Rings, modules, and Hopf algebras

A conference on the occasion of

Blas Torrecillas’ 60th birthday

Almería, May 13-17, 2019

Claudia Menini

Heavily separable functors

Joint work with
Alessandro Ardizzoni
THANKS TO THE ORGANIZERS!!!
BUON COMPLEANNO
BUON COMPLEANNO
BLAS!!!
DEFINITIONS

For every function $F : B \to A$ we set $F(X,Y) : \text{Hom}_B(X,Y) \to \text{Hom}_A(FX,FY) : f \mapsto Ff$.

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation $P : B \to A$ such that $P_X,Y \circ F_X,Y = \text{Id}$ for every $X,Y \in B$.

DEFINITIONS

For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation $P : - \to F - : \text{Hom}_A(F -, F -) \to \text{Hom}_B(-, -)$ such that $P X, Y \circ F X, Y = \text{Id}$ for every $X, Y \in \mathcal{B}$.

DEFINITIONS

For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

$$F_{X,Y} : \text{Hom}_\mathcal{B}(X,Y) \to \text{Hom}_\mathcal{A}(FX,FY) : f \mapsto Ff$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation $P : F \to \cdot$ such that $P_{X,Y} \circ F_{X,Y} = \text{Id}$ for every $X,Y \in \mathcal{B}$.

DEFINITIONS

For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

$$F_{X,Y} : \text{Hom}_\mathcal{B}(X,Y) \to \text{Hom}_\mathcal{A}(FX,FY) : f \mapsto Ff$$

Recall that F is called separable (see [NVV]).
DEFINITIONS
For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

$$F_{X,Y} : \text{Hom}_\mathcal{B}(X,Y) \to \text{Hom}_\mathcal{A}(FX,FY) : f \mapsto Ff$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation
DEFINITIONS

For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

$$F_{X,Y} : \text{Hom}_\mathcal{B}(X,Y) \to \text{Hom}_\mathcal{A}(FX, FY) : f \mapsto Ff$$

Recall that F is called **separable** (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$P_{-, -} := P^F_{-, -} : \text{Hom}_\mathcal{A}(F-, F-) \to \text{Hom}_\mathcal{B}(-, -)$$
DEFINITIONS
For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

$$F_{X,Y} : \text{Hom}_\mathcal{B}(X,Y) \to \text{Hom}_\mathcal{A}(FX,FY) : f \mapsto Ff$$

Recall that F is called separable (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$P_{-, -} := P^F_{-, -} : \text{Hom}_\mathcal{A}(F-, F-) \to \text{Hom}_\mathcal{B}(-, -)$$

such that
DEFINITIONS

For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

$$F_{X,Y} : \text{Hom}_{\mathcal{B}}(X,Y) \to \text{Hom}_{\mathcal{A}}(FX,FY) : f \mapsto Ff$$

Recall that F is called **separable** (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$P_{-,-} := P^F_{-,-} : \text{Hom}_{\mathcal{A}}(F-,F-) \to \text{Hom}_{\mathcal{B}}(-,-)$$

such that

$$P_{X,Y} \circ F_{X,Y} = \text{Id} \text{ for every } X, Y \in \mathcal{B}.$$
DEFINITIONS

For every functor $F : \mathcal{B} \to \mathcal{A}$ we set

$$F_{X,Y} : \text{Hom}_\mathcal{B}(X,Y) \to \text{Hom}_\mathcal{A}(FX,FY) : f \mapsto Ff$$

Recall that F is called **separable** (see [NVV]) if it is a split natural monomorphism i.e. there is a natural transformation

$$P_{-, -} := P^F_{-, -} : \text{Hom}_\mathcal{A}(F-, F-) \to \text{Hom}_\mathcal{B}(-,-)$$

such that

$$P_{X,Y} \circ F_{X,Y} = \text{Id} \text{ for every } X, Y \in \mathcal{B}.$$
We say that F is a **heavily separable functor** (**h-separable** for short)
We say that F is an **heavily separable functor** (**h-separable** for short) if it is separable and the $P_{X,Y}$'s make commutative the following diagram for every $X, Y, Z \in \mathcal{B}$.

\[
\begin{array}{c}
\text{Hom}_A(FX, FY) \times \text{Hom}_A(FY, FZ) \\
\downarrow \quad \downarrow \\
\text{Hom}_B(X, Y) \times \text{Hom}_B(Y, Z) \\
\end{array}
\]

\[
\begin{array}{c}
\text{Hom}_A(FX, FZ) \\
\downarrow \\
\text{Hom}_B(X, Z) \\
\end{array}
\]

where the vertical arrows are the obvious compositions. On elements the above diagram means that $P_X, Z(f \circ g) = P_Y, Z(f) \circ P_X, Y(g)$.

REMARK We were tempted to use the word “strongly” at first, instead of “heavily”, but a notion of “strongly separable functor” already appeared in the literature in connection with graded rings (Corros, 1998, no. 3, 2192–230).

C. Menini (University of Ferrara) May 10, 2019 5 / 43
We say that F is an **heavily separable functor** (h-separable for short) if it is separable and the $P_{X,Y}$'s make commutative the following diagram for every $X,Y,Z \in \mathcal{B}$.

\[
\begin{array}{c}
\text{Hom}_\mathcal{A}(FX,FY) \times \text{Hom}_\mathcal{A}(FY,FZ) \xrightarrow{P_{X,Y} \times P_{Y,Z}} \text{Hom}_\mathcal{B}(X,Y) \times \text{Hom}_\mathcal{B}(Y,Z) \\
\circ \downarrow \\
\text{Hom}_\mathcal{A}(FX,FZ) \xrightarrow{P_{X,Z}} \text{Hom}_\mathcal{B}(X,Z)
\end{array}
\]

Remark We were tempted to use the word "strongly" at first, instead of "heavily", but a notion of "strongly separable functor" already appeared in the literature in connection with graded rings in [CGN, Definition 3.1].

C. Menini (University of Ferrara)
We say that F is an **heavily separable functor** (**h-separable** for short) if it is separable and the $P_{X,Y}$'s make commutative the following diagram for every $X, Y, Z \in \mathcal{B}$.

$$
\begin{array}{c}
\text{Hom}_\mathcal{A}(FX, FY) \times \text{Hom}_\mathcal{A}(FY, FZ) \\
\downarrow \circ \downarrow \\
\text{Hom}_\mathcal{A}(FX, FZ)
\end{array}
\begin{array}{c}
\overset{P_{X,Y} \times P_{Y,Z}}{\longrightarrow} \\
\downarrow \\
\text{Hom}_\mathcal{B}(X, Y) \times \text{Hom}_\mathcal{B}(Y, Z)
\end{array}
\begin{array}{c}
\text{Hom}_\mathcal{A}(FX, FZ) \\
\overset{P_{X,Z}}{\longrightarrow} \\
\text{Hom}_\mathcal{B}(X, Z)
\end{array}
$$

where the vertical arrows are the obvious compositions. On elements the above diagram means that

$$P_{X,Z}(f \circ g) = P_{Y,Z}(f) \circ P_{X,Y}(g).$$
We say that F is an **heavily separable functor** (**h-separable** for short) if it is separable and the $P_{X,Y}$'s make commutative the following diagram for every $X, Y, Z \in \mathcal{B}$.

\[
\begin{array}{ccc}
\text{Hom}_\mathcal{A}(FX, FY) \times \text{Hom}_\mathcal{A}(FY, FZ) & \xrightarrow{P_{X,Y} \times P_{Y,Z}} & \text{Hom}_\mathcal{B}(X, Y) \times \text{Hom}_\mathcal{B}(Y, Z) \\
\circ \downarrow & & \circ \downarrow \\
\text{Hom}_\mathcal{A}(FX, FZ) & \xrightarrow{P_{X,Z}} & \text{Hom}_\mathcal{B}(X, Z)
\end{array}
\]

where the vertical arrows are the obvious compositions. On elements the above diagram means that

\[P_{X,Z}(f \circ g) = P_{Y,Z}(f) \circ P_{X,Y}(g).\]

REMARK

We were tempted to use the word "strongly" at first, instead of "heavily", but a notion of "strongly separable functor" already appeared in the literature in connection with graded rings in [CGN, Definition 3.1].

Why h-separable functors?
Why \(h \)-separable functors?

to be explained at the end of the talk!
A full and faithful functor is h-separable.

In fact, if \(F : B \to A \) is full and faithful, we have that the canonical map

\[
F : \text{Hom}_B(X, Y) \to \text{Hom}_A(FX, FY)
\]

is invertible so that we can take

\[
P_{X, Y} = F^{-1}X, Y : \text{Hom}_A(FX, FY) \to \text{Hom}_B(X, Y).
\]

Since \(F \) is a functor, the following diagram commutes

\[
\begin{array}{ccc}
\text{Hom}_B(X, Y) \times \text{Hom}_B(Y, Z) & \xrightarrow{F} & \text{Hom}_A(FX, FY) \times \text{Hom}_A(FY, FZ) \\
\downarrow & & \downarrow \\
\text{Hom}_B(X, Z) & \xrightarrow{F} & \text{Hom}_A(FX, FZ)
\end{array}
\]

Reversing the horizontal arrows we obtain that \(F \) is h-separable.

We now recall the well-known:
EXAMPLE
A full and faithful functor is h-separable.
EXAMPLE
A full and faithful functor is h-separable.
In fact, if $F : \mathcal{B} \to \mathcal{A}$ is full and faithful, we have that the canonical map
EXAMPLE
A full and faithful functor is h-separable.
In fact, if $F : \mathcal{B} \to \mathcal{A}$ is full and faithful, we have that the canonical map

$$F_{X,Y} : \text{Hom}_\mathcal{B}(X, Y) \to \text{Hom}_\mathcal{A}(FX, FY)$$

is invertible so that we can take

$$P_{X,Y} := F^{-1}(X, Y) : \text{Hom}_\mathcal{A}(FX, FY) \to \text{Hom}_\mathcal{B}(X, Y).$$

Since F is a functor, the following diagram commutes

$$\begin{array}{ccc}
\text{Hom}_\mathcal{B}(X, Y) \times \text{Hom}_\mathcal{B}(Y, Z) & \overset{F_{X,Y} \times F_{Y,Z}}{\longrightarrow} & \text{Hom}_\mathcal{A}(FX, FY) \times \text{Hom}_\mathcal{A}(FY, FZ) \\
\downarrow & & \downarrow \\
\text{Hom}_\mathcal{B}(X, Z) & \overset{F_{X,Z}}{\longrightarrow} & \text{Hom}_\mathcal{A}(FX, FZ)
\end{array}$$

Reversing the horizontal arrows we obtain that F is h-separable.

We now recall the well-known:

C. Menini (University of Ferrara)
EXAMPLE
A full and faithful functor is h-separable.
In fact, if $F : B \to A$ is full and faithful, we have that the canonical map

$$F_{X,Y} : \text{Hom}_B(X,Y) \to \text{Hom}_A(FX,FY)$$

is invertible so that we can take

$$P_{X,Y} := F_{X,Y}^{-1} : \text{Hom}_A(FX,FY) \to \text{Hom}_B(X,Y).$$
EXAMPLE

A full and faithful functor is \(h \)-separable.

In fact, if \(F : \mathcal{B} \to \mathcal{A} \) is full and faithful, we have that the canonical map

\[
F_{X,Y} : \text{Hom}_\mathcal{B}(X, Y) \to \text{Hom}_\mathcal{A}(FX, FY)
\]

is invertible so that we can take

\[
P_{X,Y} := F_{X,Y}^{-1} : \text{Hom}_\mathcal{A}(FX, FY) \to \text{Hom}_\mathcal{B}(X, Y).
\]

Since \(F \) is a functor, the following diagram commutes.
EXAMPLE
A full and faithful functor is h-separable.
In fact, if $F : \mathcal{B} \to \mathcal{A}$ is full and faithful, we have that the canonical map

$$F_{X,Y} : \text{Hom}_{\mathcal{B}}(X, Y) \to \text{Hom}_{\mathcal{A}}(FX, FY)$$

is invertible so that we can take

$$P_{X,Y} := F_{X,Y}^{-1} : \text{Hom}_{\mathcal{A}}(FX, FY) \to \text{Hom}_{\mathcal{B}}(X, Y).$$

Since F is a functor, the following diagram commutes

$$
\begin{array}{ccc}
\text{Hom}_{\mathcal{B}}(X, Y) \times \text{Hom}_{\mathcal{B}}(Y, Z) & \xrightarrow{F_{X,Y} \times F_{Y,Z}} & \text{Hom}_{\mathcal{A}}(FX, FY) \times \text{Hom}_{\mathcal{A}}(FY, FZ) \\
\downarrow & & \downarrow \\
\text{Hom}_{\mathcal{B}}(X, Z) & \xrightarrow{F_{X,Z}} & \text{Hom}_{\mathcal{A}}(FX, FZ)
\end{array}
$$
EXAMPLE

A full and faithful functor is h-separable.

In fact, if \(F : \mathcal{B} \to \mathcal{A} \) is full and faithful, we have that the canonical map

\[
F_{X,Y} : \text{Hom}_\mathcal{B}(X, Y) \to \text{Hom}_\mathcal{A}(FX, FY)
\]

is invertible so that we can take

\[
P_{X,Y} := F_{X,Y}^{-1} : \text{Hom}_\mathcal{A}(FX, FY) \to \text{Hom}_\mathcal{B}(X, Y).
\]

Since \(F \) is a functor, the following diagram commutes

\[
\begin{array}{c}
\text{Hom}_\mathcal{B}(X, Y) \times \text{Hom}_\mathcal{B}(Y, Z) \\
\downarrow \circ \downarrow \\
\text{Hom}_\mathcal{B}(X, Z)
\end{array}
\xrightarrow{F_{X,Y} \times F_{Y,Z}}
\begin{array}{c}
\text{Hom}_\mathcal{A}(FX, FY) \times \text{Hom}_\mathcal{A}(FY, FZ) \\
\downarrow \circ \\
\text{Hom}_\mathcal{A}(FX, FZ)
\end{array}
\]

Reversing the horizontal arrows we obtain that \(F \) h-separable.
EXAMPLE

A full and faithful functor is \(h \)-separable.

In fact, if \(F : \mathcal{B} \to \mathcal{A} \) is full and faithful, we have that the canonical map

\[
F_{X,Y} : \text{Hom}_\mathcal{B}(X, Y) \to \text{Hom}_\mathcal{A}(FX, FY)
\]

is invertible so that we can take

\[
P_{X,Y} := F_{X,Y}^{-1} : \text{Hom}_\mathcal{A}(FX, FY) \to \text{Hom}_\mathcal{B}(X, Y).
\]

Since \(F \) is a functor, the following diagram commutes

\[
\begin{array}{ccc}
\text{Hom}_\mathcal{B}(X, Y) \times \text{Hom}_\mathcal{B}(Y, Z) & \xrightarrow{F_{X,Y} \times F_{Y,Z}} & \text{Hom}_\mathcal{A}(FX, FY) \times \text{Hom}_\mathcal{A}(FY, FZ) \\
\downarrow & & \downarrow \\
\text{Hom}_\mathcal{B}(X, Z) & \xrightarrow{F_{X,Z}} & \text{Hom}_\mathcal{A}(FX, FZ)
\end{array}
\]

Reversing the horizontal arrows we obtain that \(F \) \(h \)-separable.

We now recall the well-known:
RAFAEL THEOREM [Ra, Theorem 1.2].
RAFAEL THEOREM [Ra, Theorem 1.2].
Let \((L, R, \eta, \varepsilon)\) be an adjunction where \(L : \mathcal{B} \to \mathcal{A}\).
RAFAEL THEOREM [Ra, Theorem 1.2].
Let \((L, R, \eta, \varepsilon)\) be an adjunction where \(L : \mathcal{B} \to \mathcal{A}\).

1) \(L\) is separable if and only if \(\eta\) is a split mono, i.e. if there is a natural transformation \(\gamma : RL \to \text{Id}_\mathcal{B}\) such that \(\gamma \circ \eta = \text{Id}\).
RAFAEL THEOREM [Ra, Theorem 1.2].

Let \((L, R, \eta, \varepsilon)\) be an adjunction where \(L : \mathcal{B} \to \mathcal{A}\).

1) \(L\) is separable if and only if \(\eta\) is a split mono, i.e. if there is a natural transformation \(\gamma : RL \to \text{Id}_\mathcal{B}\) such that \(\gamma \circ \eta = \text{Id}\).

2) \(R\) is separable if and only if \(\varepsilon\) is a split epi, i.e. if there is a natural transformation \(\delta : \text{Id}_\mathcal{A} \to LR\) such that \(\varepsilon \circ \delta = \text{Id}\).
RAFAEL THEOREM [Ra, Theorem 1.2].
Let $(L, R, \eta, \varepsilon)$ be an adjunction where $L : \mathcal{B} \to \mathcal{A}$.

1) L is separable if and only if η is a split mono, i.e. if there is a natural transformation $\gamma : RL \to \text{Id}_\mathcal{B}$ such that $\gamma \circ \eta = \text{Id}$.

2) R is separable if and only if ε is a split epi, i.e. if there is a natural transformation $\delta : \text{Id}_\mathcal{A} \to LR$ such that $\varepsilon \circ \delta = \text{Id}$. "}

M. D. Rafael, Separable Functions Revisited, Comm. Algebra 18 (1990), 1445–1459.

"Created during the algebra seminar of F. Van Oystaeyen at Cortona (Italy), Summer 1988 and it is based upon contributions from the following members of M. D. Rafael: M. Sanin (Univ. de Murcia, Spain) D. Herrero (Univ. Autonoma de Barcelona, Spain) R. Colpi (Univ. di Padova, Italy) A. Del Rio Mateos (Univ. de Murcia, Spain) F. Van Oystaeyen (UIA, University of Antwerp, Belgium) A. Giaquinta (Univ. of Pennsylvania, USA) E. Gregorio (Univ. di Padova, Italy)."

C. Menini (University of Ferrara)
RAFAEL THEOREM [Ra, Theorem 1.2].
Let \((L, R, \eta, \varepsilon)\) be an adjunction where \(L : \mathcal{B} \rightarrow \mathcal{A}\).

1) \(L\) is separable if and only if \(\eta\) is a split mono, i.e. if there is a natural transformation \(\gamma : RL \rightarrow \text{Id}_\mathcal{B}\) such that \(\gamma \circ \eta = \text{Id}\).

2) \(R\) is separable if and only if \(\varepsilon\) is a split epi, i.e. if there is a natural transformation \(\delta : \text{Id}_\mathcal{A} \rightarrow LR\) such that \(\varepsilon \circ \delta = \text{Id}\).

RAFAEL THEOREM [Ra, Theorem 1.2].
Let \((L, R, \eta, \varepsilon)\) be an adjunction where \(L : \mathcal{B} \to \mathcal{A}\).

1) \(L\) is separable if and only if \(\eta\) is a split mono, i.e. if there is a natural transformation \(\gamma : RL \to \text{Id}_\mathcal{B}\) such that \(\gamma \circ \eta = \text{Id}\).

2) \(R\) is separable if and only if \(\varepsilon\) is a split epi, i.e. if there is a natural transformation \(\delta : \text{Id}_\mathcal{A} \to LR\) such that \(\varepsilon \circ \delta = \text{Id}\).

"Created during the algebra seminar of F. Van Oystaeyen at Cortona (Italy), Summer 1988 and it is based upon contributions from the following members of M. D. Rafael:

- M. Saorin (Univ. de Murcia, Spain)
- D. Herbera (Univ. Autonoma de Barcelona, Spain)
- R. Colpi (Univ. di Padova, Italy)
- A. Del Rio Mateos (Univ. de Murcia, Spain)
- F. Van Oystaeyen (UIA, University of Antwerp, Belgium)
- A. Giaquinta (Univ. of Pennsylvania, USA)
- E. Gregorio (Univ. di Padova, Italy)
- L. Bionda (Univ. di Padova, Italy)."
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : B \rightarrow A\).

a) \(L\) is \(h\)-separable \(\iff\) there is a natural transformation \(\gamma : RL \rightarrow \text{Id}_B\) such that
\[
\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL \gamma = \gamma \circ R \varepsilon L.
\]

b) \(R\) is \(h\)-separable \(\iff\) there is a natural transformation \(\delta : \text{Id}_A \rightarrow LR\) such that
\[
\varepsilon \circ \delta = \text{Id} \quad \text{and} \quad LR \delta \circ \delta = L \eta R \circ \delta.
\]
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \rightarrow \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) there is a natural transformation \(\gamma : RL \rightarrow \text{Id}_B\) such that \(\gamma \circ \eta = \text{Id}_B\) and \(\gamma \circ RL \gamma = \gamma \circ R \varepsilon L\).

b) \(R\) is h-separable \(\iff\) there is a natural transformation \(\delta : \text{Id}_A \rightarrow LR\) such that \(\varepsilon \circ \delta = \text{Id}_A\) and \(LR \delta \circ \delta = L \eta R \circ \delta\).
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \epsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) there is a natural transformation

\[\gamma : RL \to \text{Id}_\mathcal{B} \]

h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) there is a natural transformation

\[
\gamma : RL \to \text{Id}_\mathcal{B}
\]

such that
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L: \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) there is a natural transformation

\[
\gamma: RL \to \text{Id}_\mathcal{B}
\]

such that

\[
\gamma \circ \eta = \text{Id}
\]

and

\[
\gamma \circ RL\gamma = \gamma \circ R\varepsilon L.
\]
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) there is a natural transformation

\[\gamma : RL \to \text{Id}_B\]

such that

\[\gamma \circ \eta = \text{Id}\]

and

\[\gamma \circ RL\gamma = \gamma \circ R\varepsilon L.\]

b) \(R\) is h-separable \(\iff\) there is a natural transformation
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \iff there is a natural transformation

\[\gamma : RL \to \text{Id}_\mathcal{B} \]

such that

\[\gamma \circ \eta = \text{Id} \]

and

\[\gamma \circ R\eta = \gamma \circ R\varepsilon L. \]

b) \(R\) is h-separable \iff there is a natural transformation

\[\delta : \text{Id}_\mathcal{A} \to LR \]
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) there is a natural transformation

\[\gamma : RL \to \text{Id}_\mathcal{B} \]

such that

\[\gamma \circ \eta = \text{Id} \]

and

\[\gamma \circ RL \gamma = \gamma \circ R\varepsilon L. \]

b) \(R\) is h-separable \(\iff\) there is a natural transformation

\[\delta : \text{Id}_\mathcal{A} \to LR \]

such that
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \iff there is a natural transformation

\[\gamma : RL \to \text{Id}_\mathcal{B} \]

such that

\[\gamma \circ \eta = \text{Id} \]

and

\[\gamma \circ R\varepsilon L = \gamma \circ R\varepsilon L. \]

b) \(R\) is h-separable \iff there is a natural transformation

\[\delta : \text{Id}_\mathcal{A} \to LR \]

such that

\[\varepsilon \circ \delta = \text{Id} \]
h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) there is a natural transformation

\[
\gamma : RL \to \text{Id}_\mathcal{B}
\]

such that

\[
\gamma \circ \eta = \text{Id}
\]

and

\[
\gamma \circ R\eta = \gamma \circ R\varepsilon L.
\]

b) \(R\) is h-separable \(\iff\) there is a natural transformation

\[
\delta : \text{Id}_\mathcal{A} \to LR
\]

such that

\[
\varepsilon \circ \delta = \text{Id}
\]

and

\[
LR\delta \circ \delta = L\eta R \circ \delta.
\]
Recall that a monad on a category \mathcal{C} is a triple $\mathbb{Q} := (Q, m, u)$, where...
Recall that a monad on a category \mathcal{C} is a triple $\mathcal{Q} := (Q, m, u)$, where

- $Q : \mathcal{C} \to \mathcal{C}$ is a functor,
Recall that a monad on a category \mathcal{C} is a triple $Q := (Q, m, u)$, where

- $Q : \mathcal{C} \to \mathcal{C}$ is a functor,
- $m : QQ \to Q$ and $u : \text{Id}_{\mathcal{C}} \to Q$ are functorial morphisms s.t.
Recall that a monad on a category \mathcal{C} is a triple $\mathbb{Q} := (Q, m, u)$, where

- $Q : \mathcal{C} \to \mathcal{C}$ is a functor,
- $m : QQ \to Q$ and $u : \text{Id}_\mathcal{C} \to Q$ are functorial morphisms s.t.

$$
\begin{align*}
\xymatrix{
QQQ & \ar[r]^{Qm} & QQ \\
QQQ & \ar[r]^{Qm} & QQ \\
QQ & \ar[r]^m & Q \\
}
\end{align*}
$$
Recall that a monad on a category \mathcal{C} is a triple $\mathcal{Q} := (Q, m, u)$, where

- $Q : \mathcal{C} \to \mathcal{C}$ is a functor,
- $m : QQ \to Q$ and $u : \text{Id}_\mathcal{C} \to Q$ are functorial morphisms s.t.

$$
\begin{align*}
QQQ \xrightarrow{Qm} QQ & \quad Q \xrightarrow{uQ} QQ \\
\downarrow mQ & \quad \downarrow m \\
QQ \xrightarrow{m} Q & \quad Q \\
\end{align*}
$$

An algebra over a monad $\mathcal{Q} = (Q, m, u)$ (or simply a \mathcal{Q}-algebra) is a pair (X, μ) where $X \in \mathcal{C}$ and $\mu : QX \to X$ is a morphism in \mathcal{C} s.t.
Recall that a monad on a category \mathcal{C} is a triple $\mathbb{Q} := (Q, m, u)$, where

- $Q : \mathcal{C} \to \mathcal{C}$ is a functor,
- $m : QQ \to Q$ and $u : \text{Id}_\mathcal{C} \to Q$ are functorial morphisms s.t.

\[
\begin{array}{ccc}
QQQ & \xrightarrow{Qm} & QQ \\
\downarrow mQ & & \downarrow m \\
QQ & \xrightarrow{m} & Q \\
\end{array}
\]

An algebra over a monad $\mathbb{Q} = (Q, m, u)$ (or simply a \mathbb{Q}-algebra) is a pair (X, μ) where $X \in \mathcal{C}$ and $\mu : QX \to X$ is a morphism in \mathcal{C} s.t.

\[
\begin{array}{ccc}
QQX & \xrightarrow{Q\mu} & QX \\
\downarrow mX & & \downarrow \mu \\
QX & \xrightarrow{\mu} & X \\
\end{array}
\]

\[
\begin{array}{ccc}
X & \xrightarrow{uX} & QX \\
\downarrow \text{Id}_X & & \downarrow \mu \\
X & & X \\
\end{array}
\]
Recall that a **monad** on a category \mathcal{C} is a triple $\mathcal{Q} := (Q, m, u)$, where

- $Q : \mathcal{C} \to \mathcal{C}$ is a functor,
- $m : QQ \to Q$ and $u : \text{Id}_\mathcal{C} \to Q$ are functorial morphisms s.t.

\[
\begin{align*}
QQQ & \xrightarrow{Qm} QQ \\
\downarrow mQ & \quad \downarrow m \\
QQ & \xrightarrow{m} Q
\end{align*}
\]

An **algebra** over a monad $\mathcal{Q} = (Q, m, u)$ (or simply a \mathcal{Q}-algebra) is a pair (X, μ) where $X \in \mathcal{C}$ and $\mu : QX \to X$ is a morphism in \mathcal{C} s.t.

\[
\begin{align*}
QQX & \xrightarrow{Q\mu} QX \\
\downarrow mX & \quad \downarrow \mu \\
QX & \xrightarrow{\mu} X
\end{align*}
\]

\mathcal{Q}-algebras and their morphisms form the so-called **Eilenberg-Moore category** $\mathcal{Q}^{\mathcal{C}}$ of the monad \mathcal{Q}.
Recall that a monad on a category \mathcal{C} is a triple $\mathbb{Q} := (Q, m, u)$, where
- $Q : \mathcal{C} \to \mathcal{C}$ is a functor,
- $m : QQ \to Q$ and $u : \text{Id}_\mathcal{C} \to Q$ are functorial morphisms s.t.

\[
\begin{array}{ccc}
QQQ & \xrightarrow{Qm} & QQ \\
\downarrow mQ & & \downarrow m \\
QQ & \xrightarrow{m} & Q
\end{array}
\quad
\begin{array}{ccc}
Q & \xrightarrow{uQ} & QQ \\
\downarrow \text{Id}_Q & & \downarrow m \\
Q & \xleftarrow{\text{Id}_Q} & Q
\end{array}
\quad
\begin{array}{ccc}
Q & \xleftarrow{Qu} & Q \\
\downarrow m & & \downarrow \text{Id}_Q \\
Q & \xrightarrow{\text{Id}_Q} & Q
\end{array}
\]

An algebra over a monad $\mathbb{Q} = (Q, m, u)$ (or simply a \mathbb{Q}-algebra) is a pair (X, μ) where $X \in \mathcal{C}$ and $\mu : QX \to X$ is a morphism in \mathcal{C} s.t.

\[
\begin{array}{ccc}
QQX & \xrightarrow{Q\mu} & QX \\
\downarrow mX & & \downarrow \mu \\
QX & \xrightarrow{\mu} & X
\end{array}
\quad
\begin{array}{ccc}
X & \xrightarrow{uX} & QX \\
\downarrow \text{Id}_X & & \downarrow \mu \\
X & \xleftarrow{\text{Id}_X} & X
\end{array}
\]

\mathbb{Q}-algebras and their morphisms form the so-called Eilenberg-Moore category $\mathbb{Q}\mathcal{C}$ of the monad \mathbb{Q}.
Associated to any adjoint pair of functors
\((L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})\) we have a canonical monad namely
Associated to any adjoint pair of functors $(L : \mathcal{B} \to \mathcal{A}, R : \mathcal{A} \to \mathcal{B})$ we have a canonical monad namely

$$(Q, m, u) := (RL, R\varepsilon L, \eta)$$

where
Associated to any adjoint pair of functors
\((L : B \to A, R : A \to B)\) we have a canonical monad namely

\[(Q, m, u) := (RL, R\varepsilon L, \eta)\]

where

- \(\eta : \text{Id}_B \to RL\) is the unit of the adjunction
Associated to any adjoint pair of functors
\((L : \mathcal{B} \to \mathcal{A}, R : \mathcal{A} \to \mathcal{B})\) we have a canonical monad namely

\[(Q, m, u) := (RL, R\varepsilon L, \eta)\]

where

- \(\eta : \text{Id}_\mathcal{B} \to RL\) is the unit of the adjunction
- \(\varepsilon : LR \to \text{Id}_\mathcal{A}\) is the counit of the adjunction.
Associated to any adjoint pair of functors
\((L : \mathcal{B} \to \mathcal{A}, R : \mathcal{A} \to \mathcal{B})\) we have a canonical monad namely

\[(Q, m, u) := (RL, R\varepsilon L, \eta)\]

where

- \(\eta : \text{Id}_\mathcal{B} \to RL\) is the unit of the adjunction
- \(\varepsilon : LR \to \text{Id}_\mathcal{A}\) is the counit of the adjunction.

Denote by \(RL\mathcal{B}\) the category of algebras over this monad.
Associated to any adjoint pair of functors
\((L : \mathcal{B} \to \mathcal{A}, R : \mathcal{A} \to \mathcal{B})\) we have a canonical monad namely

\[(Q, m, u) := (RL, R\varepsilon L, \eta)\]

where

- \(\eta : \text{Id}_{\mathcal{B}} \to RL\) is the unit of the adjunction
- \(\varepsilon : LR \to \text{Id}_{\mathcal{A}}\) is the counit of the adjunction.

Denote by \(RL\mathcal{B}\) the category of algebras over this monad.

We have a commutative diagram
Associated to any adjoint pair of functors

\((L : \mathcal{B} \to \mathcal{A}, R : \mathcal{A} \to \mathcal{B})\) we have a canonical monad namely

\[(Q, m, u) := (RL, R\varepsilon L, \eta)\]

where

- \(\eta : \text{Id}_\mathcal{B} \to RL\) is the unit of the adjunction
- \(\varepsilon : LR \to \text{Id}_\mathcal{A}\) is the counit of the adjunction.

Denote by \(RL\mathcal{B}\) the category of algebras over this monad.

We have a commutative diagram

where

\(\varepsilon : LR \to \text{Id}_\mathcal{A}\) is the counit of the adjunction.
Associated to any adjoint pair of functors
\((L: \mathcal{B} \to \mathcal{A}, R: \mathcal{A} \to \mathcal{B})\) we have a canonical monad namely

\[(Q, m, u) := (RL, R\varepsilon L, \eta)\]

where

- \(\eta: \text{Id}_\mathcal{B} \to RL\) is the unit of the adjunction
- \(\varepsilon: LR \to \text{Id}_\mathcal{A}\) is the counit of the adjunction.

Denote by \(RL\mathcal{B}\) the category of algebras over this monad.

We have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{A} & \xleftarrow{\text{Id}_\mathcal{A}} & \mathcal{A} \\
\downarrow{L} & & \downarrow{R} \\
\mathcal{B} & \xleftarrow{RLU} & RL\mathcal{B} \\
\end{array}
\]

where

- \(RLU\) is the **forgetful** functor: \(RLU(A, \mu) := A\) and \(RLUf := f\).
- \(K\) is **comparison** functor: \(KA := (RA, R\varepsilon A)\) and \(Kf := Rf\).
PROPOSITION

Let \((L, R)\) be an adjunction.

1) \(L\) is h-separable \(\iff\) \(U : RL \to B\) is a split natural epimorphism, i.e. there is \(\Gamma : B \to RL\) such that \(U \circ \Gamma = \text{Id}_B\).

2) \(R\) is h-separable \(\iff\) \(U : B \to LR\) is a split natural epimorphism, i.e. there is \(\Gamma : B \to LR\) such that \(U \circ \Gamma = \text{Id}_B\).

Here \(B_{LR}\) denotes the Eilenberg-Moore category of the comonad \((LR, \eta_R, \varepsilon)\).
PROPOSITION

Let \((L, R)\) be an adjunction.
PROPOSITION
Let \((L, R)\) be an adjunction.

1) \(L\) is h-separable \(\iff U : RL\mathcal{B} \to \mathcal{B}\) is a split natural epimorphism
PROPOSITION
Let \((L, R)\) be an adjunction.

1) \(L\) is h-separable \(\Leftrightarrow U : RL\mathcal{B} \to \mathcal{B}\) is a split natural epimorphism

i.e. there is
PROPOSITION
Let \((L, R)\) be an adjunction.

1)

\[
L \text{ is h-separable } \iff U : RL\mathcal{B} \to \mathcal{B} \text{ is a split natural epimorphism}
\]

i.e. there is

\[
\Gamma : \mathcal{B} \to RL\mathcal{B} \text{ such that } U \circ \Gamma = \text{Id}_{\mathcal{B}}.
\]
PROPOSITION

Let \((L, R)\) be an adjunction.

1)

\(L\) is h-separable \(\iff U : _{RL}B \to B\) is a split natural epimorphism

i.e. there is

\[\Gamma : B \to _{RL}B \text{ such that } U \circ \Gamma = \text{Id}_B. \]

2)

\(R\) is h-separable \(\iff U : B^{LR} \to B\) is a split natural epimorphism

i.e. there is
PROPOSITION

Let \((L, R)\) be an adjunction.

1) \(L\) is h-separable \(\iff\) \(U : RL\mathcal{B} \to \mathcal{B}\) is a split natural epimorphism

i.e. there is

\[\Gamma : \mathcal{B} \to RL\mathcal{B}\] such that \(U \circ \Gamma = \text{Id}_{\mathcal{B}}\).

2) \(R\) is h-separable \(\iff\) \(U : \mathcal{B}^{LR} \to \mathcal{B}\) is a split natural epimorphism

i.e. there is

\[\Gamma : \mathcal{B} \to \mathcal{B}^{LR}\] such that \(U \circ \Gamma = \text{Id}_{\mathcal{B}}\).
PROPOSITION
Let \((L, R)\) be an adjunction.

1)

\[L \text{ is h-separable } \iff U : RL \mathcal{B} \to \mathcal{B} \text{ is a split natural epimorphism} \]

i.e. there is
\[\Gamma : \mathcal{B} \to RL \mathcal{B} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}. \]

2)

\[R \text{ is h-separable } \iff U : \mathcal{B}^{LR} \to \mathcal{B} \text{ is a split natural epimorphism} \]

i.e. there is
\[\Gamma : \mathcal{B} \to \mathcal{B}^{LR} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}. \]

Here \(\mathcal{B}^{LR}\) denotes the Eilenberg-Moore category of the comonad \((LR, L\eta R, \varepsilon)\).
Proof

We just prove 1. By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: RL \to Id_B$ such that $\gamma \circ \eta = Id$ and $\gamma \circ R \varepsilon_L = \gamma \circ R \varepsilon_L$. This means that, for every $B \in B$, we have $\Gamma_B := (B, \gamma_B) \in RL_B$.

Moreover any morphism $f: B \to C$ fulfills $f \circ \gamma_B = \gamma_C \circ RLf$ by naturality of γ. This means that f induces a morphism $\Gamma_f: \Gamma_B \to \Gamma_C$ such that $U \circ \Gamma_f = f$.

We have defined a functor $\Gamma: B \to B_{RL}$ such that $U \circ \Gamma = Id_B$.

Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma : RL \to \text{Id}_B$ such that
Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma : RL \to \text{Id}_B$ such that

$\gamma \circ \eta = \text{Id}$ and $\gamma \circ RL\gamma = \gamma \circ R\varepsilon L$
Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma : RL \to \text{Id}_\mathcal{B}$ such that

$$\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL \gamma = \gamma \circ R\varepsilon L$$

holds. This means that, for every $B \in \mathcal{B}$, we have
Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma : RL \rightarrow \text{Id}_B$ such that

$$\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\varepsilon L$$

holds. This means that, for every $B \in \mathcal{B}$, we have

$$\Gamma B := (B, \gamma B) \in RL\mathcal{B}.$$
Proof
We just prove 1). By h-version of RAFAEL THEOREM, \(L \) is h-separable if and only if there is a natural transformation \(\gamma : RL \to \text{Id}_B \) such that
\[
\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\varepsilon L
\]
holds. This means that, for every \(B \in \mathcal{B} \), we have
\[
\Gamma B := (B, \gamma B) \in RL\mathcal{B}.
\]
Moreover any morphism \(f : B \to C \) fulfills
Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma : RL \to \text{Id}_B$ such that

$$\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\varepsilon L$$

holds. This means that, for every $B \in B$, we have

$$\Gamma B := (B, \gamma B) \in RLB.$$

Moreover any morphism $f : B \to C$ fulfills

$$f \circ \gamma B = \gamma C \circ RLf$$
Proof
We just prove 1). By h-version of RAFAEL THEOREM, \(L \) is h-separable if and only if there is a natural transformation \(\gamma : RL \to \text{Id}_B \) such that

\[
\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ \text{R\varepsilon}_L
\]

holds. This means that, for every \(B \in \mathcal{B} \), we have

\[
\Gamma B := (B, \gamma B) \in RL\mathcal{B}.
\]

Moreover any morphism \(f : B \to C \) fulfills

\[
f \circ \gamma B = \gamma C \circ RLf
\]

by naturality of \(\gamma \). This means that \(f \) induces a morphism
Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma : RL \to \text{Id}_B$ such that

$$\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\varepsilon L$$

holds. This means that, for every $B \in \mathcal{B}$, we have

$$\Gamma B := (B, \gamma B) \in RL\mathcal{B}.$$

Moreover any morphism $f : B \to C$ fulfills

$$f \circ \gamma B = \gamma C \circ RLf$$

by naturality of γ. This means that f induces a morphism

$$\Gamma f : \Gamma B \to \Gamma C$$
Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma : RL \to \text{Id}_\mathcal{B}$ such that

$$\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\varepsilon L$$

holds. This means that, for every $B \in \mathcal{B}$, we have

$$\Gamma B := (B, \gamma B) \in RL\mathcal{B}.$$

Moreover any morphism $f : B \to C$ fulfills

$$f \circ \gamma B = \gamma C \circ RLf$$

by naturality of γ. This means that f induces a morphism

$$\Gamma f : \Gamma B \to \Gamma C$$

such that
Proof
We just prove 1). By h-version of RAFAEL THEOREM, \(L \) is h-separable if and only if there is a natural transformation \(\gamma : RL \to \text{Id}_B \) such that

\[
\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\varepsilon L
\]

holds. This means that, for every \(B \in \mathcal{B} \), we have

\[
\Gamma B := (B, \gamma B) \in RL\mathcal{B}.
\]

Moreover any morphism \(f : B \to C \) fulfills

\[
f \circ \gamma B = \gamma C \circ RLf
\]

by naturality of \(\gamma \). This means that \(f \) induces a morphism

\[
\Gamma f : \Gamma B \to \Gamma C
\]

such that

\[
U\Gamma f = f.
\]
Proof
We just prove 1). By h-version of RAFAEL THEOREM, \(L \) is h-separable if and only if there is a natural transformation \(\gamma : RL \to \text{Id}_\mathcal{B} \) such that

\[
\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\varepsilon L
\]

holds. This means that, for every \(B \in \mathcal{B} \), we have

\[
\Gamma B := (B, \gamma B) \in RL\mathcal{B}.
\]

Moreover any morphism \(f : B \to C \) fulfills

\[
f \circ \gamma B = \gamma C \circ RLf
\]

by naturality of \(\gamma \). This means that \(f \) induces a morphism

\[
\Gamma f : \Gamma B \to \Gamma C
\]

such that

\[
U\Gamma f = f.
\]

We have so defined a functor
Proof
We just prove 1). By h-version of RAFAEL THEOREM, L is h-separable if and only if there is a natural transformation $\gamma: RL \to \text{Id}_B$ such that

$$\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \circ RL\gamma = \gamma \circ R\epsilon L$$

holds. This means that, for every $B \in \mathcal{B}$, we have

$$\Gamma B := (B, \gamma B) \in RL \mathcal{B}.$$

Moreover any morphism $f: B \to C$ fulfills

$$f \circ \gamma B = \gamma C \circ RLf$$

by naturality of γ. This means that f induces a morphism

$$\Gamma f : \Gamma B \to \Gamma C$$

such that

$$U\Gamma f = f.$$

We have so defined a functor

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL}$$

such that $U \circ \Gamma = \text{Id}_\mathcal{B}$.

Conversely, let Γ be a functor such that $\Gamma : B \to B_{RL}$ such that $U \circ \Gamma = \text{Id}_B$. Then, for every $B \in B$, we have that $\Gamma_B = (B, \gamma_B)$ for some morphism $\gamma_B : RL_B \to B$. Since $\Gamma_B \in B_{RL}$ we must have that $\gamma_B \circ \eta_B = B$ and $\gamma_B \circ RL \gamma_B = \gamma_B \circ R \varepsilon_L B$. Given a morphism $f : B \to C$, we have that $\Gamma_f : \Gamma_B \to \Gamma_C$ is a morphism in RL_B, which means that $f \circ \gamma_B = \gamma_C \circ RL f$. i.e. $\gamma_B := (\gamma_B)_B \in B_{RL}$ is a natural transformation. By the foregoing $\gamma \circ \eta = \text{Id}$ and $\gamma \circ RL \gamma = \gamma \circ R \varepsilon_L$.
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \rightarrow \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}.$$
Conversely, let \(\Gamma \) be a functor such that

\[
\Gamma : \mathcal{B} \to \mathcal{B}_{\text{RL}} \text{ such that } U \circ \Gamma = \text{Id}_{\mathcal{B}}.
\]

Then, for every \(B \in \mathcal{B} \), we have that

\[
\Gamma_B = (B, \gamma_B) \text{ for some morphism } \gamma_B : \mathcal{B}_{\text{RL}} \to B.
\]

Since \(\Gamma_B \in \mathcal{B}_{\text{RL}} \) we must have that

\[
\gamma_B \circ \eta_B = B \text{ and } \gamma_B \circ \text{RL} \gamma_B = \gamma_B \circ \text{R} \varepsilon_{LB}.
\]

Given a morphism \(f : B \to C \), we have that

\[
\Gamma_f : \Gamma_B \to \Gamma_C \text{ is a morphism in } \mathcal{B}_{\text{RL}},
\]

which means that

\[
f \circ \gamma_B = \gamma_C \circ \text{RL} f \text{ i.e. } \gamma := (\gamma_B)_{B} \in \mathcal{B} \text{ is a natural transformation.}
\]
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}.$$

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma_B) \text{ for some morphism } \gamma_B : RLB \to B.$$
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_{\mathcal{B}}.$$

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma B) \text{ for some morphism } \gamma B : RLB \to B.$$

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that
Conversely, let \(\Gamma \) be a functor such that

\[
\Gamma : \mathcal{B} \to \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}.
\]

Then, for every \(B \in \mathcal{B} \), we have that

\[
\Gamma B = (B, \gamma_B) \text{ for some morphism } \gamma_B : RLB \to B.
\]

Since \(\Gamma B \in \mathcal{B}_{RL} \) we must have that

\[
\gamma_B \circ \eta_B = B \text{ and } \gamma_B \circ RL\gamma_B = \gamma_B \circ R\varepsilon LB.
\]
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL}$$

such that $U \circ \Gamma = \text{Id}_\mathcal{B}$.

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma B)$$

for some morphism $\gamma B : RL B \to B$.

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that

$$\gamma B \circ \eta B = B$$

and

$$\gamma B \circ RL \gamma B = \gamma B \circ R \varepsilon L B.$$

Given a morphism $f : B \to C$, we have that
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL}$$

such that $U \circ \Gamma = \text{Id}_{\mathcal{B}}$.

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma B)$$

for some morphism $\gamma B : RLB \to B$.

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that

$$\gamma B \circ \eta B = B \quad \text{and} \quad \gamma B \circ RL\gamma B = \gamma B \circ R\varepsilon LB.$$

Given a morphism $f : B \to C$, we have that $\Gamma f : \Gamma B \to \Gamma C$ is a morphism in $RL\mathcal{B}$.
Conversely, let Γ be a functor such that

$$ \Gamma : \mathcal{B} \to \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_{\mathcal{B}}. $$

Then, for every $B \in \mathcal{B}$, we have that

$$ \Gamma B = (B, \gamma B) \text{ for some morphism } \gamma B : RLB \to B. $$

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that

$$ \gamma B \circ \eta B = B \text{ and } \gamma B \circ RL \gamma B = \gamma B \circ R \varepsilon LB. $$

Given a morphism $f : B \to C$, we have that $\Gamma f : \Gamma B \to \Gamma C$ is a morphism in $RL\mathcal{B}$, which means that
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \rightarrow \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}.$$

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma B) \text{ for some morphism } \gamma B : RLB \rightarrow B.$$

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that

$$\gamma B \circ \eta B = B \text{ and } \gamma B \circ RL \gamma B = \gamma B \circ R\varepsilon LB.$$

Given a morphism $f : B \rightarrow C$, we have that $\Gamma f : \Gamma B \rightarrow \Gamma C$ is a morphism in \mathcal{B}, which means that

$$f \circ \gamma B = \gamma C \circ RLf.$$
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}. $$

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma B) \text{ for some morphism } \gamma B : RL B \to B.$$

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that

$$\gamma B \circ \eta B = B \text{ and } \gamma B \circ RL \gamma B = \gamma B \circ R \varepsilon L B.$$

Given a morphism $f : B \to C$, we have that $\Gamma f : \Gamma B \to \Gamma C$ is a morphism in $\mathcal{RL} \mathcal{B}$, which means that

$$f \circ \gamma B = \gamma C \circ RL f$$

i.e.

$$\gamma := (\gamma B)_{B \in \mathcal{B}} \text{ is a natural transformation.}$$
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_B.$$

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma B) \text{ for some morphism } \gamma B : RLB \to B.$$

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that

$$\gamma B \circ \eta B = B \text{ and } \gamma B \circ RL\gamma B = \gamma B \circ R\varepsilon LB.$$

Given a morphism $f : B \to C$, we have that $\Gamma f : \Gamma B \to \Gamma C$ is a morphism in $RL\mathcal{B}$, which means that

$$f \circ \gamma B = \gamma C \circ RLf$$

i.e.

$$\gamma := (\gamma B)_{B \in \mathcal{B}} \text{ is a natural transformation.}$$

By the foregoing
Conversely, let Γ be a functor such that

$$\Gamma : \mathcal{B} \to \mathcal{B}_{RL} \text{ such that } U \circ \Gamma = \text{Id}_\mathcal{B}.$$

Then, for every $B \in \mathcal{B}$, we have that

$$\Gamma B = (B, \gamma B) \text{ for some morphism } \gamma B : RLB \to B.$$

Since $\Gamma B \in \mathcal{B}_{RL}$ we must have that

$$\gamma B \circ \eta B = B \text{ and } \gamma B \circ RL\gamma B = \gamma B \circ R\epsilon L B.$$

Given a morphism $f : B \to C$, we have that $\Gamma f : \Gamma B \to \Gamma C$ is a morphism in \mathcal{RLB}, which means that

$$f \circ \gamma B = \gamma C \circ RLf$$

i.e.

$$\gamma := (\gamma B)_{B \in \mathcal{B}} \text{ is a natural transformation.}$$

By the foregoing

$$\gamma \circ \eta = \text{Id} \text{ and } \gamma \circ RL\gamma = \gamma \circ R\epsilon L.$$
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K: A \to RLB$ is an isomorphism of categories). Then L is h-separable $\iff R$ is a split natural epimorphism.

2) Assume that L is strictly comonadic (i.e. the co-comparison functor $K^\text{co}: B \to A LR$ is an isomorphism of categories). Then R is h-separable $\iff L$ is a split natural epimorphism.

REMARK Later we will use 1) of this Corollary to obtain that the tensor algebra functor $T: M \to \text{Alg}(M)$ is separable but not h-separable.

C. Menini (University of Ferrara)
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \to R_L \mathcal{B}$ is an isomorphism of categories). Then...
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \to R_L \mathcal{B}$ is an isomorphism of categories). Then

L is h-separable $\iff R$ is a split natural epimorphism.
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \to R_L \mathcal{B}$ is an isomorphism of categories). Then

L is h-separable $\iff R$ is a split natural epimorphism.

2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^\text{co} : \mathcal{B} \to \mathcal{A}^{LR}$ is an isomorphism of categories).
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \to \mathcal{R}_L \mathcal{B}$ is an isomorphism of categories). Then

$$L \text{ is h-separable } \iff R \text{ is a split natural epimorphism.}$$

2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{co} : \mathcal{B} \to \mathcal{A}^{LR}$ is an isomorphism of categories). Then
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \to R_L \mathcal{B}$ is an isomorphism of categories). Then

$$L \text{ is h-separable } \iff R \text{ is a split natural epimorphism.}$$

2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{co} : \mathcal{B} \to A^{LR}$ is an isomorphism of categories). Then

$$R \text{ is h-separable } \iff L \text{ is a split natural epimorphism.}$$
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \to RL\mathcal{B}$ is an isomorphism of categories). Then

$$L \text{ is h-separable } \iff R \text{ is a split natural epimorphism.}$$

2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^co : \mathcal{B} \to \mathcal{A}^LR$ is an isomorphism of categories). Then

$$R \text{ is h-separable } \iff L \text{ is a split natural epimorphism.}$$

REMARK

Later we will use 1) of this Corollary to obtain that the tensor algebra functor $T : M \to \text{Alg}(M)$ is separable but not h-separable.
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \rightarrow RL\mathcal{B}$ is an isomorphism of categories). Then

\[L \text{ is } h\text{-separable} \iff R \text{ is a split natural epimorphism.} \]

2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{co} : \mathcal{B} \rightarrow \mathcal{A}^{LR}$ is an isomorphism of categories). Then

\[R \text{ is } h\text{-separable} \iff L \text{ is a split natural epimorphism.} \]

REMARK

Later we will use 1) of this Corollary to obtain that the tensor algebra functor

\[T : \mathcal{M} \rightarrow \text{Alg}(\mathcal{M}) \]
COROLLARY

1) Assume that R is strictly monadic (i.e. the comparison functor $K : \mathcal{A} \to R_L \mathcal{B}$ is an isomorphism of categories). Then

L is h-separable \iff R is a split natural epimorphism.

2) Assume that L is strictly comonadic (i.e. the cocomparison functor $K^{co} : \mathcal{B} \to \mathcal{A}^{LR}$ is an isomorphism of categories). Then

R is h-separable \iff L is a split natural epimorphism.

REMARK
Later we will use 1) of this Corollary to obtain that the tensor algebra functor

$$T : \mathcal{M} \to \text{Alg}(\mathcal{M})$$

is separable but not h-separable.
We just prove 1), the proof of 2) being similar.

Since the comparison functor $K: A \to B$ is an isomorphism of categories and $U \circ K = R$ we get that R is a split natural epimorphism $\Leftrightarrow U$ is a split natural epimorphism.

By previous Proposition, U is a split natural epimorphism $\Leftrightarrow L$ is h-separable.
Proof
We just prove 1), the proof of 2) being similar.
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$K : \mathcal{A} \rightarrow \mathcal{B}_{RL}$$
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor

\[K : \mathcal{A} \to \mathcal{B}_{RL} \]

is an isomorphism of categories and
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor

\[K : \mathcal{A} \to \mathcal{B}_{RL} \]

is an isomorphism of categories and

\[U \circ K = R \]
Proof
We just prove 1), the proof of 2) being similar. Since the comparison functor

\[K : \mathcal{A} \to \mathcal{B}_{RL} \]

is an isomorphism of categories and

\[U \circ K = R \]

we get that
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor

$$K : \mathcal{A} \to \mathcal{B}_{RL}$$

is an isomorphism of categories and

$$U \circ K = R$$

we get that

R is a split natural epimorphism $\iff U = R \circ K^{-1}$ is a split natural epimorphism.
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor

\[K : \mathcal{A} \rightarrow \mathcal{B}_{RL} \]

is an isomorphism of categories and

\[U \circ K = R \]

we get that

\[R \text{ is a split natural epimorphism } \iff U = R \circ K^{-1} \text{ is a split natural epimorphism.} \]

By previous Proposition,
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor

\[K : \mathcal{A} \rightarrow \mathcal{B}_{RL} \]

is an isomorphism of categories and

\[U \circ K = R \]

we get that

\(R \) is a split natural epimorphism \(\iff U = R \circ K^{-1} \) is a split natural epimorphism.

By previous Proposition,

\[U \] is a split natural epimorphism \(\iff \) \(L \) is h-separable.
Proof
We just prove 1), the proof of 2) being similar.
Since the comparison functor
\[K : \mathcal{A} \to \mathcal{B}_{RL} \]
is an isomorphism of categories and
\[U \circ K = R \]
we get that

\(R \) is a split natural epimorphism \(\iff U = R \circ K^{-1} \) is a split natural epimorphism.

By previous Proposition,

\[U \] is a split natural epimorphism \(\iff L \) is h-separable.
Following [LMW, Section 4] we say that an augmentation for a monad
\((M, m : MM \to M, \eta : \text{Id} \to M)\) is a natural transformation
\[\gamma : M \to \text{Id} \]
Following [LMW, Section 4] we say that an **augmentation** for a monad
\((M, m : MM \to M, \eta : \text{Id} \to M)\) is a natural transformation
\[\gamma : M \to \text{Id} \]
such that

\[\gamma \circ \eta = \text{Id} \]
\[\gamma \circ m = \gamma \circ \Delta \circ \delta \]
Following [LMW, Section 4] we say that an **augmentation** for a monad $(M, m : MM \to M, \eta : \text{Id} \to M)$ is a natural transformation

$$\gamma : M \to \text{Id}$$

such that

$$\gamma \circ \eta = \text{Id} \text{ and } \gamma \gamma = \gamma \circ m.$$
Following [LMW, Section 4] we say that an **augmentation** for a monad \((M, m : MM \to M, \eta : \text{Id} \to M)\) is a natural transformation

\[\gamma : M \to \text{Id} \]

such that

\[\gamma \circ \eta = \text{Id} \text{ and } \gamma \gamma = \gamma \circ m. \]

Dually a **grouplike morphism** for a comonad \((C, \Delta : C \to CC, \varepsilon : C \to \text{Id})\) is a natural transformation

\[\delta : \text{Id} \to C \]
Following [LMW, Section 4] we say that an **augmentation** for a monad $(M, m : MM \to M, \eta : \text{Id} \to M)$ is a natural transformation

$$\gamma : M \to \text{Id}$$

such that

$$\gamma \circ \eta = \text{Id} \quad \text{and} \quad \gamma \gamma = \gamma \circ m.$$

Dually a **grouplike morphism** for a comonad $(C, \Delta : C \to CC, \varepsilon : C \to \text{Id})$ is a natural transformation

$$\delta : \text{Id} \to C$$

such that
Following [LMW, Section 4] we say that an **augmentation** for a monad $(M, m : MM \to M, \eta : \text{Id} \to M)$ is a natural transformation

$$\gamma : M \to \text{Id}$$

such that

$$\gamma \circ \eta = \text{Id} \text{ and } \gamma \gamma = \gamma \circ m.$$

Dually a **grouplike morphism** for a comonad $(C, \Delta : C \to CC, \varepsilon : C \to \text{Id})$ is a natural transformation

$$\delta : \text{Id} \to C$$

such that

$$\varepsilon \circ \delta = \text{Id} \text{ and } \delta \delta = \Delta \circ \delta.$$
Following [LMW, Section 4] we say that an augmentation for a monad $(M, m : MM \to M, \eta : \text{Id} \to M)$ is a natural transformation
\[
\gamma : M \to \text{Id}
\]
such that
\[
\gamma \circ \eta = \text{Id} \text{ and } \gamma \gamma = \gamma \circ m.
\]
Dually a grouplike morphism for a comonad $(C, \Delta : C \to CC, \varepsilon : C \to \text{Id})$ is a natural transformation
\[
\delta : \text{Id} \to C
\]
such that
\[
\varepsilon \circ \delta = \text{Id} \text{ and } \delta \delta = \Delta \circ \delta.
\]

Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.
Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.

h-version of RAFAEL THEOREM
Using these Definitions, \(h \)-version of RAFAEL THEOREM can be rephrased in the following form.

\(h \)-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A} \).
Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.

h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) the monad \((RL, R\varepsilon L, \eta)\) has an augmentation.
Using these Definitions, h-version of RAFAEL THEOREM can be rephrased in the following form.

h-version of RAFAEL THEOREM

Let \((L, R, \eta, \varepsilon)\) be an adjunction with \(L : \mathcal{B} \to \mathcal{A}\).

a) \(L\) is h-separable \(\iff\) the monad \((RL, R\varepsilon L, \eta)\) has an augmentation.

b) \(R\) is h-separable \(\iff\) the comonad \((LR, L\eta R, \varepsilon)\) has a grouplike morphism.
Consider an S-coring C
Consider an S-coring C and its set of invariant elements.

Let C be the category of left C-comodules.

In [Br, Theorem 3.3], Brzeziński proved that the induction functor $R := C \otimes S(-) : S\text{-Mod} \to C\text{M}$ is separable \iff there is an invariant element $e \in CS$ such that $\varepsilon C(e) = 1$.

We prove that the induction functor $R := C \otimes S(-) : S\text{-Mod} \to C\text{M}$ is h-separable \iff C has an invariant group-like element.

Consider an S-coring C and its set of invariant elements

$$C^S = \{ c \in C \mid sc = cs, \text{ for every } s \in S \}.$$
Consider an S-coring C
and its set of invariant elements

$$CS = \{ c \in C \mid sc = cs, \text{ for every } s \in S \}.$$

Let CM be the category of left C-comodules.
Consider an S-co-ring C and its set of invariant elements

$$C^S = \{ c \in C \mid sc = cs, \text{ for every } s \in S \}. $$

Let CM be the category of left C-comodules.

In [Br, Theorem 3.3], Brzeziński proved that
Consider an S-coring C
and its set of invariant elements

\[C^S = \{ c \in C \mid sc = cs, \text{ for every } s \in S \}. \]

Let CM be the category of left C-comodules.

In [Br, Theorem 3.3], Brzeziński proved that

the induction functor $R := C \otimes_S (_): S\text{-Mod} \to CM$ is separable \iff

\iff there is an invariant element $e \in C^S$ such that $\varepsilon_C(e) = 1$.
Consider an \(S \)-coring \(C \)
and its set of invariant elements

\[C^S = \{ c \in C \mid sc = cs, \text{ for every } s \in S \}. \]

Let \(C_\text{M} \) be the category of left \(C \)-comodules.
In \([Br, \text{Theorem 3.3}]\), Brzeziński proved that

\[
\text{the induction functor } R := C \otimes_S (-) : S\text{-Mod} \to C_\text{M} \text{ is separable} \iff \exists \text{ an invariant element } e \in C^S \text{ such that } \varepsilon_C(e) = 1.
\]

We prove that
Consider an S-coring C and its set of invariant elements

$$C^S = \{ c \in C \mid sc = cs, \text{ for every } s \in S \}.$$

Let $\mathcal{C}M$ be the category of left C-comodules.

In [Br, Theorem 3.3], Brzeziński proved that

the induction functor $R := C \otimes_S (-) : S\text{-Mod} \to \mathcal{C}M$ is separable \iff

\iff there is an invariant element $e \in C^S$ such that $\varepsilon_C(e) = 1$.

We prove that

the induction functor $R := C \otimes_S (-) : S\text{-Mod} \to \mathcal{C}M$ is h-separable \iff

\iff C has an invariant group-like element.
Consider an S-coring C and its set of invariant elements

$$\mathcal{C}^S = \{ c \in C \mid sc = cs, \text{ for every } s \in S \}.$$

Let \mathcal{CM} be the category of left C-comodules.

In [Br, Theorem 3.3], Brzeziński proved that

the induction functor $R := C \otimes_S (-) : S\text{-Mod} \to \mathcal{CM}$ is separable \iff

\iff there is an invariant element $e \in \mathcal{C}^S$ such that $\varepsilon_C(e) = 1$.

We prove that

the induction functor $R := C \otimes_S (-) : S\text{-Mod} \to \mathcal{CM}$ is h-separable \iff

\iff C has an invariant group-like element.

REMARK

Let C be an S-co-ring.
We recall that, by [Br, Lemma 5.1], if S is a left C-comodule via $\rho_S: S \to C \otimes SS$
then $g = \rho_S(1_S)$ is a group-like element of C.
Conversely if g is a group-like element of C, then S is a left C-comodule via $\rho_S: S \to C \otimes SS$
$s \mapsto (s \cdot g) \otimes 1_S$.
Moreover, if g is a group-like element of C, then by [Br, page 404], g is an invariant element of C $\iff S = S^{coC} = \{ s \in S \mid sg = gs \}$.
REMARK
Let \mathcal{C} be an an S-coring.
REMARK

Let \mathcal{C} be an \mathcal{S}-coring.

We recall that, by [Br, Lemma 5.1], if S is a left \mathcal{C}-comodule via

$$\rho_S: S \rightarrow \mathcal{C} \otimes S,$$

then $g = \rho_S(1_S)$ is a group-like element of \mathcal{C}.

Conversely if g is a group-like element of \mathcal{C}, then S is a left \mathcal{C}-comodule via

$$s \mapsto (s \cdot g) \otimes 1_S.$$

Moreover, if g is a group-like element of \mathcal{C}, then by [Br, page 404], g is an invariant element of \mathcal{C} if and only if $S = S^C = \{s \in S | sg = gs\}$.
REMARK
Let \(\mathcal{C} \) be an \(\mathcal{S} \)-coring.
We recall that, by \([\text{Br}, \text{Lemma 5.1}]\), if \(S \) is a left \(\mathcal{C} \)-comodule via

\[
\rho_S : S \to \mathcal{C} \otimes_S S
\]

Conversely if \(g \) is a group-like element of \(\mathcal{C} \), then \(S \) is a left \(\mathcal{C} \)-comodule via

\[
s \mapsto (s \cdot g) \otimes 1_S
\]

Moreover, if \(g \) is a group-like element of \(\mathcal{C} \), then by \([\text{Br}, \text{page 404}]\), \(g \) is an invariant element of \(\mathcal{C} \iff S = S_{\co \mathcal{C}} =: \{ s \in S | sg = gs \} \).
REMARK

Let \mathcal{C} be an S-coring.

We recall that, by [Br, Lemma 5.1], if S is a left \mathcal{C}-comodule via

$$\rho_S : S \rightarrow \mathcal{C} \otimes_S S$$

then
REMARK
Let \mathcal{C} be an an S-coring.
We recall that, by [Br, Lemma 5.1], if S is a left \mathcal{C}-comodule via

$$\rho_S : S \to \mathcal{C} \otimes_S S$$

then

$$g = \rho_S (1_S)$$

is a group-like element of \mathcal{C}.
REMARK
Let \mathcal{C} be an an S-coring.
We recall that, by [Br, Lemma 5.1], if S is a left \mathcal{C}-comodule via

$$\rho_S : S \to \mathcal{C} \otimes_S S$$

then

$$g = \rho_S (1_S)$$

is a group-like element of \mathcal{C}.
Conversely if g is a group-like element of \mathcal{C},
REMARK

Let C be an an S-coring.
We recall that, by [Br, Lemma 5.1], if S is a left C-comodule via

$$\rho_S : S \to C \otimes_S S$$

then

$$g = \rho_S(1_S)$$

is a group-like element of C.

Conversely if g is a group-like element of C, then S is a left C-comodule via
REMARK
Let \mathcal{C} be an an S-coring.
We recall that, by [Br, Lemma 5.1], if S is a left \mathcal{C}-comodule via

$$\rho_S : S \rightarrow \mathcal{C} \otimes_S S$$

then

$$g = \rho_S (1_S)$$

is a group-like element of \mathcal{C}.

Conversely if g is a group-like element of \mathcal{C}, then S is a left \mathcal{C}-comodule via

$$\rho_S : S \rightarrow \mathcal{C} \otimes_S S$$

$$s \mapsto (s \cdot g) \otimes_S 1_S.$$
REMARK

Let \(\mathcal{C} \) be an an \(S \)-coring.

We recall that, by [Br, Lemma 5.1], if \(S \) is a left \(\mathcal{C} \)-comodule via

\[
\rho_S : S \rightarrow \mathcal{C} \otimes S S
\]

then

\[
g = \rho_S (1_S) \text{ is a group-like element of } \mathcal{C}.
\]

Conversely if \(g \) is a group-like element of \(\mathcal{C} \), then \(S \) is a left \(\mathcal{C} \)-comodule via

\[
\rho_S : S \rightarrow \mathcal{C} \otimes S S
\]

\[
s \mapsto (s \cdot g) \otimes S 1_S.
\]

Moreover, if \(g \) is a group-like element of \(\mathcal{C} \), then by [Br, page 404],
REMARK

Let C be an S-coring.

We recall that, by [Br, Lemma 5.1], if S is a left C-comodule via

$$\rho_S : S \to C \otimes_S S$$

then

$$g = \rho_S (1_S)$$

is a group-like element of C.

Conversely if g is a group-like element of C, then S is a left C-comodule via

$$\rho_S : S \to C \otimes_S S$$

$$s \mapsto (s \cdot g) \otimes_s 1_S.$$

Moreover, if g is a group-like element of C, then by [Br, page 404],

g is an invariant element of $S \Leftrightarrow S = S^{coC} = \{ s \in S \mid sg = gs \}$.
PROPOSITION

Let \(\varphi : R \to S \) be a ring homomorphism. Then the induction function \(\varphi^* : S \otimes_R (-) : R\text{-mod} \to S\text{-mod} \) is h-separable if and only if there is a ring homomorphism \(E : S \to R \) such that \(E \circ \varphi = \text{Id} \).
PROPOSITION

Let $\varphi : R \to S$ be a ring homomorphism. Then the induction functor $\varphi^* : S \otimes_R (-) : R\text{-Mod} \to S\text{-Mod}$ is h-separable if and only if there is a ring homomorphism $E : S \to R$ such that $E \circ \varphi = \text{Id}$.
PROPOSITION

Let $\varphi : R \to S$ be a ring homomorphism. Then the induction functor

$$\varphi^* := S \otimes_R (-) : \text{R-Mod} \to \text{S-Mod}$$

is S-separable if and only if there is a ring homomorphism $E : S \to R$ such that $E \circ \varphi = \text{Id}$.
PROPOSITION
Let $\varphi : R \to S$ be a ring homomorphism. Then the induction functor

$$\varphi^* := S \otimes_R (-) : R\text{-Mod} \to S\text{-Mod}$$

is h-separable if and only if there is a ring homomorphism
PROPOSITION

Let \(\varphi : R \rightarrow S \) be a ring homomorphism. Then the induction functor

\[\varphi^* := S \otimes_R (-) : R\text{-Mod} \rightarrow S\text{-Mod} \]

is h-separable if and only if there is a ring homomorphism

\[E : S \rightarrow R \]

such that \(E \circ \varphi = \text{Id} \).
PROPOSITION
Let $\varphi : R \to S$ be a ring homomorphism. Then the induction functor

$$\varphi^* := S \otimes_R (-) : R\text{-Mod} \to S\text{-Mod}$$

is h-separable if and only if there is a ring homomorphism

$$E : S \to R$$

such that $E \circ \varphi = \text{Id}$.
Let $\varphi : R \to S$ be a ring homomorphism.
Let $\varphi : R \to S$ be a ring homomorphism.
Recall that S/R is said to be separable if the multiplication map

$$
\mu : S \otimes_R S \to S \quad s \otimes s' \mapsto ss'
$$

is a split S-bimodule surjective homomorphism. Let $\varphi^* : S\text{-Mod} \to R\text{-Mod}$ be the restriction of scalar function. Then it is well-known that $\varphi^* : S\text{-Mod} \to R\text{-Mod}$ is separable (see [NVV, Proposition 1.3]) if and only if S/R is separable and S/R has a separability idempotent, where an element $\sum_i a_i \otimes_R b_i \in S \otimes_R S$ is a separability idempotent if $\sum_i a_i b_i = 1$.
Let $\varphi : R \to S$ be a ring homomorphism.
Recall that S/R is said to be \textit{separable} if the multiplication map
\[
\mu : S \otimes_R S \to S \\
s \otimes_R s' \mapsto ss'
\]

Let $\varphi^* : S\text{-Mod} \to R\text{-Mod}$ be the restriction of scalar functor.
Then it is well-known that $\varphi^* : S\text{-Mod} \to R\text{-Mod}$ is separable (see [NVV, Proposition 1.3]) \iff
S/R is separable
\iff S/R has a separability idempotent where an element $\sum_i a_i \otimes_R b_i \in S \otimes_R S$ is a separability idempotent if
$\sum_i a_i b_i = 1$,
$\sum_i s a_i \otimes_R b_i = \sum_i a_i \otimes_R b_i$ for every $s \in S$.

[NVV] C. Nastasescu, M. Van den Bergh, F. Van Oystaeyen,
\textit{Separable functors applied to graded rings}.

C. Menini (University of Ferrara) May 10, 2019 22 / 43
Let $\varphi : R \to S$ be a ring homomorphism. Recall that S/R is said to be
\textbf{separable} if the multiplication map

$$\mu : S \otimes_R S \to S$$
$$s \otimes_R s' \mapsto ss'$$

is a split S-bimodule surjective homomorphism. Let
Let \(\varphi : R \to S \) be a ring homomorphism. Recall that \(S/R \) is said to be separable if the multiplication map

\[
\mu : \quad S \otimes_R S \to S \\
\quad s \otimes_R s' \mapsto ss'
\]
is a split \(S \)-bimodule surjective homomorphism. Let

\[
\varphi_* : S\text{-Mod} \to R\text{-Mod}
\]
be the restriction of scalar functor.
Let $\varphi : R \to S$ be a ring homomorphism. Recall that S/R is said to be **separable** if the multiplication map

$$
\mu : S \otimes_R S \to S \\
\quad s \otimes_R s' \mapsto ss'
$$

is a split S-bimodule surjective homomorphism. Let

$$
\varphi_* : S\text{-Mod} \to R\text{-Mod}
$$

be the restriction of scalar functor. Then it is well-known that
Let $\phi : R \to S$ be a ring homomorphism. Recall that S/R is said to be \textbf{separable} if the multiplication map
\[
\mu : \ S \otimes_R S \to S \\
\ s \otimes_R s' \mapsto ss'
\]
is a split S-bimodule surjective homomorphism. Let
\[
\phi^* : S\text{-Mod} \to R\text{-Mod}
\]
be the restriction of scalar functor. Then it is well-known that
$\phi^* : S\text{-Mod} \to R\text{-Mod}$ is separable \textit{(see [NVV, Proposition 1.3])} $\iff S/R$ is separable.
Let $\varphi : R \to S$ be a ring homomorphism. Recalling that S/R is said to be separable if the multiplication map

$$\mu : S \otimes_R S \to S$$

$$s \otimes_R s' \mapsto ss'$$

is a split S-bimodule surjective homomorphism. Let

$$\varphi_* : S\text{-Mod} \to R\text{-Mod}$$

be the restriction of scalar functor. Then it is well-known that

$$\varphi_* : S\text{-Mod} \to R\text{-Mod}$$

is separable (see [NVV, Proposition 1.3]) if and only if S/R is separable.
Let $\varphi : R \to S$ be a ring homomorphism.

Recall that S/R is said to be \textit{separable} if the multiplication map

\[
\mu : \quad S \otimes_R S \to S \\
\quad s \otimes_R s' \mapsto ss'
\]

is a split S-bimodule surjective homomorphism. Let

\[
\varphi_* : S\text{-Mod} \to R\text{-Mod} \quad \text{be the restriction of scalar functor.}
\]

Then it is well-known that

$\varphi_* : S\text{-Mod} \to R\text{-Mod}$ is separable \iff S/R is separable

and

S/R is separable \iff S/R has a separability idempotent.
Let $\varphi : R \to S$ be a ring homomorphism. Recall that S/R is said to be \textbf{separable} if the multiplication map

\[\mu : S \otimes_R S \to S \]
\[s \otimes_R s' \mapsto ss' \]

is a split S-bimodule surjective homomorphism. Let

\[\varphi_* : S\text{-Mod} \to R\text{-Mod} \]

be the restriction of scalar functor. Then it is well-known that

\[\varphi_* : S\text{-Mod} \to R\text{-Mod} \text{ is separable } \iff S/R \text{ is separable} \]

and

\[S/R \text{ is separable } \iff S/R \text{ has a separability idempotent} \]

where an element $\sum_i a_i \otimes_R b_i \in S \otimes_R S$ is a \textbf{separability idempotent} if

\[\sum_i a_i \otimes_R b_i = 1 \]
Let $\varphi : R \to S$ be a ring homomorphism. Recall that S/R is said to be \textit{separable} if the multiplication map
\[
\mu : \quad S \otimes_R S \to S
\]
\[
s \otimes_R s' \mapsto ss'
\]
is a split S-bimodule surjective homomorphism. Let
\[
\varphi_* : S\text{-Mod} \to R\text{-Mod}
\]
be the restriction of scalar functor. Then it is well-known that
\[
\varphi_* : S\text{-Mod} \to R\text{-Mod} \text{ is separable (see [NVV, Proposition 1.3])} \iff S/R \text{ is separable}
\]
and
\[
S/R \text{ is separable} \iff S/R \text{ has a separability idempotent}
\]
where an element $\sum_i a_i \otimes_R b_i \in S \otimes_R S$ is a \textit{separability idempotent} if
\[
\sum_i a_i b_i = 1, \quad \sum_i sa_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s \quad \text{for every } s \in S.
\]
Let $\varphi : R \to S$ be a ring homomorphism. Recall that S/R is said to be separable if the multiplication map
\[
\mu : S \otimes_R S \to S \\
\quad s \otimes_R s' \mapsto ss'
\]
is a split S-bimodule surjective homomorphism. Let
\[
\varphi_* : S\text{-Mod} \to R\text{-Mod}
\]
be the restriction of scalar functor. Then it is well-known that
\[
\varphi_* : S\text{-Mod} \to R\text{-Mod} \text{ is separable } \iff S/R \text{ is separable}
\]
and
\[
S/R \text{ is separable } \iff S/R \text{ has a separability idempotent}
\]
where an element $\sum_i a_i \otimes_R b_i \in S \otimes_R S$ is a separability idempotent if
\[
\sum_i a_i b_i = 1, \quad \sum_i s a_i \otimes_R b_i = \sum_i a_i \otimes_R b_is \quad \text{for every } s \in S.
\]

We are so lead to the following definitions
We are so lead to the following definitions

DEFINITIONS

Let $\phi: \mathbb{R} \to \mathbb{S}$ be a ring homomorphism.

1) \mathbb{S}/\mathbb{R} is h-separable if the functor $\phi^*: \mathbb{S}\text{-Mod} \to \mathbb{R}\text{-Mod}$ is h-separable.

2) A heavy separability idempotent (short) of \mathbb{S}/\mathbb{R} is an element $\sum_i a_i \otimes_R b_i \in \mathbb{S} \otimes_R \mathbb{S}$ such that $\sum_i a_i \otimes_R b_i$ is a separability idempotent, i.e.

$$\sum_i a_i b_i = 1, \quad \sum_i s a_i \otimes_R b_i = \sum_i a_i \otimes_R b_i$$

for every $s \in \mathbb{S}$, which moreover fulfills

$$\sum_i j a_i \otimes_R b_i a_j \otimes_R b_j = \sum_i a_i \otimes_R 1_S \otimes_R b_i.$$

We are so lead to the following definitions

DEFINITIONS

Let \(\varphi : R \to S \) be a ring homomorphism.
We are so lead to the following definitions

DEFINITIONS

Let \(\varphi : R \to S \) be a ring homomorphism.

1) \(S/R \) is **h-separable** if the functor \(\varphi_* : S\text{-Mod} \to R\text{-Mod} \) is h-separable.
We are so lead to the following definitions

DEFINITIONS

Let $\varphi : R \to S$ be a ring homomorphism.

1) S/R is **h-separable** if the functor $\varphi_* : S\text{-Mod} \to R\text{-Mod}$ is h-separable.

2) A **heavy separability idempotent** (h-separability idempotent for short) of S/R is an element
We are so lead to the following definitions

DEFINITIONS

Let \(\varphi : R \to S \) be a ring homomorphism.

1) \(S/R \) is **h-separable** if the functor \(\varphi_* : S\text{-Mod} \to R\text{-Mod} \) is h-separable.

2) A **heavy separability idempotent** (h-separability idempotent for short) of \(S/R \) is an element

\[
\sum_i a_i \otimes_R b_i \in S \otimes_R S
\]
We are so lead to the following definitions

DEFINITIONS

Let \(\varphi : R \to S \) be a ring homomorphism.
1) \(S/R \) is **h-separable** if the functor \(\varphi_* : S\text{-Mod} \to R\text{-Mod} \) is h-separable.
2) A **heavy separability idempotent** (h-separability idempotent for short) of \(S/R \) is an element

\[
\sum_i a_i \otimes_R b_i \in S \otimes_R S
\]

such that \(\sum_i a_i \otimes_R b_i \) is a separability idempotent, i.e.
We are so lead to the following definitions

DEFINITIONS

Let $\varphi : R \to S$ be a ring homomorphism.

1) S/R is **h-separable** if the functor $\varphi_* : S\text{-Mod} \to R\text{-Mod}$ is h-separable.

2) A **heavy separability idempotent** (h-separability idempotent for short) of S/R is an element

$$\sum_i a_i \otimes_R b_i \in S \otimes_R S$$

such that $\sum_i a_i \otimes_R b_i$ is a separability idempotent, i.e.

$$\sum_i a_i b_i = 1, \quad \sum_i sa_i \otimes_R b_i = \sum_i a_i \otimes_R b_is \quad \text{for every } s \in S,$$
We are so lead to the following definitions

DEFINITIONS

Let $\varphi : R \to S$ be a ring homomorphism.

1) S/R is **h-separable** if the functor $\varphi_* : S\text{-Mod} \to R\text{-Mod}$ is h-separable.

2) A **heavy separability idempotent** (h-separability idempotent for short) of S/R is an element

$$\sum_i a_i \otimes_R b_i \in S \otimes_R S$$

such that $\sum_i a_i \otimes_R b_i$ is a separability idempotent, i.e.

$$\sum_i a_i b_i = 1, \quad \sum_i s a_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s \quad \text{for every } s \in S,$$

which moreover fulfills
We are so lead to the following definitions

DEFINITIONS

Let $\varphi : R \rightarrow S$ be a ring homomorphism.

1) S/R is **h-separable** if the functor $\varphi_* : S\text{-Mod} \rightarrow R\text{-Mod}$ is h-separable.

2) A **heavy separability idempotent** (h-separability idempotent for short) of S/R is an element

$$\sum_i a_i \otimes_R b_i \in S \otimes_R S$$

such that $\sum_i a_i \otimes_R b_i$ is a separability idempotent, i.e.

$$\sum_i a_i b_i = 1, \quad \sum_i s a_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s \quad \text{for every } s \in S,$$

which moreover fulfills

$$\sum_{i,j} a_i \otimes_R b_i a_j \otimes_R b_j = \sum_i a_i \otimes_R 1_S \otimes_R b_i.$$
We prove

Let $\varphi : R \to S$ be a ring homomorphism. Then $C := S \otimes_R S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$\Delta_C : S \otimes_R S \to S \otimes_R S \otimes_R S \otimes_R S \ni x \otimes y \mapsto x \otimes R_1 S \otimes S_1 R \otimes y$$

and the counit is $\epsilon_C : S \otimes_R S \to S \otimes_R S \ni x \otimes y \mapsto xy$.

Note that for an element $e := \sum a_i \otimes R b_i \in S \otimes_R S$ we have e is a h-separability idempotent $\iff e$ is a group-like element in the Sweedler's coring $C := S \otimes_R S$ such that $se = es$ for every $s \in S$ i.e. which is an invariant.

C. Menini (University of Ferrara)
We prove

PROPOSITION

Let \(\phi : R \to S \) be a ring homomorphism. Then

\[C := S \otimes_R S \]

is an \(S \)-co ring, called the Sweedler co ring, where the coproduct is

\[\Delta_C : S \otimes_R S \to S \otimes_R S \otimes_R S \]

and the counit is

\[\varepsilon_C : S \otimes_R S \to S \times S \]

Note that for an element

\[e := \sum_i a_i \otimes_R b_i \in S \otimes_R S \]

we have

\[e \text{ is a } h\text{-separability idempotent } \iff \]

\[e \text{ is a group-like element in the } \]

\[\text{Sweedler's co ring } C := S \otimes_R S \text{ such that } \]

\[se = es \text{ for every } s \in S \]

i.e. which is an invariant.
We prove

PROPOSITION

S/R is h-separable $\iff S/R$ has a h-separability idempotent.
We prove

PROPOSITION

S/R is h-separable \iff S/R has a h-separability idempotent.

Let $\varphi : R \to S$ be a ring homomorphism.
We prove

PROPOSITION

S/R is h-separable \iff S/R has a h-separability idempotent.

Let $\varphi : R \rightarrow S$ be a ring homomorphism. Then $C := S \otimes_R S$ is an S-coring, called the Sweedler coring, where the coproduct is
We prove

PROPOSITION

\(S/R \) is h-separable \(\iff \) \(S/R \) has a h-separability idempotent.

Let \(\varphi : R \to S \) be a ring homomorphism. Then \(\mathcal{C} := S \otimes_R S \) is an \(S \)-coring, called the Sweedler coring, where the coproduct is

\[
\Delta \mathcal{C} : \quad S \otimes_R S \to S \otimes_R S \otimes_S S \otimes_R S
\]

\[
x \otimes_R y \to x \otimes_R 1_S \otimes_S 1_S \otimes_R y
\]
We prove

PROPOSITION

S/R is h-separable $\iff S/R$ has a h-separability idempotent.

Let $\varphi : R \to S$ be a ring homomorphism.

Then $\mathcal{C} := S \otimes_R S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$\Delta_{\mathcal{C}} : S \otimes_R S \to S \otimes_R S \otimes_S S \otimes_R S$$

\[x \otimes_R y \mapsto x \otimes_R 1 \otimes_S 1 \otimes_R y \]

and the counit is
We prove

PROPOSITION

S/R is h-separable \iff S/R has a h-separability idempotent.

Let $\varphi : R \to S$ be a ring homomorphism.
Then $\mathcal{C} := S \otimes_R S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$\Delta_{\mathcal{C}} : S \otimes_R S \to S \otimes_R S \otimes_S S \otimes_R S$$

$$x \otimes_R y \mapsto x \otimes_R 1_S \otimes_S 1_S \otimes_R y$$

and the counit is

$$\varepsilon_{\mathcal{C}} : S \otimes_R S \to S$$

$$x \otimes_R y \mapsto xy.$$
We prove

PROPOSITION

S/R is h-separable $\iff S/R$ has a h-separability idempotent.

Let $\varphi : R \to S$ be a ring homomorphism.
Then $\mathcal{C} := S \otimes_R S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$\Delta_{\mathcal{C}} : S \otimes_R S \to S \otimes_R S \otimes_S S \otimes_R S$$

$$x \otimes_R y \mapsto x \otimes_R 1_S \otimes_S 1_S \otimes_R y$$

and the counit is

$$\varepsilon_{\mathcal{C}} : S \otimes_R S \to S$$

$$x \otimes_R y \mapsto xy$$

Note that for an element

$$e := \sum_i a_i \otimes_R b_i \in S \otimes_R S$$
We prove

PROPOSITION

S/R is h-separable \iff S/R has a h-separability idempotent.

Let $\varphi : R \to S$ be a ring homomorphism.
Then $C := S \otimes_R S$ is an S-coring, called the Sweedler coring, where the coproduct is

$$\Delta_C : S \otimes_R S \to S \otimes_R S \otimes_S S \otimes_R S$$

$$x \otimes_R y \mapsto x \otimes_R 1_S \otimes_S 1_S \otimes_R y$$

and the counit is

$$\varepsilon_C : S \otimes_R S \to S$$

$$x \otimes_R y \mapsto xy.$$

Note that for an element

$$e := \sum_i a_i \otimes_R b_i \in S \otimes_R S$$

we have
We prove

PROPOSITION

\(S/R \) is h-separable \(\iff \) \(S/R \) has a h-separability idempotent.

Let \(\varphi : R \to S \) be a ring homomorphism. Then \(\mathcal{C} := S \otimes_R S \) is an \(S \)-coring, called the Sweedler coring, where the coproduct is

\[
\Delta_{\mathcal{C}} : S \otimes_R S \to S \otimes_R S \otimes_S S \otimes_R S
\]

\[
x \otimes_R y \mapsto x \otimes_R 1_S \otimes_S 1_S \otimes_R y
\]

and the counit is

\[
\varepsilon_{\mathcal{C}} : S \otimes_R S \to S
\]

\[
x \otimes_R y \mapsto xy
\]

Note that for an element

\[
e := \sum_i a_i \otimes_R b_i \in S \otimes_R S
\]

we have

\(e \) is a h-separability idempotent \(\iff \) \(e \) is a group-like element in the Sweedler's coring \(\mathcal{C} := S \otimes_R S \) such that \(se = es \) for every \(s \in S \).
Note that $1_S \otimes_R 1_S$ is always a grouplike element in \mathcal{C} but it is not invariant in general.
Note that $1_S \otimes_R 1_S$ is always a grouplike element in \mathcal{C} but it is not invariant in general.

Before we obtained for any S-coring \mathcal{C}
Note that $1_S \otimes_R 1_S$ is always a grouplike element in C but it is not invariant in general.

Before we obtained for any S-coring C

the induction functor $R := C \otimes_S (_): S\text{-Mod} \to C\mathcal{M}$ is h-separable \iff

$\iff C$ has an invariant group-like element.
Note that $1_S \otimes_R 1_S$ is always a grouplike element in \mathcal{C} but it is not invariant in general.

Before we obtained for any S-coring \mathcal{C}

the induction functor $R := \mathcal{C} \otimes_S (-) : S\text{-Mod} \to \mathcal{C} \mathcal{M}$ is h-separable \iff

$\iff \mathcal{C}$ has an invariant group-like element.

Thus we obtain
Note that $1_S \otimes_R 1_S$ is always a grouplike element in \mathcal{C} but it is not invariant in general.

Before we obtained for any S-coring \mathcal{C}

the induction functor $R := \mathcal{C} \otimes_S (-) : S\text{-Mod} \to \mathcal{C} \mathcal{M}$ is h-separable \iff

$\iff \mathcal{C}$ has an invariant group-like element.

Thus we obtain

S/R is h-separable i.e. the functor $\varphi_* : S\text{-Mod} \to R\text{-Mod}$ is h-separable \iff

\iff the Sweedler’s coring $\mathcal{C} := S \otimes_R S$ has an invariant group like element \iff

\iff the induction functor $R := \mathcal{C} \otimes_S (-) : S\text{-Mod} \to \mathcal{C} \mathcal{M}$ is h-separable
Proposition

Let $\phi: R \to S$ be a ring homomorphism. The following are equivalent.

1. The map ϕ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. The multiplication $m: S \otimes_R R \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $s \otimes_R 1_S = 1_S \otimes_R s$ for every $s \in S$;
5. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R.

If these equivalent conditions hold true then S/R is h-separable.
Proposition
Let $\varphi : R \to S$ be a ring homomorphism.
Proposition

Let \(\varphi : R \to S \) be a ring homomorphism. The following are equivalent.

1. The map \(\varphi \) is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. The multiplication \(m : S \otimes_R S \to S \) is invertible;
3. \(1_S \otimes_R 1_S \) is a separability idempotent for \(S/R \);
4. \(s \otimes_R 1_S = 1_S \otimes_R s \) for every \(s \in S \);
5. \(1_S \otimes_R 1_S \) is a h-separability idempotent for \(S/R \).

If these equivalent conditions hold true then \(S/R \) is h-separable.
Proposition
Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);

Proposition
Let $\varphi : R \to S$ be a ring homomorphism.
The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
Proposition
Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;

If these equivalent conditions hold true then S/R is h-separable.
Proposition
Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $s \otimes_R 1_S = 1_S \otimes_R s$ for every $s \in S$;
Proposition

Let $\varphi : R \to S$ be a ring homomorphism.

The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $s \otimes_R 1_S = 1_S \otimes_R s$ for every $s \in S$;
5. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R.

If these equivalent conditions hold true then S/R is h-separable.
Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $s \otimes_R 1_S = 1_S \otimes_R s$ for every $s \in S$;
5. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R.

If these equivalent conditions hold true then S/R is h-separable.
Proof
Proof

(1) ⇔ (2) follows by [St, Proposition XI.1.2 page 225].
Proof

(1) ⇔ (2) follows by [St, Proposition XI.1.2 page 225].

(1) ⇔ (3) follows by [St, Proposition XI.1.1 page 226].
Proof

(1) \iff (2) follows by [St, Proposition XI.1.2 page 225].

(1) \iff (3) follows by [St, Proposition XI.1.1 page 226].

(3) ⇔ (4) ⇔ (5) are trivial.
(3) ⇔ (4) ⇔ (5) are trivial.

(2) ⇒ (4) If m is invertible, from
(3) \Leftrightarrow (4) \Leftrightarrow (5) are trivial.

(2) \Rightarrow (4) If m is invertible, from

$$m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)$$
(3) ⇔ (4) ⇔ (5) are trivial.

(2) ⇒ (4) If \(m \) is invertible, from

\[
m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)
\]

and the injectivity of \(m \) we deduce (4).
(3) $\iff (4) \iff (5)$ are trivial.

(2) $\Rightarrow (4)$ If m is invertible, from

$$m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)$$

and the injectivity of m we deduce (4).

(4) $\Rightarrow (2)$ Let

$$h : S \to S \otimes_R S$$

$$s \mapsto s \otimes_R 1_S.$$
(3) ⇔ (4) ⇔ (5) are trivial.

(2) ⇒ (4) If m is invertible, from

$$m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)$$

and the injectivity of m we deduce (4).

(4) ⇒ (2) Let

$$h: S \to S \otimes_R S$$

$$s \mapsto s \otimes_R 1_S.$$

Then

$$m \circ h = \text{Id}$$

and
(3) \iff (4) \iff (5) are trivial.

(2) \Rightarrow (4) If m is invertible, from

$$m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)$$

and the injectivity of m we deduce (4).

(4) \Rightarrow (2) Let

$$h: S \to S \otimes_R S$$

$$s \mapsto s \otimes_R 1_S.$$

Then

$$m \circ h = \text{Id}$$

and

$$(h \circ m)(s' \otimes_R s) = s's \otimes_R 1_S =$$

$$= (m \otimes_R S)(s' \otimes_R s \otimes_R 1_S) =$$

$$= (m \otimes_R S)(s' \otimes_R 1_S \otimes_R s) = s' \otimes_R s$$

and hence $h \circ m = \text{Id}$. Hence m is invertible.

By a previous Proposition, (5) implies that S/R is h-separable.
(3) \Leftrightarrow (4) \Leftrightarrow (5) are trivial.

(2) \Rightarrow (4) If m is invertible, from

$$m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)$$

and the injectivity of m we deduce (4).

(4) \Rightarrow (2) Let

$$h: S \rightarrow S \otimes_R S$$

$$s \mapsto s \otimes_R 1_S.$$

Then

$$m \circ h = \text{Id}$$

and

$$(h \circ m)(s' \otimes_R s) = s's \otimes_R 1_S =$$

$$= (m \otimes_R S)(s' \otimes_R s \otimes_R 1_S) =$$

$$= (m \otimes_R S)(s' \otimes_R 1_S \otimes_R s) = s' \otimes_R s.$$
(3) \iff (4) \iff (5) are trivial.

(2) \Rightarrow (4) If m is invertible, from

$$m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)$$

and the injectivity of m we deduce (4).

(4) \Rightarrow (2) Let

$$h : S \to S \otimes_R S$$

\[s \mapsto s \otimes_R 1_S. \]

Then

$$m \circ h = \text{Id}$$

and

$$(h \circ m)(s' \otimes_R s) = s's \otimes_R 1_S =$$
$$= (m \otimes_R S)(s' \otimes_R s \otimes_R 1_S) =$$
$$= (m \otimes_R S)(s' \otimes_R 1_S \otimes_R s) = s' \otimes_R s$$

and hence $h \circ m = \text{Id}$. Hence m is invertible.
(3) ⇔ (4) ⇔ (5) are trivial.

(2) ⇒ (4) If m is invertible, from

$$m(s \otimes_R 1_S) = s = m(1_S \otimes_R s)$$

and the injectivity of m we deduce (4).

(4) ⇒ (2) Let

$$h : S \to S \otimes_R S$$

$$s \mapsto s \otimes_R 1_S.$$

Then

$$m \circ h = \text{Id}$$

and

$$(h \circ m)(s' \otimes_R s) = s's \otimes_R 1_S =$$

$$= (m \otimes_R S)(s' \otimes_R s \otimes_R 1_S) =$$

$$= (m \otimes_R S)(s' \otimes_R 1_S \otimes_R s) = s' \otimes_R s$$

and hence $h \circ m = \text{Id}$. Hence m is invertible.

By a previous Proposition, (5) implies that S/R is h-separable.
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map $\phi: R \to S^{-1}R$ is a ring epimorphism. More generally we can consider a perfect right localization of R as in [St, page 229].

2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion $\phi: T_n(R) \to M_n(R)$ is a ring epimorphism (Exercise).

3) Any surjective ring homomorphism $\phi: R \to S$ is trivially a ring epimorphism.
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\phi : R \rightarrow S^{-1}R$$
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\varphi : R \to S^{-1} R$$

is a ring epimorphism.

2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion $\varphi : T_n(R) \to M_n(R)$ is a ring epimorphism (Exercise).

3) Any surjective ring homomorphism $\varphi : R \to S$ is trivially a ring epimorphism.
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\varphi : R \rightarrow S^{-1}R$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
EXAMPLES
1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\varphi : R \to S^{-1}R$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\phi : R \rightarrow S^{-1}R$$

is a ring epimorphism. More generally we can consider a perfect right localization of R as in [St, page 229].

2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$\phi : T_n(R) \rightarrow M_n(R)$$
EXAMPLES
1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\phi : R \to S^{-1} R$$

is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].
2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$\phi : T_n(R) \to M_n(R)$$

is a ring epimorphism (Exercise).
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\phi : R \to S^{-1}R$$

is a ring epimorphism.

More generally we can consider a perfect right localization of R as in [St, page 229].

2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$\phi : T_n(R) \to M_n(R)$$

is a ring epimorphism (Exercise).

3) Any surjective ring homomorphism
EXAMPLES
1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\phi : R \to S^{-1}R$$

is a ring epimorphism. More generally we can consider a perfect right localization of R as in [St, page 229].

2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$\phi : T_n(R) \to M_n(R)$$

is a ring epimorphism (Exercise).

3) Any surjective ring homomorphism

$$\phi : R \to S$$
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map
\[\varphi : R \to S^{-1}R \]
is a ring epimorphism.
More generally we can consider a perfect right localization of R as in [St, page 229].

2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion
\[\varphi : T_n(R) \to M_n(R) \]
is a ring epimorphism (Exercise).

3) Any surjective ring homomorphism
\[\varphi : R \to S \]
is trivially a ring epimorphism.
EXAMPLES

1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical map

$$\varphi : R \to S^{-1}R$$

is a ring epimorphism. More generally we can consider a perfect right localization of R as in [St, page 229].

2) Consider the ring of matrices $M_n(R)$ and the ring $T_n(R)$ of $n \times n$ upper triangular matrices over a ring R. Then the inclusion

$$\varphi : T_n(R) \to M_n(R)$$

is a ring epimorphism (Exercise).

3) Any surjective ring homomorphism

$$\varphi : R \to S$$

is trivially a ring epimorphism.
It is well-known that the ring of matrices is separable,
It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41].
It is well-known that the ring of matrices is separable, see e.g. [Di, Example II, page 41].
In contrast to this we prove:

LEMMA
\[
M_n(R) / R\hbox{-separable} \Rightarrow n = 1.
\]
It is well-known that the ring of matrices is separable, see e.g. [Di, Example II, page 41]. In contrast to this we prove:

LEMMA
It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41]. In contrast to this we prove:

LEMMA

\[M_n(R)/R \text{ h-separable} \Rightarrow n = 1. \]
It is well-known that the ring of matrices is separable, see e.g. [DI, Example II, page 41]. In contrast to this we prove:

LEMMA

\[M_n(R)/R \text{ h-separable} \Rightarrow n = 1. \]

Now we go back to Proposition
Now we go back to
Proposition
Let \(\varphi : R \to S \) be a ring homomorphism.

Now we have

THEOREM
Let \(\varphi : R \to S \) be a ring homomorphism such that
\[\varphi(R) \subseteq Z(S) = \text{center of } S. \]

Then the following are equivalent.
1. \(S/\!\!/R \) is h-separable.
2. The canonical map \(\varphi : R \to S \) is a ring epimorphism.

Moreover, if one of these conditions holds, then \(S \) is commutative.
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism.
The following are equivalent.
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;

Now we have

THEOREM

Let $\varphi : R \to S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S) =$ center of S. Then the following are equivalent.

1. S/R is h-separable
2. the canonical map $\varphi : R \to S$ is a ring epimorphism.

Moreover if one of these conditions holds, then S is commutative.
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)

Now we have
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism.

The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)

Now we have

THEOREM
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism.

The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)

Now we have

THEOREM

Let $\varphi : R \to S$ be a ring homomorphism such that
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)

Now we have

THEOREM

Let $\varphi : R \to S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S) = \text{center of } S$.

C. Menini (University of Ferrara)
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism.

The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)

Now we have

THEOREM

Let $\varphi : R \to S$ be a ring homomorphism such that

$\varphi(R) \subseteq Z(S) =$ center of S. Then the following are equivalent.
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism.

The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)

Now we have

THEOREM

Let $\varphi : R \to S$ be a ring homomorphism such that

$\varphi (R) \subseteq Z(S) = \text{center of } S.$

Then the following are equivalent.

1. S/R is h-separable
Now we go back to

Proposition

Let $\varphi : R \to S$ be a ring homomorphism. The following are equivalent.

1. The map φ is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication $m : S \otimes_R S \to S$ is invertible;
3. $1_S \otimes_R 1_S$ is a separability idempotent for S/R;
4. $1_S \otimes_R 1_S$ is a h-separability idempotent for S/R (so that S/R is h-separable.)

Now we have

THEOREM

Let $\varphi : R \to S$ be a ring homomorphism such that $\varphi(R) \subseteq Z(S) =$ center of S. Then the following are equivalent.

1. S/R is h-separable
2. the canonical map $\varphi : R \to S$ is a ring epimorphism.
Now we go back to

Proposition

Let \(\varphi : R \to S \) be a ring homomorphism.

The following are equivalent.

1. The map \(\varphi \) is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication \(m : S \otimes_R S \to S \) is invertible;
3. \(1_S \otimes_R 1_S \) is a separability idempotent for \(S/R \);
4. \(1_S \otimes_R 1_S \) is a h-separability idempotent for \(S/R \) (so that \(S/R \) is h-separable.)

Now we have

THEOREM

Let \(\varphi : R \to S \) be a ring homomorphism such that

\[\varphi(R) \subseteq Z(S) = \text{center of } S. \]

Then the following are equivalent.

1. \(S/R \) is h-separable
2. the canonical map \(\varphi : R \to S \) is a ring epimorphism.
Now we go back to

Proposition

Let \(\varphi : R \to S \) be a ring homomorphism.

The following are equivalent.

1. The map \(\varphi \) is a ring epimorphism (i.e. an epimorphism in the category of rings);
2. the multiplication \(m : S \otimes_R S \to S \) is invertible;
3. \(1_S \otimes_R 1_S \) is a separability idempotent for \(S/R \);
4. \(1_S \otimes_R 1_S \) is a h-separability idempotent for \(S/R \) (so that \(S/R \) is h-separable.)

Now we have

THEOREM

Let \(\varphi : R \to S \) be a ring homomorphism such that

\[\varphi(R) \subseteq Z(S) \]

\(= \) center of \(S \). Then the following are equivalent.

1. \(S/R \) is h-separable
2. the canonical map \(\varphi : R \to S \) is a ring epimorphism.

Moreover if one of these conditions holds, then \(S \) is commutative.
Proof

Let \(\sum_i a_i \otimes R b_i \) be an h-separability idempotent. Since \(\phi(R) \subseteq Z(S) \), the map \(\tau: A \otimes R A \to A \otimes R A \), \(\tau(a \otimes R b) = b \otimes R a \), is well-defined and left \(R \)-linear. Hence we can apply \((m \otimes R S) \circ (A \otimes R \tau) \) on both sides of \(\sum_j \)

\[\sum_j a_j \otimes R b_j = \sum_j a_j \otimes R 1 \cdot S \otimes R b_j (1) \]

together with the equality \(\sum_i a_i b_i = 1 \) to get

\[\sum_t, j a_t b_j \otimes R b_t a_j = 1 \cdot S \otimes R 1 \cdot S \]

(2)

By \(\sum_i \) sa_i \otimes R b_i = \(\sum_i a_i \otimes R b_i \) and using \(\tau \) we get that \(\sum_t a_t sb b_t \in Z(S) \), for all \(s \in S \).

Using this fact we have

\[s = 1 \cdot S \cdot 1 \cdot S \cdot s \]

(2)

We have so proved that \(S \subseteq Z(S) \) and hence \(S \) is commutative.
Proof

(1) ⇒ (2)
Proof

(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent.
Proof

(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$,
Proof
(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau : A \otimes_R A \to A \otimes_R A, \tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear.
Proof

(1) ⇒ (2) Let \(\sum_i a_i \otimes_R b_i \) be an h-separability idempotent. Since \(\varphi(R) \subseteq Z(S) \), the map \(\tau : A \otimes_R A \rightarrow A \otimes_R A, \tau(a \otimes_R b) = b \otimes_R a \), is well-defined and left \(R \)-linear. Hence we can apply \((m \otimes_R S) \circ (A \otimes_R \tau) \)}
Proof

(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau : A \otimes_R A \rightarrow A \otimes_R A$, $\tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear. Hence we can apply $(m \otimes_S S) \circ (A \otimes_R \tau)$ on both sides of

$$\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_j a_j \otimes_R 1_S \otimes_R b_j \quad (1)$$
Proof
(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau : A \otimes_R A \to A \otimes_R A$, $\tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear. Hence we can apply $(m \otimes_R S) \circ (A \otimes_R \tau)$ on both sides of
\[
\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_j a_j \otimes_R 1_S \otimes_R b_j
\]
(1)

together with the equality $\sum_i a_i b_i = 1$
Proof

(1) \Rightarrow (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(\mathcal{R}) \subseteq Z(S)$, the map $\tau : A \otimes_R A \to A \otimes_R A$, $\tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear. Hence we can apply $(m \otimes_R S) \circ (A \otimes_R \tau)$ on both sides of

$$\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_{j} a_j \otimes_R 1_S \otimes_R b_j$$

(1)

together with the equality $\sum_i a_i b_i = 1$ to get

$$\sum_{t,j} a_t b_j \otimes_R b_t a_j = 1_S \otimes_R 1_S.$$

(2)
Proof

(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau : A \otimes_R A \rightarrow A \otimes_R A, \tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear. Hence we can apply $(m \otimes_R S) \circ (A \otimes_R \tau)$ on both sides of

$$\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_j a_j \otimes_R 1_S \otimes_R b_j$$

(1)

together with the equality $\sum_i a_i b_i = 1$ to get

$$\sum_{t,j} a_t b_j \otimes_R b_t a_j = 1_S \otimes_R 1_S.$$

(2)

By $\sum_i sa_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s$ and using τ
Proof

(1) \implies (2) Let \(\sum_i a_i \otimes_R b_i \) be an h-separability idempotent. Since \(\varphi(R) \subseteq Z(S) \), the map \(\tau : A \otimes_R A \to A \otimes_R A, \tau(a \otimes_R b) = b \otimes_R a \), is well-defined and left \(R \)-linear. Hence we can apply \((m \otimes_R S) \circ (A \otimes_R \tau)\) on both sides of

\[
\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_j a_j \otimes_R 1_S \otimes_R b_j
\]

(1)

together with the equality \(\sum_i a_i b_i = 1 \) to get

\[
\sum_{t,j} a_t b_j \otimes_R b_t a_j = 1_S \otimes_R 1_S.
\]

(2)

By \(\sum_i sa_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s \) and using \(\tau \) we get that \(\sum_t a_t s b_t \in Z(S) \), for all \(s \in S \).
Proof
(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau : A \otimes_R A \to A \otimes_R A, \tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear. Hence we can apply $(m \otimes_R S) \circ (A \otimes_R \tau)$ on both sides of
\[
\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_j a_j \otimes_R 1_S \otimes_R b_j
\] (1)
together with the equality $\sum_i a_i b_i = 1$ to get
\[
\sum_{t,j} a_t b_j \otimes_R b_t a_j = 1_S \otimes_R 1_S.
\] (2)
By $\sum_i s a_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s$ and using τ we get that $\sum_t a_t s b_t \in Z(S)$, for all $s \in S$. Using this fact we have
Proof

(1) \Rightarrow (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since $\varphi(R) \subseteq Z(S)$, the map $\tau : A \otimes_R A \to A \otimes_R A$, $\tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear. Hence we can apply $(m \otimes_R S) \circ (A \otimes_R \tau)$ on both sides of

$$
\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_j a_j \otimes_R 1_S \otimes_R b_j
$$

(1)

together with the equality $\sum_i a_i b_i = 1$ to get

$$
\sum_{t,j} a_t b_j \otimes_R b_t a_j = 1_S \otimes_R 1_S.
$$

(2)

By $\sum_i s a_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s$ and using τ we get that $\sum_t a_t s b_t \in Z(S)$, for all $s \in S$. Using this fact we have

$$
s = 1_S \cdot 1_S \cdot s \overset{(2)}{=} \sum_{i,j} a_i b_j b_i a_j s = \sum_{i,j} a_i (b_j) b_i (a_j) s (1_S) \overset{(1)}{=} \sum_{i,j,t} a_i b_j b_i a_t s b_t a_j
$$

$$
= \sum_{i,j,t} a_i b_j b_i (a_t s b_t) a_j = \sum_{i,j,t} a_i b_j b_i a_j (a_t s b_t) \overset{(2)}{=} \sum_t a_t s b_t \in Z(S).
$$
Proof

(1) ⇒ (2) Let $\sum_i a_i \otimes_R b_i$ be an h-separability idempotent. Since
$\varphi(R) \subseteq Z(S)$, the map $\tau : A \otimes_R A \rightarrow A \otimes_R A, \tau(a \otimes_R b) = b \otimes_R a$, is well-defined and left R-linear. Hence we can apply $(m \otimes_R S) \circ (A \otimes_R \tau)$ on both sides of

$$
\sum_{j,t} a_t \otimes_R b_t a_j \otimes_R b_j = \sum_j a_j \otimes_R 1_S \otimes_R b_j \tag{1}
$$

together with the equality $\sum_i a_i b_i = 1$ to get

$$
\sum_{t,j} a_t b_j \otimes_R b_t a_j = 1_S \otimes_R 1_S. \tag{2}
$$

By $\sum_i sa_i \otimes_R b_i = \sum_i a_i \otimes_R b_i s$ and using τ we get that $\sum_t a_t s b_t \in Z(S)$, for all $s \in S$. Using this fact we have

$$
s = 1_S \cdot 1_S \cdot s = \sum_{i,j} a_i b_j b_i a_j s = \sum_{i,j} a_i (b_j) b_i (a_j) s (1_S) = \sum_{i,j,t} a_i b_j b_i a_t s b_t a_j \tag{1}
$$

$$
= \sum_{i,j,t} a_i b_j b_i (a_t s b_t) a_j = \sum_{i,j,t} a_i b_j b_i a_j (a_t s b_t) \tag{2} = \sum_t a_t s b_t \in Z(S).
$$

We have so proved that $S \subseteq Z(S)$ and hence S is commutative.
Now, we compute

\[\sum_i a_i \otimes_R b_i = \sum_{i,j} a_i a_j b_j \otimes_R b_i \stackrel{S=Z(S)}{=} \sum_{i,j} a_j a_i b_j \otimes_R b_i = \sum_{i,j} a_i b_j \otimes_R b_i a_j \stackrel{(2)}{=} 1_s \otimes_R 1_s. \]

We conclude by previous Proposition.

(2) \implies (1) It follows by previous Proposition.
Proposition
Proposition

Let A be a h-separable algebra over a field k.

By previous theorem, the unit $u: k \rightarrow A$ is a ring epimorphism. By previous proposition, we have that $A \otimes_k A \sim A$ via multiplication. Since A is h-separable over k it is in particular separable over k and hence it is finite-dimensional. Thus, from $A \otimes_k A \sim A$ we deduce that A has either dimensional one or zero over k.
Proposition
Let A be a h-separable algebra over a field k. Then either $A = k$ or $A = 0$.

Proof
Proposition
Let A be a h-separable algebra over a field k. Then either $A = k$ or $A = 0$.

Proof
By previous Theorem, the unit $u : k \to A$ is a ring epimorphism.
Proposition
Let A be a h-separable algebra over a field k. Then either $A = k$ or $A = 0$.

Proof
By previous Theorem, the unit $u : k \to A$ is a ring epimorphism. By previous Proposition, we have that $A \otimes_k A \cong A$ via multiplication.
Proposition

Let A be a h-separable algebra over a field k. Then either $A = k$ or $A = 0$.

Proof

By previous Theorem, the unit $u : k \rightarrow A$ is a ring epimorphism. By previous Proposition, we have that $A \otimes_k A \cong A$ via multiplication. Since A is h-separable over k it is in particular separable over k and hence it is finite-dimensional.
Proposition
Let A be a h-separable algebra over a field k. Then either $A = k$ or $A = 0$.

Proof
By previous Theorem, the unit $u : k \to A$ is a ring epimorphism. By previous Proposition, we have that $A \otimes_k A \cong A$ via multiplication. Since A is h-separable over k it is in particular separable over k and hence it is finite-dimensional. Thus, from $A \otimes_k A \cong A$ we deduce that A has either dimensional one or zero over k.
EXAMPLE

\(C / R \) is separable but not h-separable. In fact, by Proposition above, \(C / R \) is not h-separable. On the other hand \(e = \frac{1}{2} (1 \otimes R_1 - i \otimes R_i) \) is a separability idempotent (it is the only possible one). It is clear that \(e \) is not a h-separability idempotent.
EXAMPLE

\(\mathbb{C}/\mathbb{R} \) is separable but not h-separable.
EXAMPLE

\(\mathbb{C}/\mathbb{R} \) is separable but not h-separable.

In fact, by Proposition above, \(\mathbb{C}/\mathbb{R} \) is not h-separable.
EXAMPLE

\(\mathbb{C}/\mathbb{R} \) is separable but not h-separable.

In fact, by Proposition above, \(\mathbb{C}/\mathbb{R} \) is not h-separable.

On the other hand
EXAMPLE

\mathbb{C}/\mathbb{R} is separable but not h-separable.

In fact, by Proposition above, \mathbb{C}/\mathbb{R} is not h-separable.

On the other hand

$$e = \frac{1}{2} (1 \otimes_{\mathbb{R}} 1 - i \otimes_{\mathbb{R}} i)$$

is a separability idempotent.
EXAMPLE

\(\mathbb{C}/\mathbb{R} \) is separable but not h-separable.

In fact, by Proposition above, \(\mathbb{C}/\mathbb{R} \) is not h-separable.

On the other hand

\[
e = \frac{1}{2} (1 \otimes \mathbb{R} 1 - i \otimes \mathbb{R} i)
\]

is a separability idempotent

(it is the only possible one). It is clear that \(e \) is not a h-separability idempotent.
EXAMPLE

\mathbb{C}/\mathbb{R} is separable but not h-separable.
In fact, by Proposition above, \mathbb{C}/\mathbb{R} is not h-separable.
On the other hand

$$e = \frac{1}{2} \left(1 \otimes_{\mathbb{R}} 1 - i \otimes_{\mathbb{R}} i \right)$$
is a separability idempotent

(it is the only possible one). It is clear that e is not a h-separability idempotent.
Why \(h \)-separable functors?
Why h-separable functors?

Let \mathcal{M} denote a preadditive braided monoidal category such that
Why h-separable functors?

Let \mathcal{M} denote a preadditive braided monoidal category such that

- \mathcal{M} has equalizers;

- \mathcal{M} has denumerable coproducts;

- The tensor products are additive and preserve equalizers and denumerable coproducts.
Why \(h \)-separable functors?

Let \(\mathcal{M} \) denote a preadditive braided monoidal category such that

- \(\mathcal{M} \) has equalizers;
- \(\mathcal{M} \) has denumerable coproducts;
Why h-separable functors?

Let \(\mathcal{M} \) denote a preadditive braided monoidal category such that

- \(\mathcal{M} \) has equalizers;
- \(\mathcal{M} \) has denumerable coproducts;
- the tensor products are additive and preserve equalizers and denumerable coproducts.
Why h-separable functors?

Let \mathcal{M} denote a preadditive braided monoidal category such that

- \mathcal{M} has equalizers;
- \mathcal{M} has denumerable coproducts;
- the tensor products are additive and preserve equalizers and denumerable coproducts.
Let us consider the adjunction

\[(T, \Omega)\]

where \(T : M \rightarrow \text{Alg}(M)\) is the tensor algebra functor and \(\Omega : \text{Alg}(M) \rightarrow M\) is the forgetful functor.

Let \(V \in M\). By construction, \(\Omega TV = \bigoplus_{n \in \mathbb{N}} V \otimes n\).

Denote by \(\alpha_n V : V \otimes n \rightarrow \Omega TV\) the canonical inclusion.

The unit of the adjunction \((T, \Omega)\) is \(\eta : \text{Id}_M \rightarrow \Omega T\) defined by \(\eta_V := \alpha_1 V\).
Let us consider the adjunction

\((T, \Omega)\)

where

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \]

is the tensor algebra functor and

\[\Omega : \text{Alg}(\mathcal{M}) \to \mathcal{M} \]

is the forgetful functor.

Let \(V \in \mathcal{M} \).

By construction \(\Omega TV = \bigoplus_{n \in \mathbb{N}} V \otimes n \).

Denote by \(\alpha_n V : V \otimes n \to \Omega TV \) the canonical inclusion.

The unit of the adjunction \((T, \Omega)\) is \(\eta : \text{Id}_\mathcal{M} \to \Omega T \) defined by

\[\eta_V := \alpha_1 V \]
Let us consider the adjunction

$$(T, \Omega)$$

where

$$T : \mathcal{M} \to \text{Alg}(\mathcal{M})$$ is the tensor algebra functor.
Let us consider the adjunction

$$(T, \Omega)$$

where

$$T : \mathcal{M} \to \text{Alg}(\mathcal{M})$$ is the tensor algebra functor

and

$$\Omega : \text{Alg}(\mathcal{M}) \to \mathcal{M}$$ is the forgetful functor.
Let us consider the adjunction

\[(T, \Omega)\]

where

\[T : \mathcal{M} \rightarrow \text{Alg}(\mathcal{M})\]

is the tensor algebra functor and

\[\Omega : \text{Alg}(\mathcal{M}) \rightarrow \mathcal{M}\]

is the forgetful functor.

Let \(V \in \mathcal{M}\).
Let us consider the adjunction

$$(T, \Omega)$$

where

$$T : \mathcal{M} \to \text{Alg}(\mathcal{M})$$

is the tensor algebra functor

and

$$\Omega : \text{Alg}(\mathcal{M}) \to \mathcal{M}$$

is the forgetful functor.

Let $V \in \mathcal{M}$. By construction

$$\Omega TV = \bigoplus_{n \in \mathbb{N}} V^\otimes n.$$
Let us consider the adjunction

$$\left(T, \Omega \right)$$

where

$$T : \mathcal{M} \to \text{Alg}(\mathcal{M})$$ is the tensor algebra functor

and

$$\Omega : \text{Alg}(\mathcal{M}) \to \mathcal{M}$$ is the forgetful functor.

Let $V \in \mathcal{M}$. By construction

$$\Omega T V = \bigoplus_{n \in \mathbb{N}} V \otimes^n.$$

Denote by

$$\alpha_n V : V \otimes^n \to \Omega T V$$ the canonical inclusion.
Let us consider the adjunction

$$(T, \Omega)$$

where

$T : \mathcal{M} \rightarrow \text{Alg}(\mathcal{M})$ is the tensor algebra functor

and

$\Omega : \text{Alg}(\mathcal{M}) \rightarrow \mathcal{M}$ is the forgetful functor.

Let $V \in \mathcal{M}$. By construction

$$\Omega TV = \bigoplus_{n \in \mathbb{N}} V^\otimes n.$$

Denote by

$$\alpha_n V : V^\otimes n \rightarrow \Omega TV$$

the canonical inclusion.

The unit of the adjunction (T, Ω) is
Let us consider the adjunction

$$(T, \Omega)$$

where

$$T : \mathcal{M} \rightarrow \text{Alg}(\mathcal{M})$$ is the tensor algebra functor

and

$$\Omega : \text{Alg}(\mathcal{M}) \rightarrow \mathcal{M}$$ is the forgetful functor.

Let $V \in \mathcal{M}$. By construction

$$\Omega TV = \bigoplus_{n \in \mathbb{N}} V^\otimes n.$$

Denote by

$$\alpha_n V : V^\otimes n \rightarrow \Omega TV$$ the canonical inclusion.

The unit of the adjunction (T, Ω) is

$$\eta : \text{Id}_\mathcal{M} \rightarrow \Omega T \text{ defined by } \eta V := \alpha_1 V$$
while the counit $\varepsilon : T\Omega \to \text{Id}$ is uniquely defined by the equality

$$\varepsilon = m^n - 1$$

for every $n \in \mathbb{N}$ where $m^n - 1 : A \otimes n \to A$ denotes the iterated multiplication of an algebra (A, m, u) defined by

$$m^0 = \text{Id}_A$$

and for $n \geq 2$, $m^n - 1 = m \circ (m^{n-2} \otimes A)$.

See [AM1, Remark 1.2].

while the counit $\varepsilon : T\Omega \to \text{Id}$ is uniquely defined by the equality

$$\Omega \varepsilon (A, m, u) \circ \alpha_n A = m^{n-1} \text{ for every } n \in \mathbb{N}$$
while the counit $\varepsilon : T\Omega \to \text{Id}$ is uniquely defined by the equality

$$\Omega \varepsilon (A, m, u) \circ \alpha_n A = m^{n-1} \text{ for every } n \in \mathbb{N}$$

where $m^{n-1} : A^\otimes n \to A$ denotes the iterated multiplication of an algebra (A, m, u) defined by

$$m^{-1} = u, \quad m^0 = \text{Id}_A \quad \text{and for} \quad n \geq 2, \quad m^{n-1} = m \circ (m^{n-2} \otimes A).$$
while the counit $\varepsilon : T\Omega \to \text{Id}$ is uniquely defined by the equality

$$\Omega \varepsilon (A, m, u) \circ \alpha_n A = m^{n-1}$$

for every $n \in \mathbb{N}$

where $m^{n-1} : A^{\otimes n} \to A$ denotes the iterated multiplication of an algebra (A, m, u) defined by

$$m^{-1} = u, m^0 = \text{Id}_A \text{ and for }$$

$$n \geq 2, m^{n-1} = m \circ (m^{n-2} \otimes A).$$

See [AM1, Remark 1.2].

It is proved that Ω is strictly monadic i.e.
It is proved that Ω is strictly monadic i.e. the comparison functor

$$\Omega_1 : \text{Alg}(\mathcal{M}) \to \mathcal{M}_1$$

is a category isomorphism,

see [AM2, Theorem A.6].
It is proved that Ω is strictly monadic i.e. the comparison functor

$$\Omega_1 : \text{Alg}(\mathcal{M}) \rightarrow \mathcal{M}_1$$

is a category isomorphism,

see [AM2, Theorem A.6].

Since the functor Ω is strictly monadic, by the foregoing, we have that
It is proved that Ω is strictly monadic i.e. the comparison functor

$$\Omega_1 : \text{Alg}(\mathcal{M}) \rightarrow \mathcal{M}_1$$

is a category isomorphism,

see [AM2, Theorem A.6].

Since the functor Ω is strictly monadic, by the foregoing, we have that

T is heavily separable if and only if

$$\Omega : \text{Alg}(\mathcal{M}) \rightarrow \mathcal{M}$$

is a split natural epimorphism.
It is proved that Ω is strictly monadic i.e. the comparison functor

$$\Omega_1 : \text{Alg}(\mathcal{M}) \to \mathcal{M}_1 \text{ is a category isomorphism},$$

see [AM2, Theorem A.6].

Since the functor Ω is strictly monadic, by the foregoing, we have that

$$T \text{ is heavily separable if and only if}$$

$$\Omega : \text{Alg}(\mathcal{M}) \to \mathcal{M} \text{ is a split natural epimorphism}.$$

But this is not the case. This happens only if all objects are isomorphic to the unit object 1,

Thus, in general

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is not heavily separable.} \]
Thus, in general

\[T : \mathcal{M} \rightarrow \text{Alg}(\mathcal{M}) \text{ is not heavily separable}. \]

For every \(V \in \mathcal{M} \), there is a unique morphism
Thus, in general

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is not heavily separable.} \]

For every \(V \in \mathcal{M} \), there is a unique morphism

\[\omega V : \Omega TV \to V \]

such that
Thus, in general

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is not heavily separable.} \]

For every \(V \in \mathcal{M} \), there is a unique morphism

\[\omega V : \Omega TV \to V \]

such that

\[\omega V \circ \alpha_n V = \delta_{n,1} \text{Id}_V. \]
Thus, in general

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \] is not heavily separable.

For every \(V \in \mathcal{M} \), there is a unique morphism

\[\omega V : \Omega TV \to V \]

such that

\[\omega V \circ \alpha_n V = \delta_{n,1} \text{Id}_V. \]

This yields a natural transformation
Thus, in general

\[T : \mathcal{M} \rightarrow \text{Alg}(\mathcal{M}) \text{ is not heavily separable.} \]

For every \(V \in \mathcal{M} \), there is a unique morphism

\[\omega V : \Omega TV \rightarrow V \]

such that

\[\omega V \circ \alpha_n V = \delta_{n,1} \text{Id}_V. \]

This yields a natural transformation

\[\omega : \Omega T \rightarrow \text{Id}_{\mathcal{M}} \] "the projection at degree one functor".
Thus, in general

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is not heavily separable.} \]

For every \(V \in \mathcal{M} \), there is a unique morphism

\[\omega V : \Omega TV \to V \]

such that

\[\omega V \circ \alpha_n V = \delta_{n,1} \text{Id}_V. \]

This yields a natural transformation

\[\omega : \Omega T \to \text{Id}_\mathcal{M} \] "the projection at degree one functor".

Since \(\eta = \alpha_1 \), we obtain that
Thus, in general

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is not heavily separable.} \]

For every \(V \in \mathcal{M} \), there is a unique morphism

\[\omega V : \Omega TV \to V \]

such that

\[\omega V \circ \alpha_n V = \delta_{n,1} \text{Id}_V. \]

This yields a natural transformation

\[\omega : \Omega T \to \text{Id}_\mathcal{M} \text{ "the projection at degree one functor".} \]

Since \(\eta = \alpha_1 \), we obtain that

\[\omega \circ \eta = \text{Id}, \]
so that the functor

$$T : M \to \text{Alg}(M)$$

is separable.

Conclusion: the tensor functor

$$T : M \to \text{Alg}(M)$$

is separable but not heavily separable.

As a particular case, we get that the functor

$$T : \text{Vec}_k \to \text{Alg}_k$$

is separable but not heavily separable.
so that the functor

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is separable.} \]
so that the functor

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is separable.} \]

Conclusion: the tensor functor

\[T : \mathcal{M} \to \text{Alg}(\mathcal{M}) \text{ is separable but not heavily separable.} \]
so that the functor

$$T : \mathcal{M} \to \text{Alg}(\mathcal{M})$$

is separable.

Conclusion: the tensor functor

$$T : \mathcal{M} \to \text{Alg}(\mathcal{M})$$ is separable but not heavily separable.

As a particular case, we get that the functor $T : \text{Vec}_k \to \text{Alg}_k$ is separable but not heavily separable.
On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction
On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

\((\tilde{T}, P)\)
On the other hand, in view of the assumptions above, we can apply \([AM1, \text{Theorem 4.6}]\) to give an explicit description of an adjunction

\[(\widetilde{T}, P)\]

where

\[\widetilde{T} : \mathcal{M} \rightarrow \text{Bialg}(\mathcal{M})\]

is the "tensor bialgebra functor"

\[P : \text{Bialg}(\mathcal{M}) \rightarrow \mathcal{M}\]

is the "primitive elements functor".
On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

\[(\tilde{T}, P) \]

where

\[\tilde{T} : M \to \text{Bialg}(M) \] is the "tensor bialgebra functor"

and

\[P : \text{Bialg}(M) \to M \] is the "primitive elements functor".
On the other hand, in view of the assumptions above, we can apply [AM1, Theorem 4.6] to give an explicit description of an adjunction

\[(\tilde{T}, P) \]

where

\[\tilde{T} : \mathcal{M} \to \text{Bialg}(\mathcal{M}) \] is the "tensor bialgebra functor"

and

\[P : \text{Bialg}(\mathcal{M}) \to \mathcal{M} \] is the "primitive elements functor".

For any \(B := (B, m_B, u_B, \Delta_B, \varepsilon_B) \in \text{Bialg}(\mathcal{M}) \), \(P(B) \) is defined via the equalizer

\[P(B) \xrightarrow{\xi_B} B \xrightarrow{\Delta_B} B \otimes B \]

\[(B \otimes u_B) r_B^{-1} + (u_B \otimes B) l_B^{-1} \]

Let

\(\tilde{\eta} \) and \(\tilde{\varepsilon} \) denote the unit and the counit of this adjunction.

Set

\[\gamma := \omega \circ \xi \tilde{T} : P \tilde{T} \rightarrow \text{Id}_B \]

the restriction to \(P \tilde{T} \) of "the projection at degree one"
Set

\[\gamma := \omega \circ \xi \tilde{T} : P\tilde{T} \to \text{Id}_B \]

the restriction to \(P\tilde{T} \) of "the projection at degree one"

Then

\[\gamma \circ \tilde{\eta} = \text{Id} \quad \text{and} \quad \gamma \gamma = \gamma \circ P\tilde{\varepsilon} \tilde{T} \]

i.e. \(\tilde{T} \) is heavily separable via \(\gamma \).