
\end{aligned}
$$

Then

$$
m \circ h=\mathrm{Id}
$$

and

$$
\begin{gathered}
(h \circ m)\left(s^{\prime} \otimes_{R} s\right)=s^{\prime} s \otimes_{R} 1_{S}= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} s \otimes_{R} 1_{S}\right)= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} 1_{S} \otimes_{R} s\right)=s^{\prime} \otimes_{R} s
\end{gathered}
$$

$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

and the injectivity of m we deduce (4).
(4) \Rightarrow (2) Let

$$
\begin{aligned}
h: \quad & \rightarrow S \otimes_{R} S \\
S & \mapsto s \otimes_{R} 1_{S} .
\end{aligned}
$$

Then

$$
m \circ h=\mathrm{Id}
$$

and

$$
\begin{gathered}
(h \circ m)\left(s^{\prime} \otimes_{R} s\right)=s^{\prime} s \otimes_{R} 1_{S}= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} s \otimes_{R} 1_{S}\right)= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} 1_{S} \otimes_{R} s\right)=s^{\prime} \otimes_{R} s
\end{gathered}
$$

and hence $h \circ m=\mathrm{Id}$. Hence m is invertible.
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ are trivial.
(2) \Rightarrow (4) If m is invertible, from

$$
m\left(s \otimes_{R} 1_{S}\right)=s=m\left(1_{S} \otimes_{R} s\right)
$$

and the injectivity of m we deduce (4).
(4) \Rightarrow (2) Let

$$
\begin{aligned}
h: \quad & \rightarrow S \otimes_{R} S \\
S & \mapsto s \otimes_{R} 1_{S} .
\end{aligned}
$$

Then

$$
m \circ h=\mathrm{Id}
$$

and

$$
\begin{gathered}
(h \circ m)\left(s^{\prime} \otimes_{R} s\right)=s^{\prime} s \otimes_{R} 1_{S}= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} s \otimes_{R} 1_{S}\right)= \\
=\left(m \otimes_{R} S\right)\left(s^{\prime} \otimes_{R} 1_{S} \otimes_{R} s\right)=s^{\prime} \otimes_{R} s
\end{gathered}
$$

and hence $h \circ m=$ Id. Hence m is invertible.
By a previous Proposition, (5) implies that S / R is h-separable.

EXAMPLES

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $\mathrm{M}_{n}(R)$ and the ring $\mathrm{T}_{n}(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $\mathrm{M}_{n}(R)$ and the ring $\mathrm{T}_{n}(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$
\varphi: \mathrm{T}_{n}(R) \rightarrow \mathrm{M}_{n}(R)
$$

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $\mathrm{M}_{n}(R)$ and the ring $\mathrm{T}_{n}(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$
\varphi: \mathrm{T}_{n}(R) \rightarrow \mathrm{M}_{n}(R)
$$

is a ring epimorphism (Exercise).

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $\mathrm{M}_{n}(R)$ and the ring $\mathrm{T}_{n}(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$
\varphi: \mathrm{T}_{n}(R) \rightarrow \mathrm{M}_{n}(R)
$$

is a ring epimorphism (Exercise).
3) Any surjective ring homomorphism

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $\mathrm{M}_{n}(R)$ and the ring $\mathrm{T}_{n}(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$
\varphi: \mathrm{T}_{n}(R) \rightarrow \mathrm{M}_{n}(R)
$$

is a ring epimorphism (Exercise).
3) Any surjective ring homomorphism

$$
\varphi: R \rightarrow S
$$

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $\mathrm{M}_{n}(R)$ and the ring $\mathrm{T}_{n}(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$
\varphi: \mathrm{T}_{n}(R) \rightarrow \mathrm{M}_{n}(R)
$$

is a ring epimorphism (Exercise).
3) Any surjective ring homomorphism

$$
\varphi: R \rightarrow S
$$

is trivially a ring epimorphism.

EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$
\varphi: R \rightarrow S^{-1} R
$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $\mathrm{M}_{n}(R)$ and the ring $\mathrm{T}_{n}(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$
\varphi: \mathrm{T}_{n}(R) \rightarrow \mathrm{M}_{n}(R)
$$

is a ring epimorphism (Exercise).
3) Any surjective ring homomorphism

$$
\varphi: R \rightarrow S
$$

is trivially a ring epimorphism.

It is well-known that the ring of matrices is separable,

It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41].

It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41].
In contrast to this we prove:

It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41].
In contrast to this we prove:

LEMMA

It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41].
In contrast to this we prove:
LEMMA
$\mathrm{M}_{n}(R) / R \quad$ h-separable $\Rightarrow n=1$.

It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41]. In contrast to this we prove:

LEMMA

$$
\mathrm{M}_{n}(R) / R \quad \text { h-separable } \Rightarrow n=1
$$

(TDI] F. DeMeyer, E. Ingraham, Separable algebras over commutative rings. Lecture Notes in Mathematics, Vol. 181 Springer-Verlag, Berlin-New York 1971

Now we go back to Proposition

Now we go back to

Proposition
Let $\varphi: R \rightarrow S$ be a ring homomorphism.

Now we go back to

Proposition
Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have
THEOREM

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have
THEOREM
Let $\varphi: R \rightarrow S$ be a ring homomorphism such that

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have

THEOREM

Let $\varphi: R \rightarrow S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S)=$ center of S.

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The $\operatorname{map} \varphi$ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have

THEOREM

Let $\varphi: R \rightarrow S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S)=$ center of S. Then the following are equivalent.

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have

THEOREM

Let $\varphi: R \rightarrow S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S)=$ center of S. Then the following are equivalent.
(1) S / R is h-separable

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have

THEOREM

Let $\varphi: R \rightarrow S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S)=$ center of S. Then the following are equivalent.
(1) S / R is h-separable
(2) the canonical map $\varphi: R \rightarrow S$ is a ring epimorphism.

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have

THEOREM

Let $\varphi: R \rightarrow S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S)=$ center of S. Then the following are equivalent.
(1) S / R is h-separable
(2) the canonical map $\varphi: R \rightarrow S$ is a ring epimorphism.

Now we go back to

Proposition

Let $\varphi: R \rightarrow S$ be a ring homomorphism.
The following are equivalent.
(1) The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
(2) the multiplication $m: S \otimes_{R} S \rightarrow S$ is invertible;
(3) $1_{S} \otimes_{R} 1_{S}$ is a separability idempotent for S / R;
(1) $1_{S} \otimes_{R} 1_{S}$ is a h-separability idempotent for S / R (so that S / R is h-separable.)
Now we have

THEOREM

Let $\varphi: R \rightarrow S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S)=$ center of S. Then the following are equivalent.
(1) S / R is h-separable
(2) the canonical map $\varphi: R \rightarrow S$ is a ring epimorphism.

Moreover if one of these conditions holds, then S is commutative.

Proof

Proof
 $(1) \Rightarrow(2)$

Proof
 $(1) \Rightarrow(2)$ Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent.

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$,

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the $\operatorname{map} \tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear.

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the $\operatorname{map} \tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

together with the equality $\sum_{i} a_{i} b_{i}=1$

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

together with the equality $\sum_{i} a_{i} b_{i}=1$ to get

$$
\begin{equation*}
\sum_{t, j} a_{t} b_{j} \otimes_{R} b_{t} a_{j}=1_{S} \otimes_{R} 1_{S} \tag{2}
\end{equation*}
$$

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since
$\varphi(R) \subseteq Z(S)$, the $\operatorname{map} \tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

together with the equality $\sum_{i} a_{i} b_{i}=1$ to get

$$
\begin{equation*}
\sum_{t, j} a_{t} b_{j} \otimes_{R} b_{t} a_{j}=1_{S} \otimes_{R} 1_{S} \tag{2}
\end{equation*}
$$

By $\sum_{i} s a_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s$ and using τ

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since
$\varphi(R) \subseteq Z(S)$, the $\operatorname{map} \tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

together with the equality $\sum_{i} a_{i} b_{i}=1$ to get

$$
\begin{equation*}
\sum_{t, j} a_{t} b_{j} \otimes_{R} b_{t} a_{j}=1_{S} \otimes_{R} 1_{S} \tag{2}
\end{equation*}
$$

By $\sum_{i} s_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s$ and using τ we get that $\sum_{t} a_{t} s b_{t} \in Z(S)$, for all $s \in S$.

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since
$\varphi(R) \subseteq Z(S)$, the $\operatorname{map} \tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

together with the equality $\sum_{i} a_{i} b_{i}=1$ to get

$$
\begin{equation*}
\sum_{t, j} a_{t} b_{j} \otimes_{R} b_{t} a_{j}=1_{S} \otimes_{R} 1_{S} \tag{2}
\end{equation*}
$$

By $\sum_{i} s_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s$ and using τ we get that $\sum_{t} a_{t} s b_{t} \in Z(S)$, for all $s \in S$. Using this fact we have

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the $\operatorname{map} \tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

together with the equality $\sum_{i} a_{i} b_{i}=1$ to get

$$
\begin{equation*}
\sum_{t, j} a_{t} b_{j} \otimes_{R} b_{t} a_{j}=1_{S} \otimes_{R} 1_{S} \tag{2}
\end{equation*}
$$

By $\sum_{i} s_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s$ and using τ we get that $\sum_{t} a_{t} s b_{t} \in Z(S)$, for all $s \in S$. Using this fact we have

$$
\begin{aligned}
s & =1_{s} \cdot 1_{S} \cdot s \stackrel{(2)}{=} \sum_{i, j} a_{i} b_{j} b_{i} a_{j} s=\sum_{i, j} a_{i}\left(b_{j}\right) b_{i}\left(a_{j}\right) s\left(1_{S}\right) \stackrel{(1)}{=} \sum_{i, j, t} a_{i} b_{j} b_{i} a_{t} s b_{t} a_{j} \\
& =\sum_{i, j, t} a_{i} b_{j} b_{i}\left(a_{t} s b_{t}\right) a_{j}=\sum_{i, j, t} a_{i} b_{j} b_{i} a_{j}\left(a_{t} s b_{t}\right) \stackrel{(2)}{=} \sum_{t} a_{t} s b_{t} \in Z(S)
\end{aligned}
$$

Proof

(1) \Rightarrow (2) Let $\sum_{i} a_{i} \otimes_{R} b_{i}$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the $\operatorname{map} \tau: A \otimes_{R} A \rightarrow A \otimes_{R} A, \tau\left(a \otimes_{R} b\right)=b \otimes_{R} a$, is well-defined and left R-linear. Hence we can apply $\left(m \otimes_{R} S\right) \circ\left(A \otimes_{R} \tau\right)$ on both sides of

$$
\begin{equation*}
\sum_{j, t} a_{t} \otimes_{R} b_{t} a_{j} \otimes_{R} b_{j}=\sum_{j} a_{j} \otimes_{R} 1_{S} \otimes_{R} b_{j} \tag{1}
\end{equation*}
$$

together with the equality $\sum_{i} a_{i} b_{i}=1$ to get

$$
\begin{equation*}
\sum_{t, j} a_{t} b_{j} \otimes_{R} b_{t} a_{j}=1_{S} \otimes_{R} 1_{S} \tag{2}
\end{equation*}
$$

By $\sum_{i} s_{i} \otimes_{R} b_{i}=\sum_{i} a_{i} \otimes_{R} b_{i} s$ and using τ we get that $\sum_{t} a_{t} s b_{t} \in Z(S)$, for all $s \in S$. Using this fact we have

$$
\begin{aligned}
s & =1_{S} \cdot 1_{S} \cdot s \stackrel{(2)}{=} \sum_{i, j} a_{i} b_{j} b_{i} a_{j} s=\sum_{i, j} a_{i}\left(b_{j}\right) b_{i}\left(a_{j}\right) s\left(1_{S}\right) \stackrel{(1)}{=} \sum_{i, j, t} a_{i} b_{j} b_{i} a_{t} s b_{t} a_{j} \\
& =\sum_{i, j, t} a_{i} b_{j} b_{i}\left(a_{t} s b_{t}\right) a_{j}=\sum_{i, j, t} a_{i} b_{j} b_{i} a_{j}\left(a_{t} s b_{t}\right) \stackrel{(2)}{=} \sum_{t} a_{t} s b_{t} \in Z(S) .
\end{aligned}
$$

We have so proved that $S \subseteq Z(S)$ and hence S is commutative.

Now, we compute
$\sum_{i} a_{i} \otimes_{R} b_{i}=\sum_{i, j} a_{i} a_{j} b_{j} \otimes_{R} b_{i} \stackrel{S=Z(S)}{=} \sum_{i, j} a_{j} a_{i} b_{j} \otimes_{R} b_{i}=\sum_{i, j} a_{i} b_{j} \otimes_{R} b_{i} a_{j} \stackrel{(2)}{=} 1_{S} \otimes_{R} 1_{S}$
We conclude by previous Proposition.
$(2) \Rightarrow(1)$ It follows by previous Proposition.

Proposition

Proposition

Let A be a h-separable algebra over a field \mathbb{k}.

Proposition

Let A be a h-separable algebra over a field \mathbb{k}. Then either $A=\mathbb{k}$ or $A=0$. Proof

Proposition

Let A be a h-separable algebra over a field \mathbb{k}.
Then either $A=\mathbb{k}$ or $A=0$.

Proof

By previous Theorem, the unit $u: \mathbb{k} \rightarrow A$ is a ring epimorphism.

Proposition

Let A be a h-separable algebra over a field \mathbb{k}.
Then either $A=\mathbb{k}$ or $A=0$.

Proof

By previous Theorem, the unit $u: \mathbb{k} \rightarrow A$ is a ring epimorphism. By previous Proposition, we have that $A \otimes_{\mathbb{k}} A \cong A$ via multiplication.

Proposition

Let A be a h-separable algebra over a field \mathbb{k}.
Then either $A=\mathbb{k}$ or $A=0$.

Proof

By previous Theorem, the unit $u: \mathbb{k} \rightarrow A$ is a ring epimorphism. By previous Proposition, we have that $A \otimes_{\mathbb{k}} A \cong A$ via multiplication. Since A is h-separable over \mathbb{k} it is in particular separable over \mathbb{k} and hence it is finite-dimensional.

Proposition

Let A be a h-separable algebra over a field \mathbb{k}.
Then either $A=\mathbb{k}$ or $A=0$.
Proof
By previous Theorem, the unit $u: \mathbb{k} \rightarrow A$ is a ring epimorphism. By previous Proposition, we have that $A \otimes_{\mathbb{k}} A \cong A$ via multiplication. Since A is h-separable over \mathbb{k} it is in particular separable over \mathbb{k} and hence it is finite-dimensional. Thus, from $A \otimes_{\mathfrak{k}} A \cong A$ we deduce that A has either dimensional one or zero over \mathbb{k}.

EXAMPLE

EXAMPLE

\mathbb{C} / \mathbb{R} is separable but not h-separable.

EXAMPLE

\mathbb{C} / \mathbb{R} is separable but not h-separable.
In fact, by Proposition above, \mathbb{C} / \mathbb{R} is not h-separable.

EXAMPLE

\mathbb{C} / \mathbb{R} is separable but not h-separable. In fact, by Proposition above, \mathbb{C} / \mathbb{R} is not h-separable. On the other hand

EXAMPLE

\mathbb{C} / \mathbb{R} is separable but not h-separable. In fact, by Proposition above, \mathbb{C} / \mathbb{R} is not h-separable. On the other hand

$$
e=\frac{1}{2}\left(1 \otimes_{\mathbb{R}} 1-i \otimes_{\mathbb{R}} i\right) \text { is a separability idempotent }
$$

EXAMPLE

\mathbb{C} / \mathbb{R} is separable but not h-separable.
In fact, by Proposition above, \mathbb{C} / \mathbb{R} is not h-separable.
On the other hand

$$
e=\frac{1}{2}\left(1 \otimes_{\mathbb{R}} 1-i \otimes_{\mathbb{R}} i\right) \text { is a separability idempotent }
$$

(it is the only possible one). It is clear that e is not a h-separability idempotent.

EXAMPLE

\mathbb{C} / \mathbb{R} is separable but not h-separable.
In fact, by Proposition above, \mathbb{C} / \mathbb{R} is not h-separable.
On the other hand

$$
e=\frac{1}{2}\left(1 \otimes_{\mathbb{R}} 1-i \otimes_{\mathbb{R}} i\right) \text { is a separability idempotent }
$$

(it is the only possible one). It is clear that e is not a h-separability idempotent.

Why h-separable functors?

Why h-separable functors?

Let \mathscr{M} denote a preadditive braided monoidal category such that

Why h-separable functors?

Let \mathscr{M} denote a preadditive braided monoidal category such that

- \mathscr{M} has equalizers;

Why h-separable functors?

Let \mathscr{M} denote a preadditive braided monoidal category such that

- \mathscr{M} has equalizers;
- \mathscr{M} has denumerable coproducts;

Why h-separable functors?

Let \mathscr{M} denote a preadditive braided monoidal category such that

- \mathscr{M} has equalizers;
- \mathscr{M} has denumerable coproducts;
- the tensor products are additive and preserve equalizers and denumerable coproducts.

Why h-separable functors?

Let \mathscr{M} denote a preadditive braided monoidal category such that

- \mathscr{M} has equalizers;
- \mathscr{M} has denumerable coproducts;
- the tensor products are additive and preserve equalizers and denumerable coproducts.

Let us consider the adjunction

Let us consider the adjunction

$$
(T, \Omega)
$$

Let us consider the adjunction

$$
(T, \Omega)
$$

where
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is the tensor algebra functor

Let us consider the adjunction

$$
(T, \Omega)
$$

where
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is the tensor algebra functor
and

$$
\Omega: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M} \text { is the forgetful functor. }
$$

Let us consider the adjunction

$$
(T, \Omega)
$$

where
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is the tensor algebra functor
and

$$
\Omega: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M} \text { is the forgetful functor. }
$$

Let $V \in \mathscr{M}$.

Let us consider the adjunction

$$
(T, \Omega)
$$

where
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is the tensor algebra functor and
$\Omega: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M}$ is the forgetful functor.
Let $V \in \mathscr{M}$. By construction

$$
\Omega T V=\oplus_{n \in \mathbb{N}} V^{\otimes n}
$$

Let us consider the adjunction

$$
(T, \Omega)
$$

where
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is the tensor algebra functor and
$\Omega: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M}$ is the forgetful functor.
Let $V \in \mathscr{M}$. By construction

$$
\Omega T V=\oplus_{n \in \mathbb{N}} V^{\otimes n} .
$$

Denote by

$$
\alpha_{n} V: V^{\otimes n} \rightarrow \Omega T V \text { the canonical inclusion. }
$$

Let us consider the adjunction

$$
(T, \Omega)
$$

where
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is the tensor algebra functor and

$$
\Omega: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M} \text { is the forgetful functor. }
$$

Let $V \in \mathscr{M}$. By construction

$$
\Omega T V=\oplus_{n \in \mathbb{N}} V^{\otimes n} .
$$

Denote by

$$
\alpha_{n} V: V^{\otimes n} \rightarrow \Omega T V \text { the canonical inclusion. }
$$

The unit of the adjunction (T, Ω) is

Let us consider the adjunction

$$
(T, \Omega)
$$

where
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is the tensor algebra functor and

$$
\Omega: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M} \text { is the forgetful functor. }
$$

Let $V \in \mathscr{M}$. By construction

$$
\Omega T V=\oplus_{n \in \mathbb{N}} V^{\otimes n} .
$$

Denote by

$$
\alpha_{n} V: V^{\otimes n} \rightarrow \Omega T V \text { the canonical inclusion. }
$$

The unit of the adjunction (T, Ω) is

$$
\eta: \operatorname{Id}_{\mathscr{M}} \rightarrow \Omega T \text { defined by } \eta V:=\alpha_{1} V
$$

while the counit $\varepsilon: T \Omega \rightarrow \mathrm{Id}$ is uniquely defined by the equality
while the counit $\varepsilon: T \Omega \rightarrow \mathrm{Id}$ is uniquely defined by the equality

$$
\Omega \varepsilon(A, m, u) \circ \alpha_{n} A=m^{n-1} \text { for every } n \in \mathbb{N}
$$

while the counit $\varepsilon: T \Omega \rightarrow \mathrm{Id}$ is uniquely defined by the equality

$$
\Omega \varepsilon(A, m, u) \circ \alpha_{n} A=m^{n-1} \text { for every } n \in \mathbb{N}
$$

where $m^{n-1}: A^{\otimes n} \rightarrow A$ denotes the iterated multiplication of an algebra (A, m, u) defined by

$$
\begin{gathered}
m^{-1}=u, m^{0}=\mathrm{Id}_{A} \text { and for } \\
n \geq 2, m^{n-1}=m \circ\left(m^{n-2} \otimes A\right)
\end{gathered}
$$

while the counit $\varepsilon: T \Omega \rightarrow \mathrm{Id}$ is uniquely defined by the equality

$$
\Omega \varepsilon(A, m, u) \circ \alpha_{n} A=m^{n-1} \text { for every } n \in \mathbb{N}
$$

where $m^{n-1}: A^{\otimes n} \rightarrow A$ denotes the iterated multiplication of an algebra (A, m, u) defined by

$$
\begin{gathered}
m^{-1}=u, m^{0}=\operatorname{Id}_{A} \text { and for } \\
n \geq 2, m^{n-1}=m \circ\left(m^{n-2} \otimes A\right)
\end{gathered}
$$

See [AM1, Remark 1.2].
囯 [AM1]A. Ardizzoni and C. Menini, Adjunctions and Braided Objects, J. Algebra Appl. 13(06) (2014), 1450019 (47 pages).

It is proved that Ω is strictly monadic i.e.

It is proved that Ω is strictly monadic i.e. the comparison functor

$$
\Omega_{1}: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M}_{1} \text { is a category isomorphism, }
$$

see [AM2, Theorem A.6].

It is proved that Ω is strictly monadic i.e. the comparison functor

$$
\Omega_{1}: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M}_{1} \text { is a category isomorphism, }
$$

see [AM2, Theorem A.6].
Since the functor Ω is strictly monadic, by the foregoing, we have that

It is proved that Ω is strictly monadic i.e. the comparison functor

$$
\Omega_{1}: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M}_{1} \text { is a category isomorphism, }
$$

see [AM2, Theorem A.6].
Since the functor Ω is strictly monadic, by the foregoing, we have that T is heavily separable if and only if
$\Omega: A \lg (\mathscr{M}) \rightarrow \mathscr{M}$ is a split natural epimorphism.

It is proved that Ω is strictly monadic i.e. the comparison functor
$\Omega_{1}: \operatorname{Alg}(\mathscr{M}) \rightarrow \mathscr{M}_{1}$ is a category isomorphism,
see [AM2, Theorem A.6].
Since the functor Ω is strictly monadic, by the foregoing, we have that T is heavily separable if and only if
$\Omega: A \lg (\mathscr{M}) \rightarrow \mathscr{M}$ is a split natural epimorphism.
But this is not the case. This happens only if all objects are isomorphic to the unit object 1 ,
[AM2]A. Ardizzoni and C. Menini, Milnor-Moore Categories and Monadic Decomposition, J. Algebra 448 (2016), 488-563.

Thus, in general

$$
T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M}) \text { is not heavily separable. }
$$

Thus, in general

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is not heavily separable.

For every $V \in \mathscr{M}$, there is a unique morphism

Thus, in general

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is not heavily separable.

For every $V \in \mathscr{M}$, there is a unique morphism

$$
\omega V: \Omega T V \rightarrow V
$$

such that

Thus, in general

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is not heavily separable.

For every $V \in \mathscr{M}$, there is a unique morphism

$$
\omega V: \Omega T V \rightarrow V
$$

such that

$$
\omega V \circ \alpha_{n} V=\delta_{n, 1} \operatorname{Id}_{V}
$$

Thus, in general

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is not heavily separable.

For every $V \in \mathscr{M}$, there is a unique morphism

$$
\omega V: \Omega T V \rightarrow V
$$

such that

$$
\omega V \circ \alpha_{n} V=\delta_{n, 1} \operatorname{Id}_{V}
$$

This yields a natural transformation

Thus, in general

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is not heavily separable.

For every $V \in \mathscr{M}$, there is a unique morphism

$$
\omega V: \Omega T V \rightarrow V
$$

such that

$$
\omega V \circ \alpha_{n} V=\delta_{n, 1} \operatorname{Id}_{V}
$$

This yields a natural transformation

$$
\omega: \Omega T \rightarrow \operatorname{Id}_{\mathscr{M}} \text { "the projection at degree one functor". }
$$

Thus, in general

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is not heavily separable.

For every $V \in \mathscr{M}$, there is a unique morphism

$$
\omega V: \Omega T V \rightarrow V
$$

such that

$$
\omega V \circ \alpha_{n} V=\delta_{n, 1} \operatorname{Id}_{V}
$$

This yields a natural transformation

$$
\omega: \Omega T \rightarrow \operatorname{Id}_{\mathscr{M}} \text { "the projection at degree one functor". }
$$

Since $\eta=\alpha_{1}$, we obtain that

Thus, in general

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is not heavily separable.

For every $V \in \mathscr{M}$, there is a unique morphism

$$
\omega V: \Omega T V \rightarrow V
$$

such that

$$
\omega V \circ \alpha_{n} V=\delta_{n, 1} \operatorname{Id}_{V}
$$

This yields a natural transformation

$$
\omega: \Omega T \rightarrow \operatorname{Id}_{\mathscr{M}} \text { "the projection at degree one functor". }
$$

Since $\eta=\alpha_{1}$, we obtain that

$$
\omega \circ \eta=\mathrm{Id}
$$

so that the functor

so that the functor
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is separable.
so that the functor

$$
T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M}) \text { is separable. }
$$

Conclusion: the tensor functor
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is separable but not heavily separable.
so that the functor
$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is separable.
Conclusion: the tensor functor

$T: \mathscr{M} \rightarrow \operatorname{Alg}(\mathscr{M})$ is separable but not heavily separable.

As a particular case, we get that the functor $T: \operatorname{Vec}_{k} \rightarrow \operatorname{Alg}_{\mathbb{k}}$ is separable but not heavily separable.

On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

$$
(\tilde{\tau}, P)
$$

On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

$$
(\tilde{T}, P)
$$

where
$\tilde{T}: \mathscr{M} \rightarrow \operatorname{Bialg}(\mathscr{M})$ is the "tensor bialgebra functor"

On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

$$
(\widetilde{T}, P)
$$

where

$$
\widetilde{T}: \mathscr{M} \rightarrow \operatorname{Bialg}(\mathscr{M}) \text { is the "tensor bialgebra functor" }
$$

and
$P: \operatorname{Bialg}(\mathscr{M}) \rightarrow \mathscr{M}$ is the "primitive elements functor".

On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

$$
(\widetilde{T}, P)
$$

where

$$
\tilde{T}: \mathscr{M} \rightarrow \operatorname{Bialg}(\mathscr{M}) \text { is the "tensor bialgebra functor" }
$$

and

$$
P: \operatorname{Bialg}(\mathscr{M}) \rightarrow \mathscr{M} \text { is the "primitive elements functor". }
$$

For any $\mathbb{B}:=\left(B, m_{B}, u_{B}, \Delta_{B}, \varepsilon_{B}\right) \in \operatorname{Bialg}(\mathscr{M}), P(\mathbb{B})$ is defined via the equalizer

$$
P(\mathbb{B}) \xrightarrow{\xi \mathbb{B}} B \underset{\left(B \otimes u_{B}\right) r_{B}^{-1}+\left(u_{B} \otimes B\right) r_{B}^{-1}}{\Delta_{B}} B \otimes B
$$

Let
$\widetilde{\eta}$ and $\widetilde{\varepsilon}$ denote the unit and the counit of this adjunction.
[AM1] A. Ardizzoni and C. Menini, Adjunctions and Braided Objects, J. Algebra Appl. 13(06) (2014), 1450019 (47 pages).

Set

$$
\gamma:=\omega \circ \xi \widetilde{T}: P \widetilde{T} \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

the restriction to $P \widetilde{T}$ of "the projection at degree one"

Set

$$
\gamma:=\omega \circ \xi \widetilde{T}: P \widetilde{T} \rightarrow \operatorname{Id}_{\mathscr{B}}
$$

the restriction to $P \widetilde{T}$ of "the projection at degree one"
Then

$$
\gamma \circ \widetilde{\eta}=\mathrm{Id} \text { and } \gamma \gamma=\gamma \circ P \widetilde{\varepsilon} \tilde{T}
$$

i.e. \widetilde{T} is heavily separable via γ.

